

いのちとくらしをまもる 防 災 減 災

令 和 4 年 6 月 8 日 地 震 火 山 部

令和4年5月の地震活動及び火山活動について

令和4年5月の地震活動及び火山活動について解説します。

• 地震活動

5月22日の茨城県沖の地震(M6.0)により最大震度5弱を観測しました。この地震により、住家一部破損1棟などの被害がありました(令和4年5月30日現在、被害は総務省消防庁による)。

全国で震度3以上を観測した地震の回数は21回で、このうち、最大震度4以上を観測した地震は4回でした。日本及びその周辺におけるM4.0以上の地震の回数は98回でした。

震度3以上を観測するなどの主な地震活動の概況は別紙1のとおりです。また、世界の主な地震は別紙2のとおりです。

・火山活動

警報・予報事項に変更のあった火山は以下のとおりです。その他の火山では、 警報・予報事項に変更はありません(令和4年6月8日14時現在)。

焼岳では、24 日に火口周辺警報を発表し、噴火警戒レベルを 1 (活火山であることに留意) から 2 (火口周辺規制) に引き上げました。

口永良部島では、25 日に噴火予報を発表し、噴火警戒レベルを2 (火口周辺規制)から1 (活火山であることに留意)に引き下げました。

日本の主な火山活動の概況は別紙3のとおりです。また、世界の主な火山活動は別紙4のとおりです。

注1: 国土地理院の GNSS による地殻変動観測については、国土地理院ホームページの記者発表資料「令和4年5月の地殻変動について」を参照願います。

https://www.gsi.go.jp/WNEW/PRESS-RELEASE/2022-goudou0608.html

注2: 気象庁の地震活動資料には、気象庁、防災科学技術研究所及び大学等関係機関のデータ が使われています。

注3:地震活動及び火山活動の詳細については、「地震・火山月報(防災編)」令和4年5月号をご覧ください。

注4:令和4年6月の地震活動及び火山活動については、令和4年7月8日に発表の予定です。

問合せ先:地震火山部 管理課 担当 宮岡

電話 03-6758-3900 (内線 5104)

地震火山部 火山監視課 担当 中村

電話 03-6758-3900 (内線 5184)

※ 本資料中のデータについて

気象庁では、平成9年11月10日より、国・地方公共団体及び住民が一体となった緊急防災対応の迅速かつ 円滑な実施に資するため、気象庁の震度計の観測データに合わせて地方公共団体*及び国立研究開発法人防 災科学技術研究所から提供されたものも震度情報として発表している。

また、気象庁では、地震防災対策特別措置法の趣旨に沿って、平成9年10月1日より、大学や国立研究開発法人防災科学技術研究所等の関係機関から地震観測データの提供を受け**、文部科学省と協力してこれを整理し、整理結果等を、同法に基づいて設置された地震調査研究推進本部地震調査委員会に提供するとともに、気象業務の一環として防災情報として適宜発表する等活用している。

- 注* 令和4年5月31日現在:北海道、青森県、岩手県、宮城県、秋田県、山形県、福島県、茨城県、栃木県、群馬県、埼玉県、千葉県、東京都、神奈川県、新潟県、富山県、石川県、福井県、山梨県、長野県、岐阜県、静岡県、愛知県、三重県、滋賀県、京都府、大阪府、兵庫県、奈良県、和歌山県、鳥取県、島根県、岡山県、広島県、山口県、徳島県、香川県、愛媛県、高知県、福岡県、佐賀県、長崎県、熊本県、大分県、宮崎県、鹿児島県、沖縄県、札幌市(北海道)、仙台市(宮城県)、千葉市(千葉県)、横浜市(神奈川県)、川崎市(神奈川県)、相模原市(神奈川県)、名古屋市(愛知県)、京都市(京都府)の47都道府県、8 政令指定都市。
- 注** 令和4年5月31日現在:国立研究開発法人防災科学技術研究所、北海道大学、弘前大学、東北大学、東京大学、名古屋大学、京都大学、高知大学、九州大学、鹿児島大学、国立研究開発法人産業技術総合研究所、国土地理院、国立研究開発法人海洋研究開発機構、公益財団法人地震予知総合研究振興会、青森県、東京都、静岡県、神奈川県温泉地学研究所及び気象庁のデータを用いて作成している。また、2016年熊本地震合同観測グループのオンライン臨時観測点(河原、熊野座)、米国大学間地震学研究連合(IRIS)の観測点(台北、玉峰、寧安橋、玉里、台東)のデータを用いて作成している。

※ 本資料中の図について

本資料中の地図は、『数値地図 25000 (行政界・海岸線)』(国土地理院)を加工して作成した。

また、一部の図版作成には GMT (Generic Mapping Tool [Wessel, P., and W. H. F. Smith, New, improved version of Generic Mapping Tools released, *EOS Trans. Amer. Geophys. U.*, vol. 79 (47), pp. 579, 1998]) を使用した。

.

※ 本資料利用上の注意

・資料中の語句について

M:マグニチュード(通常、揺れの最大振幅から推定した気象庁マグニチュードだが、気象庁 CMT 解のモーメントマグニチュードの場合がある。)

Mw:モーメントマグニチュード(特にことわりがない限り、気象庁 CMT 解のモーメントマグニチュードを表す。)

depth:深さ(km)

UND:マグニチュードの決まらない地震が含まれていることを意味する。

N= xx, yy/ZZ: 図中に表示している地震の回数を表す(通常図の右上に示してある)。ZZ は回数の総数を表し、xx, yy は期間別に表示色を変更している場合に、期間毎の回数を表す。

発震機構解について

発震機構解の図は下半球投影である。また、特にことわりがない限り、P波初動による発震機構解である。

M-T図について

縦軸にマグニチュード(M)、横軸に時間(T)を表示した図で、地震活動の経過を見るために用いる。

電車地名について

本資料での震央地名は、原則として情報発表時に使用したものを用いるが、震央を精査した結果により、情報発表時とは異なる震央地名を用いる場合がある。なお、情報発表時の震央地名及びその領域については、各年の「地震・ 火山月報(防災編)」1月号の付録「地震・火山月報(防災編)で用いる震央地名」を参照のこと。

・震源と震央について

震源とは地震の発生原因である地球内部の岩石の破壊が開始した点であり、震源の真上の地点を震央という。

・地震の震源要素等について

2016年4月1日以降の震源では、Mの小さな地震は、自動処理による震源を表示している場合がある。自動処理による震源は、震源誤差の大きなものが表示されることがある。

2020 年9月以降に発生した地震を含む図については、2020 年8月以前までに発生した地震のみによる図と比較して、日本海溝海底地震津波観測網(S-net)や紀伊水道沖の地震・津波観測監視システム(DONET2)による海域観測網の観測データの活用、震源計算処理における海域速度構造の導入及び標高を考慮した震源決定等それまでのデータ処理方法との違いにより、震源の位置や決定数に見かけ上の変化がみられることがある。

震源の深さを「CMT 解による」とした場合は、気象庁 CMT 解のセントロイドの深さを用いている。

地震の震源要素、発震機構解、震度データ等は、再調査後、修正することがある。確定した値、算出方法については地震月報(カタログ編)[気象庁ホームページ: https://www.data.jma.go.jp/eqev/data/bulletin/index.html] に掲載する。

なお、本誌で使用している震源位置・マグニチュードは世界測地系(Japanese Geodetic Datum 2000)に基づいて計算したものである。

・火山の活動解説の火山性地震回数等について

火山性地震や火山性微動の回数等は、再調査後、修正することがある。確定した値については、火山月報(カタログ編)[気象庁ホームページ: https://www.data.jma.go.jp/vois/data/tokyo/STOCK/bulletin/index_vcatalog.htm 1]に掲載する。