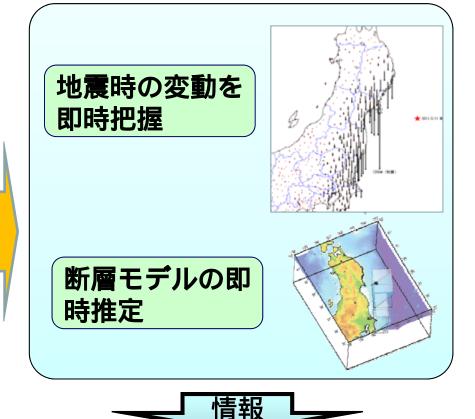

GEONETによる津波予測支援の ための情報提供システムの開発

国土地理院測地観測センター 平成25年2月13日

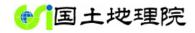
地殻変動 解析手法の高度化


アウトプット

従前

正確な情報を時間をかけて提供(1cm精度の変動量 5時間後)

目標


概略の情報を即時に推定(10cm精度の変動量)

防災関係機関に提供

*開発にあたっては東北大学と共同研究協定を締結(筆頭:太田雄策助教)

今年度後半の取り組み

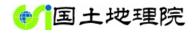
GEONETによる津波予測支援のための情報提供システム (プロトタイプ)の実装機能

(GNSSリアルタイム解析機能)

・150点程度のリアルタイム解析

(地殼変動(永久変位)自動検知機能)

- ·RAPiD(Ohta et al., 2012)による自動検知
- ・補助観測点を用いた相互チェック(RAPiD誤検知低減)機能(小林他, 2012)
- ・緊急地震速報による変動検知機能

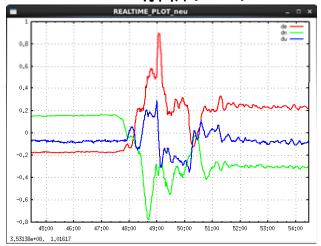

(震源断層モデル計算機能)

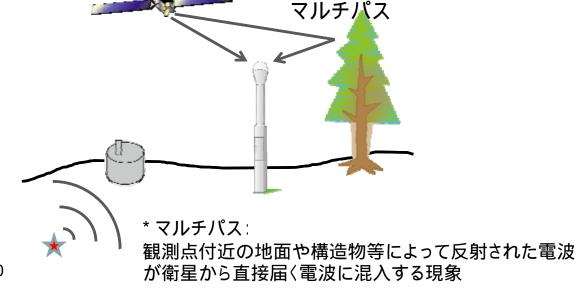
- ·矩形断層(1枚)近似による断層モデル(Mw)計算
- ・逆計算初期値への緊急地震速報取り込み

(メール通知機能)

- ·地殼変動検知結果通知
- ・震源断層モデルパラメータ推定結果通知

地震計・GNSS観測による地震動のとらえ方

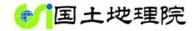


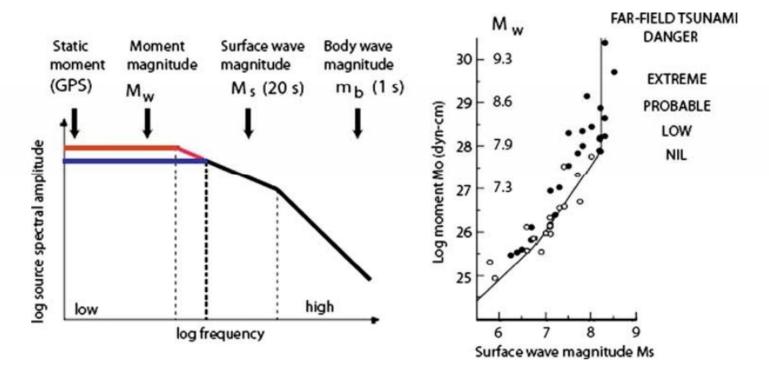


気象庁HPより

http://www.seisvol.kishou.go.jp/eq/kyoshin/jishin/110 311_tohokuchiho-taiheiyouoki/index.html

GNSS解析データ

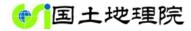


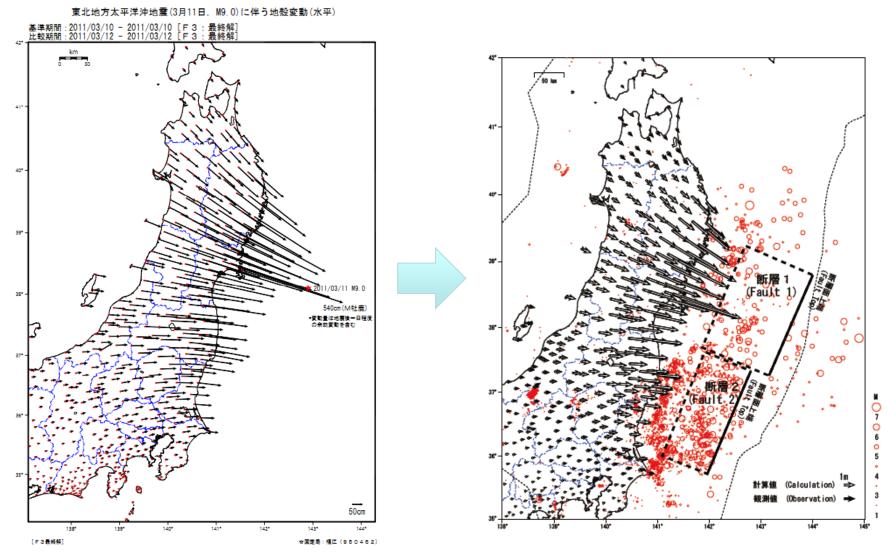

地震計

- ・直接の地面の揺れから、 相対的な変動(加速度)を観測
- ・短周期の波も高精度に観測

GNSS

- ·衛星からの電波を取得し、 絶対的な変動(永久変位)を観測
- ・マルチパスなど、周辺環境が影響



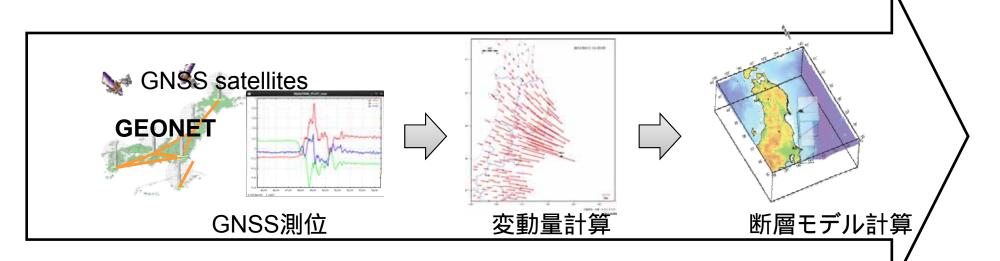


(Blewitt et al. 2009)

- ·大規模な地震のMwの計算には長周期の波を捉える必要がある
- ·短周期地震計のデータから計算をすると、大規模な地震の際は理論上マグニチュードが飽和する
- ·GNSS観測はMw計算に必要な長周期の動きをダイレクトに捉えることが可能

GNSS観測からのマグニチュード算出

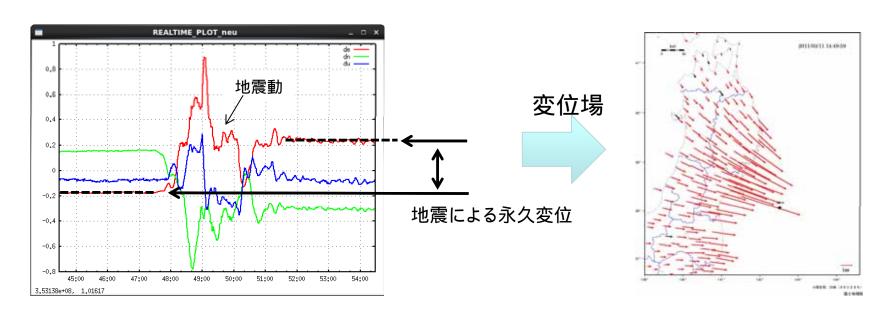

永久変位場(地殻変動)の抽出


・震源断層の計算・マグニチュード算出

·この結果ではMw8.9が得られている

*ただし、この結果は地震後数週間たって手動で解析を行ったもの

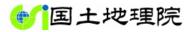
システムの動作フロー

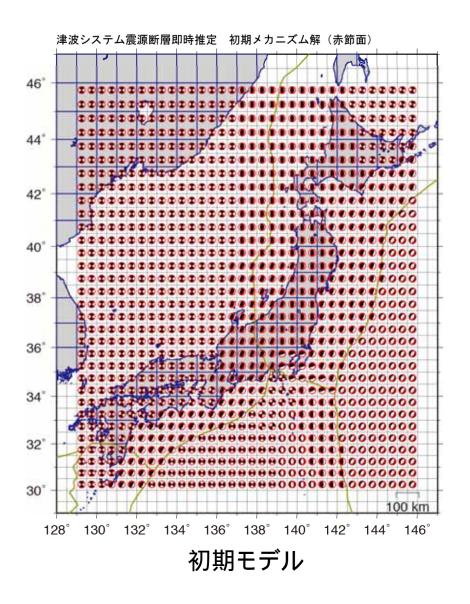


GNSS測位	変動時刻検知 (変動量計算)	断層モデル計 算(+Mw)	結果
常時解析 (RTKLIB v2.4.1)	·緊急地震速報(気象庁) により変動を検知 ·局位置時系列の監視結	·自動矩形断層モデル 計算(西村他, 2010) (緊急地震速報の震源、	·メールによる通知 ~ 5分
	果から変動を検知 (Ohta et al., 2012)	又は最大変位量が観 測された位置を初期値 とする)	

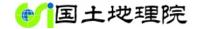
これら全てのステップを自動化することによって、断層破壊に数分かかる超巨大地震の場合であっても、遅くとも5分以内に断層モデル計算を実施し、マグニチュード(Mw)を算出

永久変位(変動量)の検知アルゴリズム


RAPiDアルゴリズム(Ohta et al. 2012)


- →観測点変位時系列のみから永久変位を検知する
- →座標時系列のSTA(短期間平均), LTA(長期間平均)の差分を監視するアルゴリズム

緊急地震速報

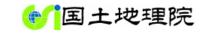

- →GNSS観測と独立した外部情報として使用
- →数年の運用実績、地震計から求めたものとして高い信頼性

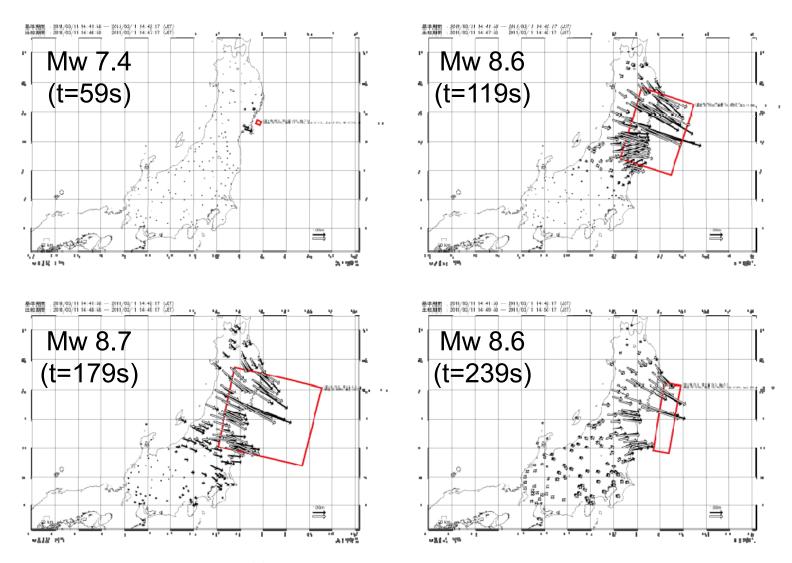
の二種類でそれぞれ独立して検知、検知後一定時間ごとにMw計算を実施

- 西村(2010)の計算手法を 組み込み
- ・ 矩形断層1枚での近似
- ・ 初期値には
 - 緊急地震速報(緯度,経度, 深さ)+グリッドの初期モデ ルを使用
- パラメータ推定は (Matsu'ura and Hasegawa, 1987)の手法(最尤推定)を もとにしたもの
- 弾性定数(剛性率)は 30GPa、均質媒質を仮定

	変位検知タイミング	断層モデル計算初期値
緊急地震速報による検知 (条件) 緊急地震速報で閾値以上のマグニチュード、又は震度の地震が通知される	地震発生予想時刻から30 秒間待ち、変位場計算時 刻とする →その後60秒毎に算出	·震源位置:緊急地震速報
RAPiDによる検知 (条件) RAPiDで閾値以上の永久 変位が検出される	RAPiDによる検出時刻を 変位場計算時刻とする →その後60秒毎に算出	(付近を震源とする緊急地 震速報が発令中である場 合) ·震源位置:緊急地震速報
		(緊急地震速報無し) ·震源位置:最大変位が発 生した観測点位置

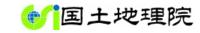
過去のデータを用いたシステムの検証

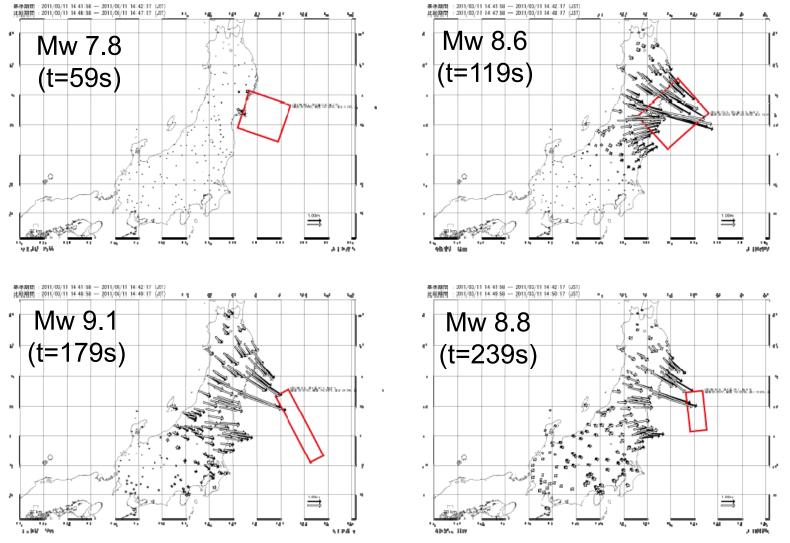


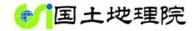


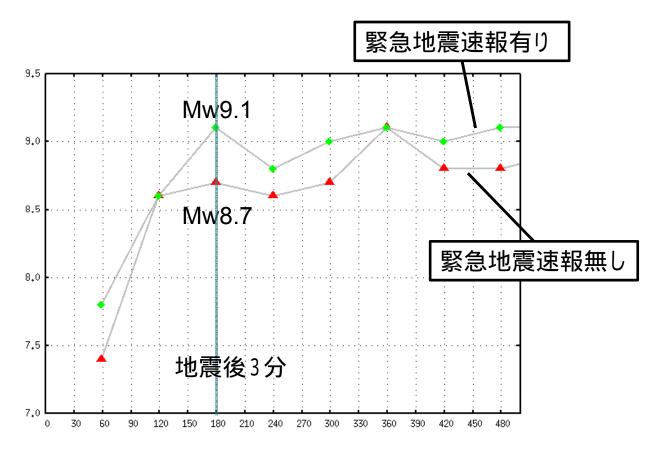
GNSS解析ソフト	RTKLIB2.4.1
ウェア	(Takasu, 2011)
解析方法	1点固定の放射状基線解析
	(GNSSはGPSのみ使用)
固定点	小松
解析点数	143点(東日本)
変動しきい値	0.03m
衛星軌道暦	IGS 超速報暦(予測部分)
推定パラメータ	座標値(時計誤差含む)
	電離層遅延
	対流圏遅延
仰角マスク	
(観測データ)	10 °
(ambiguity整数化)	30 °
(ambiguity固定)	35 °

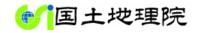
- ・東北地方で発生した二つの地震に適用してシステムの検証
- →2005年8月16日 宮城県沖の地震(M7.2)
- →2011年3月11日 東北地方太平洋沖地震(Mw9.0)
- ·検知する変動閾値は3cmに設定

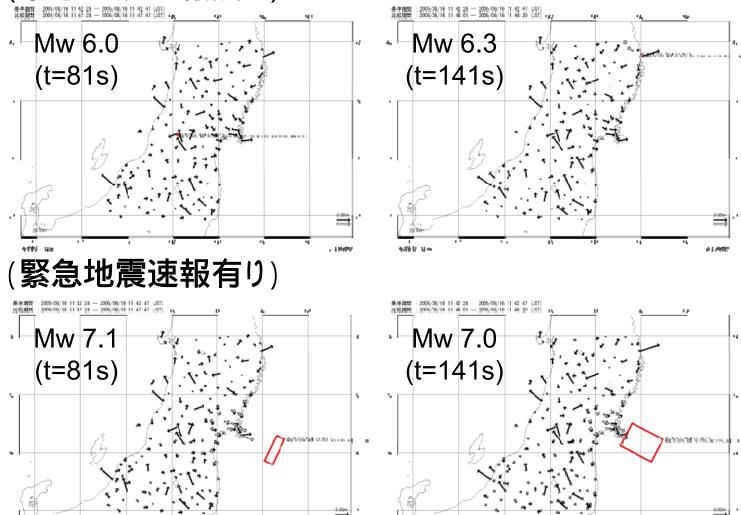

東北地方太平洋沖地震 Mw9.0 (緊急地震速報無し)




- ·2分程度でMw8.6を算出
- ・陸側を初期値としているため、震源の位置が不安定
- ·Mwの計算値は安定

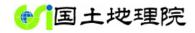

東北地方太平洋沖地震 Mw9.0 (緊急地震速報有り)


- ·2分程度でM8.6を算出
- ・初期値の精度が良いため、震源の位置は安定
- ・断層の北側、南側でモデル誤差が大きい(断層1枚による近似の影響)



- GNSSデータ観測からMw計算までにかかる時間は約6秒
- 地震後2分でMw8.6, 3分でMw9.1(緊急地震速報有り)を算出
- Mwの計算は3分程度でほぼ安定
- 緊急地震速報を用いた方が早〈Mw9.0に近い値に達する
 - →緊急地震速報が無い場合、断層モデル推定結果が陸側に寄ってしまうため

2005年8月16日 宮城県沖の地震(M7.2)

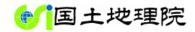


(緊急地震速報無し)

- 緊急地震速報が使用可能であれば、おおよそ正しいMwの算出が可能
- 地殻変動データのみからではM7.2に近い解は得られず、検出限界ぎりぎりか

プロトタイプの状況(まとめ)

平成24年度後半に新たに実装


- (地殼変動(永久変位)自動検知機能)
- ・補助観測点を用いた相互チェック機能(小林他, 2012)
- ・緊急地震速報による変動検知機能
- (震源断層モデル計算機能)
- ·矩形断層(1枚)近似による断層モデル(Mw)計算
- ・逆計算初期値への緊急地震速報取り込み

(メール通知機能)

・震源断層モデルパラメータ推定結果通知

過去データを用いた検証結果

- 東北地方太平洋沖地震の場合、地震発生後3分程度でMw9.1(緊急地震速報が 無い場合はMw8.7)を算出
- 緊急地震速報を初期値として用いた方が計算が安定
 - →2005年8月16日 宮城県沖の地震(M7.2)でもおおよそ気象庁解に近いMw計算結果を得ることが可能
- 断層形状の計算結果が安定しないため、より信頼性を高めてゆく必要あり

来年度以降

(規模の増強)

モニタリング対象を全国(約1,240点)に拡大

(信頼性の向上) システムの二重化 測位精度の向上 震源断層モデル計算機能の信頼性向上