資料2-2

津波地震対策について

・スロー地震

·山体崩壊

・海底地すべり

低発生頻度の取り扱いの難しい 津波現象に対して何ができる?

気象研究所地震津波研究部 第一研究室 勝間田明男

中田健嗣·田中昌之·西宮隆仁· 藤田健一·溜渕功史·小林昭夫·吉田康宏

100° 150° -160° -110°

-60

スロー地震の規模推定

スロー地震への適用については、検討中

山体崩壊による津波に対して事前にできそうなこと

山体崩壊による津波の再現計算

計算手法の流れ

山体崩壊による津波の再現計算(1792年島原眉山)

最適計算パラメータ

0.3 km^3
0 m/s
30 deg
5 deg
1.9 m

(空出した観測高さけあるものの)
1 1 1 1 1 1 1 1 1 1
概ね妥当な結果となる

(中田・勝間田(2018)より) 7

海底地すべり津波の例:1998年パプアニューギニア

- ・地震(Mw7.0)発生約20分後に10m以上の 津波来襲
- ・沖合の海底調査から、地すべり跡
- 海底地すべり地形から海岸までの津波
 の伝播時間は約10分(計算)

本震から約10分後ごろに地すべりが発生

海底地すべりを地震計で検知できるか?

海底地すべりを地震計で検知できるか?

津波地震対策 まとめ

