●世界の主な地震

平成 25 年 (2013 年) 1月に世界で発生したマグニチュード (M) 6.0以上または被害を伴った地震の 震央分布を図 1 に示す。また、その震源要素等を表 1 に示す。

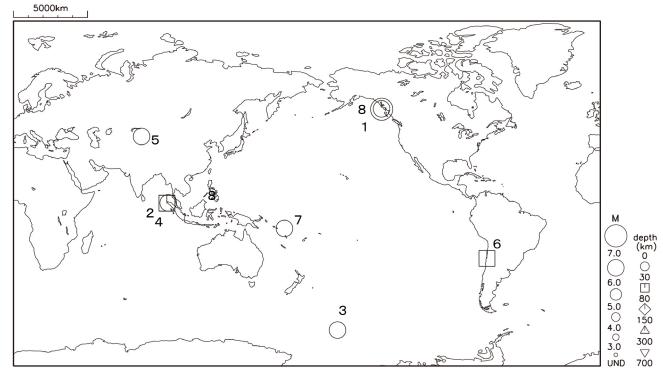


図1 平成25年(2013年)1月に世界で発生したM6.0以上または被害を伴った地震の震央分布

- * : 震源要素は米国地質調査所(USGS)発表の QUICK EPICENTER DETERMINATIONS(QED)による。ただし、日本付近で発生した地震の 震源要素及びマグニチュードは気象庁による。
- **: 数字は、表1の番号に対応する
- ***: マグニチュードは表 1 の mb (実体波マグニチュード)、Ms (表面波マグニチュード)、Mw (モーメントマグニチュード) のいずれか大きい値を用いて表示している。

表 1 平成 25 年 (2013 年) 1月に世界で発生した M6.0 以上または被害を伴った地震の震源要素等

番号	地震発生時刻	緯度	経度	深さ (km)	mb	Ms	Mw	震央地名	備考 (被害状況など)	北西	印洋	遠地
1	01月05日17時58分	N55° 23.6′	W134°39.0′	10	6.4	7.7	(7.5)		米国アラスカ州、ポートアレキサン ダーで14cmなど津波を観測			0
2	01月10日22時47分	N 4° 42.7'	E 95° 06.9'	38	6.0	5.4	5.7	インドネシア、スマトラ北部				
3	01月16日01時09分	S62°34.2'	W161°25.9'	10	5.5	5.9	6.1	太平洋/南極海嶺				
4	01月22日07時22分	N 4° 56.1'	E 95° 54.7'	10	5.8	6.0	6.0	インドネシア、スマトラ北部	死者1人、負傷者15人、建物被害71 棟等			
5	01月29日01時38分	N42°36.1'	E 79° 43.1'	15	6.1			キルギス、イシククル湖				
6	01月31日05時15分	S28° 10.8'	W 70° 47.0'	43			6.8	チリ中部				
7	01月31日08時03分	S10°38.1'	E166° 22.0'	11	5.8	6.0		サンタクルーズ諸島				
8	01月31日18時53分	N55° 35.0'	W134° 44.7'	10	Ü		6.0	米国、アラスカ州南東部				

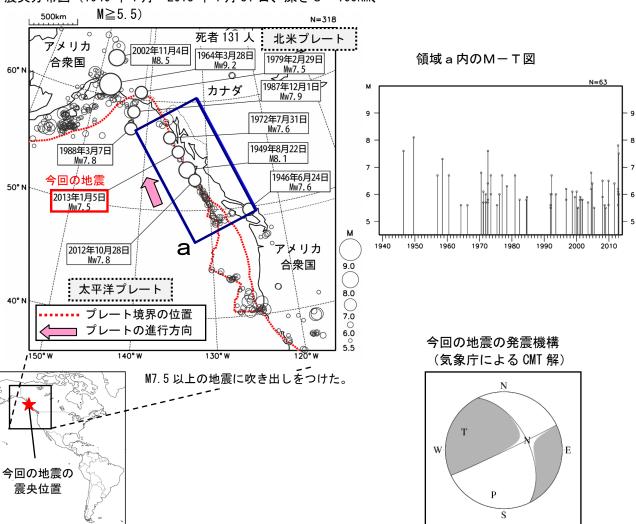
- ・震源要素、被害状況等は米国地質調査所(USGS)発表の QUICK EPICENTER DETERMINATIONS(QED)による(平成25年2月4日現在)。 ただし、日本付近で発生した地震の震源要素及びマグニチュード (Ms の欄に括弧を付して記載) は気象庁に、被害状況は総務省 消防庁に、Mw の欄が括弧つきで記されている地震のモーメントマグニチュードは気象庁による。
- ・震源時は日本時間 [日本時間=協定世界時+9時間] である。
- ・「北西」、「印洋」各欄の○印はそれぞれ、気象庁が北西太平洋域に提供している北西太平洋津波情報 (NWPTA)、及び、インド洋沿 岸諸国に暫定提供しているインド洋津波監視情報 (TWI) (地震・火山月報 (防災編) 2005 年 5 月号参照) を発表したことを表す。
- 「遠地」欄の○印は、気象庁が「遠地地震に関する情報」を発表したことを表す。

1月5日 米国、アラスカ州南東部の地震

2013年1月5日17時58分(日本時間、以下同じ)に、米国、アラスカ州南東部でMw7.5の地震が発生した。この地震は太平洋プレートと北米プレートの境界で発生した。この地震の発震機構(気象庁によるCMT解)は、北北東-南南西方向に圧力軸を持つ横ずれ断層型である。

気象庁は、この地震により、同日 18 時 26 分に遠地地震に関する情報(日本国内向け、日本への津波の有無については現在調査中です)を発表し、同日 20 時 22 分に同情報(日本国内向け、この地震による日本への津波の影響はありません)を発表した。

1940年1月以降の活動を見ると、今回の地震の震央周辺(領域 a)では、M7.0以上の地震が時々発生している。2012年10月28日には、カナダ、クイーンシャーロット諸島(ハイダ・グワイ)でMw7.8の地震が発生し、日本の太平洋沿岸で20cm前後の津波を観測した。


北アメリカ大陸西岸では、今回の地震の南方で1700年にM9.0の地震(カスケード沈み込み帯の地震)が発生している(理科年表による)。日本ではこの地震に伴う津波が記録されており、現在の岩手県宮古市で4m、和歌山県田辺市で5.4mの高さの津波が推定されている(都司・他(1998)*による)。

※本資料中、今回の地震の Mw 及び発震機構と 2012 年 10 月 28 日の地震の Mw は気象庁による。その他の震源要素及 び発震機構は米国地質調査所(USGS)による。

被害は、2009 年 12 月 31 日までは宇津および国際地震工学センターによる「宇津の世界の被害地震の表」により、 2010 年 1 月 1 日以降は米国地質調査所 (USGS) の資料より引用。

プレート境界の位置は、Bird (2003) *より引用。

震央分布図(1940年1月~2013年1月31日、深さ0~100km、

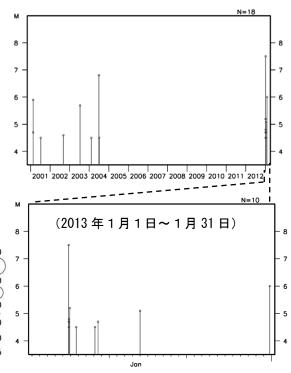
*参考文献

都司嘉宣・上田和枝・佐竹健治, 日本で記録された 1700 年 1 月 (元禄十二年十二月) 北米巨大地震による津波, 地震 2, 51, 1-18, 1998.

Bird, P. (2003) An updated digital model of plate boundaries, Geochemistry Geophysics Geosystems, 4(3), 1027, doi:10.1029/2001GC000252.

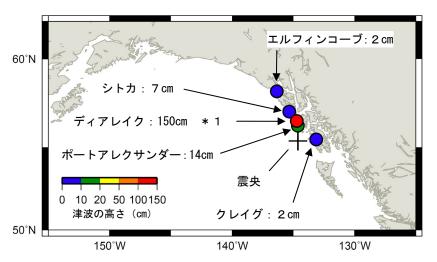
2001年1月以降の活動を見ると、今回の地震の震央付近(領域 b) では、今回の地震まで M6.0以上の地震が時々発生している。

今回の地震の余震活動は継続しているものの、その数は減少している。


今回の地震により津波が発生し、米国アラスカ州、ポートアレクサンダーで 14cm などの津波を観測した (2月1日現在、米国海洋大気庁 [NOAA] による)。

震央分布図(2001 年 1 月~2013 年 1 月 31 日、深さ 0~100km、 M≥4.5)

2013年1月の地震を濃く表示


200km N=226 **・・・・・** プレート境界の位置 61° 30′ アメリカ ■ プレートの進行方向 合衆国 59° N 2013年1月31日 Mw6.0 2004年6月28日 M6.8 今回の地震 56° 30 2013年1月5日 Mw7.5 カナダ M 9.0 b 2003年7月13日 51° 30′ 8.0 2001年2月18日 7.0 49° N 6.0 5.0 144°W 141°30′139°W 136°30′134°W 131°30′129°W

領域b内のM-T図

領域 b 内で M5.5 以上の地震に吹き出しをつけた。 発震機構は、CMT 解。

海外の津波観測施設で観測された津波の最大の高さ

観測値は米国海洋大気庁(NOAA)による(2月1日現在)。 観測点名と津波の最大の高さを表記。

*1 主に津波によって港内の副振動が増幅した結果と推測される。

<副振動>