

いのちとくらしをまもる 防 災 減 災

令和 3 年 2 月 10 日 大 気 海 洋 部

エルニーニョ監視速報 (No. 341) について 2021年1月の実況と 2021年2月~2021年8月の見通し

- 昨年夏からラニーニャ現象が続いている。
- 今後春の間にラニーニャ現象が終息し、平常の状態になる可能性が高い(80%)。

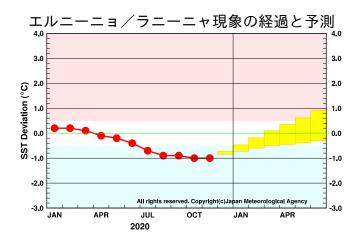
昨年夏からラニーニャ現象が続いています。

太平洋赤道域の西部に見られる海洋表層の暖水が今後東進して、中部から東部の 海面水温が平年より低い状態は解消に向かうと考えられます。

エルニーニョ予測モデルの結果も踏まえ、今後春の間にラニーニャ現象が終息し、 平常の状態になる可能性が高い(80%)と見込んでいます。

以上を内容とする「エルニーニョ監視速報 (No. 341)」を本日 14 時に発表しました。

エルニーニョ(ラニーニャ)現象とは、太平洋赤道域の日付変更線付近から南米沿岸にかけて海面水温が平年より高く(低く)なり、その状態が 1 年程度続く現象です。エルニーニョ現象やラニーニャ現象は、日本を含め世界中の異常な天候の要因となり得ると考えられています。このため気象庁では、エルニーニョ現象やラニーニャ現象など熱帯域の海洋変動を監視するとともに、それらの実況と見通しに関する情報を「エルニーニョ監視速報」として毎月 1 回(10 日頃に)発表しています。


問合せ先: 大気海洋部 気候情報課 担当 中三川

電話 03-6758-3900 (内線 4547) FAX 03-3434-9123

エルニーニョ監視速報 (No. 341)

2021年1月の実況と2021年2月~2021年8月の見通し

- 昨年夏からラニーニャ現象が続いている。
- 今後春の間にラニーニャ現象が終息し、平常の状態になる可能性が高い(80%)。

図1 エルニーニョ監視海域の海面水温の基準値との差の5か月移動平均値

11 月までの経過(観測値)を折れ線グラフで、エルニーニョ予測モデルによる予測結果(70%の確率で入ると予想される範囲)をボックスで示している。指数が赤/青の範囲に入っている期間がエルニーニョ/ラニーニャ現象の発生期間である。エルニーニョ監視海域の海面水温の基準値はその年の前年までの 30 年間の各月の平均値。

エルニーニョ/ラニーニャ現象の発生確率

(予測期間:2020年12月~2021年6月)

() 例 例 问 : 2020 中 12 月 ~ 2021 中 0 月)								
年	月	平均期間						
2020年	12月	2020年10月~2021年2月	100					
	1月	2020年11月~2021年3月	10 90					
	2月	2020年12月~2021年 4月	50	50				
2021 年	3月	2021年1月 ~2021年 5月	70	30				
	4月	2021年2月~2021年6月	10 70	20				
	5月	2021年3月~2021年7月	10 80	10				
	6月	2021年4月~2021年8月	20 70	10				
■エルニーニョ現象 平常 ■ラニーニャ現象								

図2 5 か月移動平均値が各カテゴリー(エルニーニョ現象/平常/ラニーニャ現象)に入る確率(%)

エルニーニョ監視海域の海面水温の基準値との差の 5 か月移動平均値が $+0.5^{\circ}$ C 以上 $/-0.4^{\circ}$ C $/-0.5^{\circ}$ C 以下の範囲に入る確率を、それぞれ赤/黄/青の横棒の長さで月ごとに示す。気象庁の定義では、5 か月移動平均値が $+0.5^{\circ}$ C 以上 $(-0.5^{\circ}$ C 以下)の状態で 6 か月以上持続した場合にエルニーニョ(ラニーニャ)現象の発生としているが、エルニーニョ監視速報においては速報性の観点から、実況と予測を合わせた 5 か月移動平均値が $+0.5^{\circ}$ C 以上 $(-0.5^{\circ}$ C 以下)の状態で 6 か月以上持続する場合に「エルニーニョ(ラニーニャ)現象が発生」と表現している。

【解説】

エルニーニョ/ラニーニャ現象

- 1月の実況: 昨年夏からラニーニャ現象が続いている。 1月のエルニーニョ監視海域の海面水温は基準値より低い値で基準値との差は −0.5°C、ラニーニャ現象発生の判断に使用している 5 か月移動平均値の 11 月の値は −1.0°C だった(図 3、表)。太平洋赤道域の海面水温は中部から東部にかけては平年より低く、西部で平年より高かった(図 4、図 6)。海洋表層の水温は中部から東部にかけて平より低く、西部で平年より高かった(図 5、図 7)。太平洋赤道域の日付変更線付近の対流活動は平年より不活発で、中部の大気下層の東風(貿易風)は平年より強かった(図 8、図 9、図 10)。このような海洋と大気の状態はラニーニャ現象の特徴を示しており、昨年夏からラニーニャ現象が続いている。
- 今後春の間にラニーニャ現象が終息し、平常の状態になる可能性が高い(80 %)。 太平洋赤道域の 西部に見られる海洋表層の暖水が次第に明瞭となってきており(図 7)、今後東進して、中部から東 部の海面水温が平年より低い状態は解消に向かうと考えられる。エルニーニョ予測モデルでは、エ ルニーニョ監視海域の海面水温は春にかけて次第に基準値に近づき、夏にかけて基準値に近い値か 基準値より高い値で推移すると予測している(図 11)。ただし、予測の不確実性が大きい時期であ ることを考慮し、夏にかけての水温の上昇はやや抑えて考える。以上のことから、今後春の間にラ ニーニャ現象が終息し、平常の状態になる可能性が高い(80 %)。

西太平洋熱帯域及びインド洋熱帯域の状況

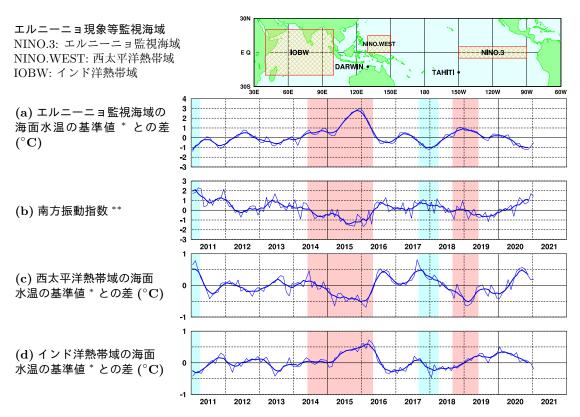
- 西太平洋熱帯域: 1月の西太平洋熱帯域の海面水温は、基準値より高い値だった(図 3)。今後春にかけて次第に基準値に近づき、夏にかけて基準値に近い値か基準値より低い値で推移すると予測される(図 12)。
- インド洋熱帯域: 1月のインド洋熱帯域の海面水温は、基準値より低い値だった(図 3)。今後春から夏にかけて基準値より低い値か基準値に近い値で推移すると予測される(図 13)。

1月の日本と世界の天候への影響

- 日本: ラニーニャ現象時の影響は明瞭には見られなかった。今後の日本の天候については、最新の季節予報を参照されたい。
- 世界: ポリネシア南部の高温、東南アジアの低温、フィリピンの多雨がラニーニャ現象時の特徴に 一致していた。

エルニーニョ/ラニーニャ現象の発生確率値(図 2)と主文における見通しの表現

* エルニーニョ/ラニーニャ現象の発生や持続の見通しについては、季節単位で記述することとし、現象の発生を記述する場合はその季節の最後の月の発生確率値を、現象の持続を記述する場合はその季節の最初の月の発生確率値を用いて下表のように表現する。ただし、発生確率値の推移によっては下表の表現を用いないことがある。


	発生確率			
	エルニーニョ	平常	ラニーニャ	主文における表現(発生確率は例)
	現象		現象	
	50 %以上	30 %以下		エルニーニョ現象が発生する(続く)可能性が高い(50 %)。
	60 %	40 %		平常の状態が続く(になる)可能性もある(40 %)が、
エルニーニョ	50 %	40 %	10 %	エルニーニョ現象が発生する(続く)可能性の方がより高い(60 %)。
現象の発生	50 %	50 %	0 %	エルニーニョ現象が発生する(続く)可能性と
(持続)	40 %	40 %	20 %	平常の状態が続く(になる)可能性が同程度である(50 %)。
	40 %	50 %	10 %	エルニーニョ現象が発生する(続く)可能性もある(40 %)が、
	40 %	60 %	0 %	平常の状態が続く(になる)可能性の方がより高い(60 %)。
		30 %以下	50 %以上	ラニーニャ現象が発生する(続く)可能性が高い(50 %)。
	0 %	40 %	, -	平常の状態が続く(になる)可能性もある(40 %)が、
ラニーニャ	10 %	40 %	50 %	ラニーニャ現象が発生する(続く)可能性の方がより高い(60 %)。
現象の発生	0 %	50 %	50 %	ラニーニャ現象が発生する(続く)可能性と
(持続)	20 %	40 %	40 %	平常の状態が続く(になる)可能性が同程度である(50 %)。
	10 %	50 %	40 %	ラニーニャ現象が発生する(続く)可能性もある(40 %)が、
	0 %	60 %	40 %	平常の状態が続く(になる)可能性の方がより高い(60 %)。
平常の状態				
への移行	30 %以下	50 %以上	30 %以下	平常の状態になる(が続く)可能性が高い(50 %)。
(持続)				

【監視・予測資料】

2021年1月における赤道域の海洋と大気の状況

1. エルニーニョ監視指数 (図3、表)

エルニーニョ監視海域の海面水温の基準値との差は -0.5° C

図3 各監視指数の最近10年間の経過

折線は月平均値、滑らかな太線は5か月移動平均値を示す。赤色の陰影はエルニーニョ現象の発生期間を、青色の陰影 はラニーニャ現象の発生期間を示している。

- * 基準値は、その年の前年までの 30 年間の各月の平均値 ((c) 西太平洋熱帯域、(d) インド洋熱帯域では、30 年間の変化傾向による上昇分を加えている)。
- ** 南方振動指数はタヒチとダーウィン(TAHITI と DARWIN; 上図に位置を示した)の地上気圧の差を指数化したもので、貿易風の強さの目安の 1 つであり、正(負)の値は貿易風が強い(弱い)ことを表している。指数の算出に用いた気圧の平年値は $1981\sim2010$ 年の 30 年平均値。

表 エルニーニョ監視海域の海面水温と南方振動指数の最近1年間の値

5 か月移動平均値の

下線部は $+0.5^{\circ}$ C 以上となった月を、斜字体は -0.5° C 以下となった月を示す。

海面水温と南方振動指数の最新月は速報値である。

	2020 年										2021	
	2月	3月	4月	5月	6月	7月	8月	9月	10 月	11月	12 月	1月
月平均海面水温(°C)	26.4	27.4	27.9	26.9	25.8	25.2	24.5	23.8	23.8	23.9	24.4	25.1
基準値との差 (°C)	0.0	+0.2	+0.3	-0.3	-0.8	-0.6	-0.6	-1.1	-1.2	-1.2	-0.9	-0.5
5 か月移動平均 (°C)	+0.2	+0.1	-0.1	-0.2	-0.4	-0.7	-0.9	-0.9	-1.0	-1.0		
南方振動指数	0.0	-0.1	+0.2	+0.5	-0.6	+0.5	+1.3	+1.0	+0.6	+0.8	+1.7	+1.4

2. 海洋 (図 4~図 7)

太平洋赤道域の海面水温は中部から東部で平年より低く、西部で平年より高い

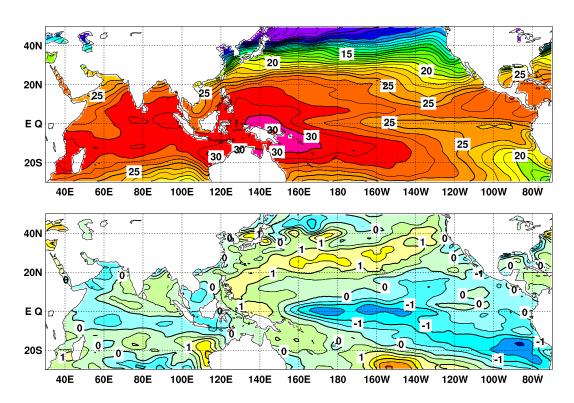


図 4 2021 年 1 月の海面水温図(上)及び平年偏差図(下)

海面水温図の太線は 5°C 毎、細線は 1°C 毎の、平年偏差図の太線は 1°C 毎、細線は 0.5°C 毎の等値線を示す(平年値は $1981\sim2010$ 年の 30 年平均値)。

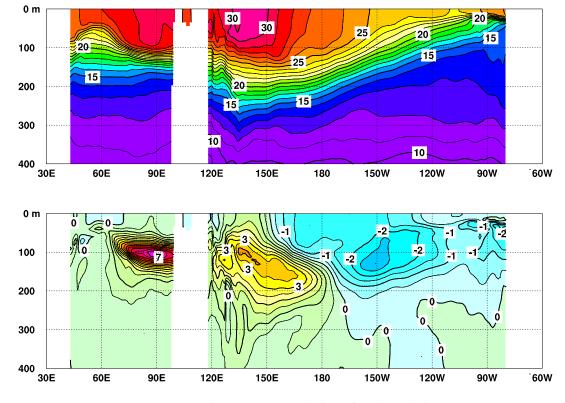


図 5 2021 年 1 月のインド洋から太平洋の赤道に沿った水温(上)及び平年偏差(下)の断面図 上図は太線が 5° C 毎、細線が 1° C 毎の等値線を示し、下図は太線が 1° C、細線が 0.5° C 毎の等値線を示す(平年値は $1981\sim2010$ 年の 30 年平均値)。図中白く抜けている部分は陸地である。

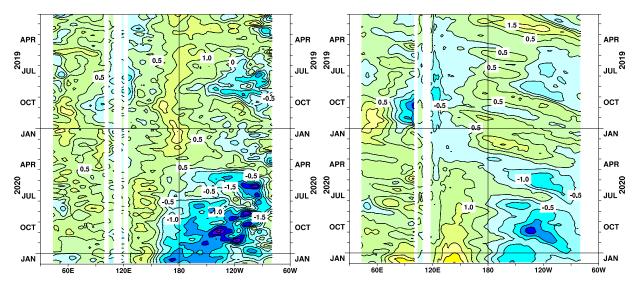


図 6 インド洋から太平洋の赤道に沿った海面水温平 年偏差の経度—時間断面図

太線は 1° C 毎、細線は 0.5° C 毎の等値線を示す(平年値は $1981\sim2010$ 年の 30 年平均値)。図中白く抜けている部分は陸地である。

図 7 インド洋から太平洋の赤道に沿った海面から深度 300m までの平均水温平年偏差の経度—時間断面図 太線は 1° C 毎、細線は 0.5° C 毎の等値線を示す(平年値は $1981\sim2010$ 年の 30 年平均値)。図中白く抜けている部分は陸地である。

3. 大気 (図8~図10)

太平洋赤道域の日付変更線付近の対流活動は平年より不活発

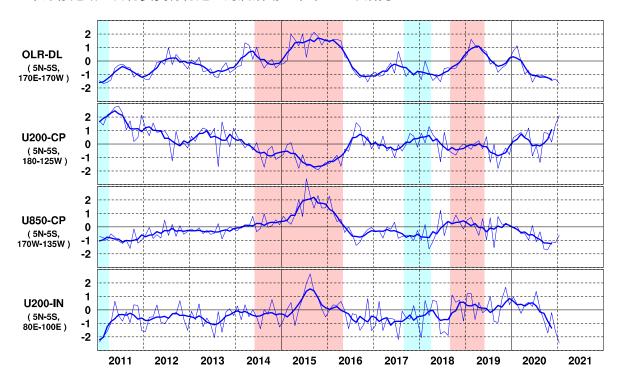


図 8 日付変更線付近の OLR 指数 (OLR-DL)、 対流圏上層(200hPa)の赤道東西風指数(U200-CP)、対流圏下層(850hPa)の赤道東西風指数(U850-CP)、インド洋における対流圏上層 (200hPa) の赤道東西風指数 (U200-IN) の時系列(上から順に)

折線は月平均値、滑らかな太線は 5 か月移動平均値を示す(平年値は 1981~2010 年の 30 年平均値)。赤色の陰影はエルニーニョ現象の発生期間を、青色の陰影はラニーニャ現象の発生期間を示している。

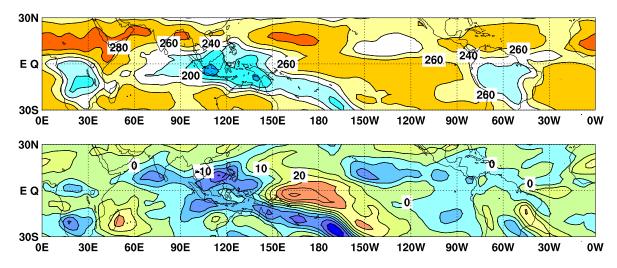


図 9 外向き長波放射量 (OLR) (上) 及び平年偏差(下)の分布図 (2021年1月)

OLR の値が小さいほど、対流活動が活発であることを示しており、上図では 220W/m^2 以下の領域に青の陰影を施している。下図では OLR が平年値より小さく、対流活動が活発な領域に青の陰影を、OLR が平年値より大きく、対流活動が不活発な領域に緑~黄~赤の陰影を施している(平年値は $1981\sim2010$ 年の 30 年平均値)。上図は 20W/m^2 年、下図は 10W/m^2 毎に等値線を描いている。OLR データは米国海洋大気庁(NOAA)から提供されたものである。

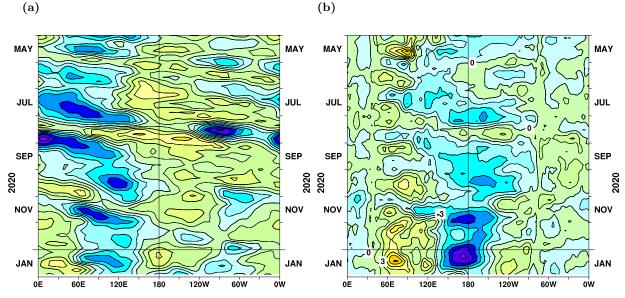


図 10 赤道付近における対流圏上層(200hPa)の速度ポテンシャルの平年偏差(a)及び対流圏下層(850hPa)の東西風速の平年偏差(b)の経度—時間断面図

(a) 等値線の間隔は $2\times10^6\mathrm{m}^2/\mathrm{s}$ で、平年よりも発散が強く、対流活動が活発な領域に青の陰影を、平年よりも発散が弱く、対流活動が不活発な領域に緑〜黄〜赤の陰影を施している。(b) 等値線の間隔は $1.5\mathrm{m/s}$ で、西風偏差の領域には緑〜黄〜赤の陰影を、東風偏差の領域には青の陰影を施している(両者の平年値は $1981\sim2010$ 年の 30 年平均値)。

2021 年 2 月~2021 年 8 月の海面水温予測 (エルニーニョ予測モデルによる)

エルニーニョ監視海域の海面水温は、春にかけて次第に基準値に近づき、夏にかけて基準値に近 い値か基準値より高い値で推移すると予測

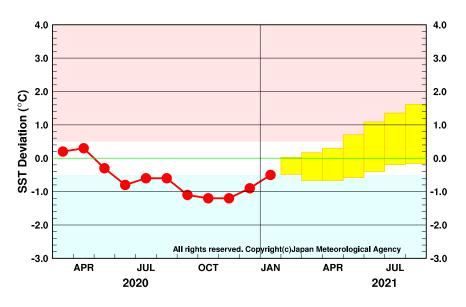


図 11 エルニーニョ監視海域の月平均海面水温の基準値との差の先月までの経過(折れ線グラフ)とエルニーニョ予測モデルから得られた今後の予測(ボックス)

各月のボックスは、海面水温の基準値との差が70%の確率で入る範囲を示す。

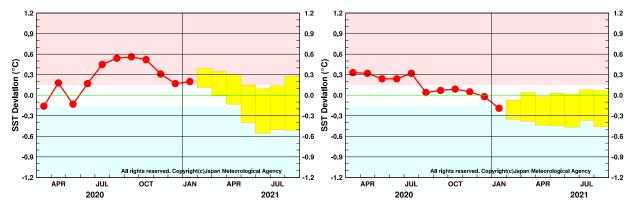


図 12 西太平洋熱帯域の月平均海面水温の基準値との 差の先月までの経過(折れ線グラフ)とエルニーニョ 予測モデルから得られた今後の予測(ボックス) 各月のボックスは、海面水温の基準値との差が70%の 確率で入る範囲を示す。

図 13 インド洋熱帯域の月平均海面水温の基準値との差の先月までの経過(折れ線グラフ)とエルニーニョ 予測モデルから得られた今後の予測(ボックス) 各月のボックスは、海面水温の基準値との差が70%の確率で入る範囲を示す。

エルニーニョ現象などの情報は気象庁ホームページでも ご覧になれます。

(https://www.data.jma.go.jp/gmd/cpd/elnino/)

来月の発表は、3月10日14時の予定です。 内容に関する問い合わせ先:気候情報課 (電話03-6758-3900内線4547)