第 144 回 火山噴火予知連絡会資料

(その5)追加資料

令和元年7月2日

火山噴火予知連絡会資料(その5)

目次

追加資料
俱多楽
気象庁 3-4
蔵王山
東北大 5
吾妻山
気象研 6-8、東北大 9-12
草津白根山
気象庁 13-14、東工大 15-20
霧島山
<u>産総研</u> 21-22

俱多楽 笠山地中温度分布の時空間変化について

笠山では 2015 年以降、西側斜面の地中温度が上昇している(本資料図 7 参照)。西側斜 面周辺では植生が枯死しており、その領域は徐々に拡大している。札幌管区気象台では 2018 年4月から、植生が枯死した領域を横切る南北・東西の測線に沿って地中温度を測定し、 地中温度分布の時空間変化を記録している。

6月25日の現地調査では、地中温度(地表面から深さ50cm)が概ね90℃を超える領域が2019年4月よりもさらに拡大していた。

図1 俱多楽 笠山の地中温度分布の変化と周辺の植生の状況(2018年4月、2019年4月、6月) 地中温度は、起点から東西南北方向へ1~5mおきに、地表面から50cmの深さで熱電対温度計を 用いて測定した。また青点の位置では、地表面から40~50cmの深さで熱電対温度計を用いて温度 を測定した

・前回(2019年4月)よりも、地中温度の高い(概ね90℃以上)領域が拡大し、新たに植生が枯 れている領域が確認された。 笠山では、1974年秋頃から1975年にかけて地中温度が上昇し、西側斜面に 新たな噴気地帯が出現し、それまで生い茂っていた植生はほぼすべて枯死し た。噴気地帯内は、北西─南東に伸びた細長い形状をしており、地中温度 (地表面から70~100cm)は高いところで90℃を超えていた。

なお、立木の枯死や葉枯れは笠山から離れた場所でも認められ、大湯沼南 岸近くの湖底には、それまで知られていなかった噴気孔が発見された。これ らの表面現象は、笠山西側斜面から北西方向の延長上約300mの範囲で認め られた。

図2 俱多楽 笠山における1975年と2019年の地中温度および植生の枯死の状況の比較 1975年9月の地中温度および植生が枯死した領域は、北海道における火山に関する研究報告書第12 編「俱多楽(日和山)」(1988年)より引用(一部改変)した。 ・1975年9月に笠山で確認された植生の枯死した領域は、山の西側斜面に北西—南東方向に伸び

・1975年9月に翌田で確認された植生の枯死した領域は、田の西側斜面に北西一角東方向に伸び た形状をしており、今回確認された領域と位置・形状ともに類似している。

蔵王山の地震活動

【概要】

・蔵王山では、今期間、火山性地震は少ない状態で推移した.発生した火山性地震は、火口湖御釜・地 熱地帯の浅部で発生する微小地震が主たるものである.

図1. 蔵王山における火山性地震の活動推移.(a)日別発生数及び累積発生数.蔵王観測点 (TU.ZAS)において頂点間振幅が0.8µm/s以上のものを計数.(b)浅部長周期地震(卓越周期約 10秒)のM-Tダイアグラムと累積発生数.(c)蔵王山直下の深部低周波地震のM-Tダイアグラムと

累積発生数(一元化震源による).(a)及び(b)の灰色は未精査の期間を表す.

図2. 火山性地震の波形例 (2019年3月11日10時51分).

(a) 蔵王大黒天観測点 (TU.ZDK) における3成分速度波形及び東西動変位波形.Z,X,Y は,そ れぞれボアホール型短周期地震計の上下,南北,東西成分を表す.wE は,地表設置広帯域地震 計の東西成分を表す.

御釜やや東側で発生する火山性地震は、低周波成分に富むものも多い.また、P波初動に先行し て高周波の前駆的振動が認められることも多く、浅部における流体運動が地震発生に関与している ことを示唆する.

吾妻山の土壌ガスと地殻変動観測

吾妻山の土壌ガス連続観測によると、2018年8月から11月頃、CO₂放出率やH₂S濃度が増大していた可能性がある。2019年3月に60℃程度であった土壌温度は、2019年6月末に90℃を越えていた。また、6月の光波測距観測では、大穴火口南側測線の短縮が継続している。

吾妻山の八幡焼(大穴火口南方0.3km)に, 土壌ガスの連続観測装置を設置し, 二酸化炭素 (CO₂)の放出率観測を開始し, 2019年6月までデータを取得した. 種々の要因による欠測が多く, 降水等の影響を評価できていないが, 2018年8月頃から放出率が増大している可能性がある. 2019年3月に60℃程度であった30cm深の土壌温度は6月末には90℃を越えていた.

また,2016年10月から開始した繰り返し光波測距観測によると,2018年8月頃から大穴火口が 膨張する斜距離変化が観測され、その後も大穴火口南側測線の短縮が継続している.

図1 吾妻山観測点配置図

星印(GAS)は土壌ガス連続観測点.四角(JOD)は光波測距機械点,丸印(M2~4)は反射点.

図2 土壌ガス観測点 左:土壌ガス装置正面から、後ろに一切経山大穴火口、右:土壌ガス装置背面から内部、

土壌ガス連続観測

2017年10月に大穴火口南方約0.3kmの場所にチャンバー式の土壌ガス連続観測装置を設置し (図1,2), 二酸化炭素(CO₂)および硫化水素(H₂S)の放出率の他, 土壌温度(30cm深)や各種気 象要素の毎時測定を開始した(図3).

チャンバーの動作不良やデータ収録媒体の不調,気温・湿度センサーの異常等により安定して データが取得できていないが,CO₂放出率は2018年8月頃から増大した.H₂S濃度もこの頃から大 きくなっている.これらが増大し始めた時期は大穴火口の火山ガス組成に変化が現れ始めた頃 と一致している.また,2018年夏頃から60~70℃前後で推移していた土壌温度は2019年6月25~ 27日の観測で90℃を越えていた.このことは,浄土平3監視カメラで2019年5月中旬頃から認めら れた,W-10地熱域の拡大と温度上昇に対応した現象である可能性もある.

CO₂ 放出率 (moles/m²/day)

図3 吾妻山土壌ガス観測 2017年10月~2019年6月

(上段)CO₂放出率. 2018年4月までは欠測が多い. 黒線は24時間の移動平均. 2018年12 月以降は気温欠測のため5%程度大きくなる場合がある.

(中段)H₂S濃度.

(下段)30cm深の土壌温度.2018年3月の高温値の原因は不明.

光波測距観測

2016年10月,浄土平から大穴火口周辺に設置した反射点までの斜距離の繰り返し観測を開始 した.その結果,2018年8月頃から大穴火口が膨張する斜距離変化が観測された.2019年6月 の観測でも大穴火口の南に位置する測線で伸びが観測された(図4,表1).

図4 吾妻山大穴火口周辺の斜距離変化(2016 年10 月~2019 年6月)

機械点JOD(浄土平)から大穴火口周辺反射点(M2,3,4)までの斜距離の繰返し観測結果. 観測斜距 離の気象補正には,気象庁メソ数値予報モデルの客観解析値(MANAL)を用いた(高木・他, 2010).

2018年5月までの斜距離の短縮は、吾妻山周辺の短縮の場を反映しており、気象庁のGNSS観測結 果と整合している、2018年8月頃から大穴火ロが膨張する斜距離変化が観測された、2018年から 2019年にかけても、大穴火ロの南側の測線で短縮傾向が継続している、

表1 吾妻山大穴火口周辺の斜距離変化(2016 年10 月~2019 年6月)

JOD -	M2 (m)	M3 (m)	M4 (m)
2016/10/25	567.487		
2017/5/9	567.483	913.039	750.106
2018/5/16	567.469	913.023	750.091
2018/8/22	567.467	913.030	750.088
2018/11/12	567.457	913.037	750.069
2019/6/27	567.422		750.058

吾妻山の地震活動

【概要】

- ・ 吾妻山では,2019 年 4 月末以降,活発な火山性地震活動がみられた. 発生した火山性地震の震源は 概ね大穴火口付近直下の標高 0~1300 m 程度である.
- ・5月中旬以降には、大穴火口直下浅部において長周期地震(卓越周期約10秒)が断続的に発生した. この長周期地震の発生に前後して、大穴火口方向が傾き下がる過渡的な傾斜変動及び高周波成分の 卓越した連続振動が観測された.これらの変動源の深さは標高1200~1500m程度と推定される.

図1. 長周期地震とそれに伴う傾斜変動・高周波振動の例: 2019年5月25日1時台.

(a) 気象庁浄土平観測点 V.AZJD における傾斜記録(東西成分).(b) 気象庁蓬莱山東平観測 点 V.AZHH における広帯域地震計上下動速度波形.(c) 地震計特性を補正して得られた V.AZHH における上下動変位.(d) (c)をもとに計算した並進動が仮想傾斜計出力に及ぼす影響.

大穴火口近傍浅部において約 10 秒間の膨張とその後数百秒かけて進行する収縮が発生したと考 えられる.大穴火口浅部における圧力増加の部分的な解消プロセスを反映していると考えられる. 同様のイベントは, 2018 年 8 月中旬から 12 月下旬の期間にも, 断続的に観測された.

図2. 吾妻山周辺の地震観測点配置図.

青及び黒の四角・三角は,それぞれ東北大学, 気象庁の定常観測点を示す.

赤の四角・三角は, 2015 年度設置の東北大学機 動観測点(TU.JDD, TU.USG, TU.UBG は現地収 録型).

四角,三角はそれぞれ短周期地震計,広帯域 地震計の観測点を示す.

この資料は、東北大学のほか、気象庁のデータを利用して作成した.

図 3. 長周期地震とそれに伴う傾斜変動・高周波振動の例: 2019年5月9日23時台.

(a),(b) 気象庁浄土平観測点 V.AZJD における傾斜記録.(c)~(e) 東北大学浄土平観測点 TU.JDD における広帯域地震計速度波形及び東西成分のローパス・フィルタ波形(カットオフ周期 10 秒). Tilt-N, Tilt-E は, それぞれ傾斜記録の南北成分, 東西成分を表す. wN, wE は, それぞ れ広帯域地震計の南北成分, 東西成分. 広帯域地震計(固有周期 120 秒)の記録は, 機器特性の 補正は行っていない.

図1同様に大穴火口付近浅部(標高1200~1500m)で発生する約10秒間の膨張とその後数百秒 かけて進行する現象を示しているが,吾妻山周辺広域において傾斜変化が観測されるイベントでは, 傾斜変化の過程において,長周期(周期10秒以上)の振動を伴うことがある.浅部圧力源及び火道 における圧力擾乱の伝播を示唆する.

図 4. 図 3 と同じ. ただし, 2019 年 5 月 9 日 22 時台に発生したイベントの例.

5月9日から10日にかけて発生した一連の傾斜変動のうち最大の傾斜変化率を示す5月9日22時48分発生のイベントでは、数十秒から百秒程度の周期をもつ長周期振動が観測された. 圧力擾乱の空間スケールが時間的に変化していることを反映している可能性もあるが、今後さらなる精査が必要である.

吾妻山で 2019 年 5 月 9 日に発生した傾斜変動

【概要】

- ・ 吾妻山では,5月9日から10日にかけて微動を伴う短期的傾斜変動が断続的に発生した. 傾斜変動・ 微動の開始時には長周期震動や低周波震動も認められる. 同様の現象は2018年7月22日,10月7 日,11月25日にも観測されている.
- ・一部の傾斜変動は、大穴火口から5km以遠でも捉えられており、大穴火口直下浅部における膨張現象 とともに、深部(海抜下約8km)における収縮変動が連動した可能性を示唆する.

図 1. 2019 年 5 月 9 日から 5 月 10 日に発生した傾斜変動の記録例.

気象庁吾妻浄土平V.AZJD 観測点,東北大学吾妻 TU.AZM 観測点,気象庁安達太良山沼尻山甲 V.ADNM 観測点における傾斜記録. 観測点の位置は,図2を参照.

大穴火口近傍のV.AZJDのみで観測される傾斜変動(図中★)に加え,広域で観測される傾斜変動 (図中▲)も認められる.前者は,同期して発生する長周期地震同様に大穴火口直下浅部(標高 1200~1500 m)における膨張現象によるものである.一方,後者は,大穴火口方向が下がるセンス であり,大穴火口近傍に等方収縮源を仮定した場合,その深さは海抜下約8kmと推定される.

図2. 吾妻山周辺の傾斜観測点配置.

赤丸,黒三角は,それぞれ大穴火口,一切経山山頂を 表す.等高線は200m間隔.

V.AZJD, TU.AZM は, それぞれ大穴火口の東方約 0.8 km,約5 km, V.ADNM は東南東約 11 km に位置する. 観測点名の下の数字は,計器設置標高を表す.

地図の作成には、国土地理院発行の電子地形図を使 用した.

吾妻山

図 3. 2019 年 5 月 9 日 17 時 33 分に発生した傾斜変動の V.AZJD, TU.AZM における記録. TU.AZM では, ノイズレベルを超える変動は認められない.

図 4. 図 3 と同じ. ただし, 2018 年 7 月 22 日 03 時 42 分に発生した傾斜変動の例. 図 3 に例示したイベントと同様に,大穴火口近傍の V.AZJD のみで明瞭に傾斜変化が認められる変 動であるが, TU.AZM でも傾斜変動開始時の長周期地震のあとにノイズレベルを超える傾斜変化が 有意に認められる(黒太実線部分).

図 5. 大穴火口直下に等方圧力源を仮定した場合の TU.AZM, V.AZJD における傾斜変化量の比. 半径 50 m の球状等方圧力源を仮定して, 両観測点における傾斜変化量を有限要素法により計算 した. 計算には, 国土地理院発行の電子地形図を基にした 20 m DEM を使用した. 両観測点における傾斜変化量の比は, 5月9日17時33分のイベントが, 2018年7月22日のイ ベントに比べ,より浅部で発生した可能性を示唆する.

吾妻山

草津白根山(2019年7月1日現在)

・2019年6月30日02時35分、湯釜付近が震源と推定される振幅の大きなBL型地震が発生した。振幅は、水釜北東観測点(検測基準点)で63.5µm/s(上下動)を記録した。
空振の観測はなかった。

2分間

図1 草津白根山(白根山(湯釜付近)) 水釜北東観測点地震波形

・2019 年 6 月 30 日 02 時 35 分に、湯釜付近が震源と推定される BL 型地震が発生した。

・振幅は、水釜北東観測点(検測基準点)で 63.5 µm/s(上下動)を記録した。

・空振はなく、現地有感もなかった(万座プリンスホテルに確認)。

れる。

図 2 草津白根山(白根山(湯釜付近)) 振幅分布図 (2019 年 6 月 30 日 02 時 35 分の BL 型地震) ・湯釜周辺観測点の振幅分布や地震波の到達順から、震源は湯釜付近と考えら

図3 草津白根山(白根山(湯釜付近)) BL型地震振幅時系列グラフ(水釜北東観測点) (2018年1月1日~2019年6月30日) ・2019年6月30日02時35分に発生したBL型地震の最大振幅は、水釜北東観測点(検測基準点)

で 63.5μm/s(上下動)を記録した。

追加資料(2019年7月1日16時版,確定版)

最近の湯釜について

2018年6月と比較して、2019年5月24日の湯釜湖水位は60cm±20cm程度上昇している(図1). これ は湖水量が約6%増加したことに相当する.東工大湯釜雨量計によれば、当該期間の降水量は平年よりも少 ない.島状の地形が水没しているが(図2)、その理由は水位上昇ばかりでなく、水位が上昇したことで波浪 による浸食が進んだためである.

2019年6月30日頃から湯釜東部の1ヵ所において黒灰色の変色が認められ、7月1日には変色場所が3ヵ所に増えたように見える(図6).1日に行ったドローンによる撮影では4ヵ所の変色が認められ、N.O.2と呼称した湧出が最も明瞭である.また、湖面全体が汚れたように見えていた(図3).同様の変色は2018年6月から7月にかけても認められている(図4).水釜、北側斜面に目立った変化は認められない(図5)

図 1. 湯釜南岸の測量ポール設置場所付近での比較. 岩「5」は,水面から十分高い位置にあり,周辺岩石との位置関係も明らかな変化がないので,移動していないと考える. 2018 年ポールと 2019 年ポールの位置は異なるが,岩「3」「4」の間に設置している. ポールは既に流出しているので厳密な比較はできないので,岩5とポールの相対位置に基づき水位上昇量を見積る. 岩「5」からみて,2018 年 6 月の水面は-80cm,一方で 2019 年の水面は-20cm と見積もった. あまり厳密ではないが,ポールの白赤(20cm)程度の信頼性はあるとみて,2018 年 6 月 19 日と 2019 年 5 月 24 日の水位差は 60cm±20cm 程度で増加したものと推定した.

図 2. 展望台定点からの比較.

図 3. 2019 年 7 月 1 日お昼前後にドローンで撮影した湯釜の様子.数字は 2018 年変色事象時(図 4)と同 じ場所であることを意味する.主な湧出・変色は 4 ヵ所認められ,湖面全体が黒や黄色などで汚れて見え る.湖面の大部分がいつもより白濁しているように見える一方で,湖面北側~西側の一部(画面奥側)はや や色が異なり,いつもの色に見える.(上)2019 年 7 月 1 日 13 時 29 分頃.(下)12 時 13 分頃.

図 4. 参考のため過去の空撮画像を示す.(上) 今年,2019年5月24日12時頃の様子.黒灰色の変色なし(中・下)2018年に観察された湖面変色,いずれも2018年6月25日16時頃の撮影.

図 5. 2019 年 7 月 1 日お昼前後にドローンで撮影した水釜および北側斜面噴気の様子.(上)2019 年 7 月 1 日 11 時 47 分頃.(下)11 時 46 分頃.

2019年7月1日午前

2019年6月30日午後

図 6. 東工大湯釜カメラから示唆される 2019 年 6 月 30 日,同7月1日の黒灰色の湖面変色. 黄色や灰色の 浮遊物はふだんから認められるが,黒っぽく,風下方向へ湖岸まで尾を引くような特徴は,2018 年 6 月から 7 月にかけて認められた変色によく似ている. ただし本カメラではよく観察できないので,ドローン等を用 いて確認中である.

霧島硫黄山火山ガス組成変化(2019年6月30日まで)

霧島硫黄山 H 噴気孔近傍で, Multi-GAS を用いた火山ガス組成連続観測を実施している (図1)。6月以降の連続観測結果では, SO2濃度および SO2/H2S 比の急増が認められる(図 2)。同様の変化は, 2018 年 4 月の噴火前にも認められている。

ただし、5月16日の現地観測では、従来は湯だまりであった Pa、Pb、V1のお湯がほとんどなくなっており、ガスのみを放出する状況に変化していた。観測されたガス濃度や組成の変化が、地下からの供給の変化ではなく、地表の湯だまりの状況の変化に起因する可能性もある。

図1 霧島硫黄山観測点配置図。MGは連続観測点,H,A1,A2,Pa,Pb,V1はそれぞれ 噴気孔および湯だまりに対応する。背景には,国土地理院の空中写真および数値標高モデ ル10mメッシュ(火山標高)を使用した。

第144回火山噴火予知連絡会

図2 霧島硫黄山火山ガス組成観測結果。順に、上)CO₂/H₂S比、中)SO₂/H₂S比、下)SO₂ 濃度最大値。凡例のうち、丸印は連続観測結果、それ以外のシンボルは現地観測結果(各 噴気孔および湯だまりの値)に対応する。赤の縦線は2018年4月19日の噴火に対応する。