第 137 回 火山噴火予知連絡会資料

(その7) 追加資料

平成 29 年 2 月 14 日

火山噴火予知連絡会資料(その7)

目次

阿蘇山	• • • • • • • • • •	• • • • • •	•••••	• • • • •	• • • • • • •	••••	• • • • • • •	••••	••••	• • • • • •	••••	3
	京大阿蘇	3-5、	防災科研	6-9								
霧島山	• • • • • • • • • •	• • • • • •	•••••	••••	• • • • • • •	••••	• • • • • • •	• • • • • •	• • • • • •	• • • • • •	••••	10
	防災科研	10-1 <i>°</i>	1									
十勝岳		• • • • • •	•••••	••••	• • • • • • •	•••••	• • • • • • •	• • • • • •	••••	• • • • • •	••••	12
	気象庁 1	2-16										

阿蘇・中岳の活動状況

阿蘇・中岳の活動に関するデータについて、2013年9月から2017年1月までを示す。

GPSによる距離(上段の図)は、2016年7月頃から伸びていたが、2016年10月以降は停滞している。微動の振幅や長周期地震の振幅は、2016年7月頃にやや増大したが、10月の噴火以降は低調である。当面はやや低調な活動が続くと思われるが、マグマたまりをまたぐ測線の距離が横ばいであることから、この距離が再び伸びる、あるいは微動の振幅が増大した場合には、火山活動が高まる可能性がある。

(2004年1月1日から2017年2月8日。地震時オフセット補正済。

ただし、AVL1を含む基線は4月15日まで。なお、国土地理院、防災科学技術研究所のデータも使用した。)

阿蘇山

4

本堂観測坑道で観測された地殻変動と阿蘇乙姫での降水量(気象庁発表) 2016年6月1日から2017年1月31日まで

阿蘇山中岳から 2015 年 10 月~2016 年に噴出した粗粒火砕物の全岩化学組成

阿蘇山中岳第一火口付近において 2016 年 5 月から 2017 年 1 月にかけての期間に採取した火山弾、火山 礫や高温の証拠を有する火山岩塊などの全岩化学組成を測定した。2015 年 10 月 23 日噴出と考えられるマ グマ(本質)物質と考えられる粒子は 2014 年以降の噴出物と類似した玄武岩質安山岩の組成を示した。2016 年 10 月 8 日噴火の際に放出された高温の火山岩塊は凝灰岩状の組織を持ち、全岩化学組成もこれまでとや や異なった値を示すことから、変質作用を受けた過去の噴出物である可能性が高い。

○2015年10月23日の噴出物

2016 年 5 月 14 日に 10 月 23 日噴火によると考えられる堆積物から採取された火山弾など計 4 試料(表 1;番号 1~4)を分析に使用した。

火山弾は暗灰色~暗褐色の牛糞状ないしカリフラワー状でやや扁平な形状を示しており、表層部は気泡 が小さく、不定形な凹凸や亀裂が発達している(写真1左)。表面に赤褐色に酸化している火山灰粒子が付 着している場合がある。中心部は連結したやや大きな気泡が発達している。これらの特徴は落下時に高温 を保っていて塑性変形し、遅延発泡をおこなったことを示している。スコリア火山礫は火山弾と類似して いるが内部構造などは明確でない。さらに少数だが発泡度の低い暗灰色のガラス質火山角礫も確認された

(写真1右)。火山弾・スコリア火山礫ともにみかけ密度は0.6~0.8g/cm³程度(表1)で、2014~2015年 3月までの噴出物よりも大きい。なお、これらの粗粒粒子の表面付近のガラスは失透・変色しているが、 熱水成分に富む粘土質な堆積物中にあったため噴出後採集するまでの約半年間の間に二次的に変質したも のと考えられる。

○2016 年 10 月 8 日の噴出物

これまでの調査ではこの噴火の堆積物から火山礫〜火山岩塊サイズの新鮮なスコリアや火山弾などは発見されなかった。一方、周囲に接する火山灰質堆積物を赤色酸化させた、あるいは接する木材を炭化させた痕跡があり、定置時に比較的高温であった可能性が高い火山岩塊が多数発見された。これらは凝灰岩状の組織を持つもので、山麓地域に降下した火山礫に多く含まれる凝灰岩礫と類似している。

今回はこれらの高温な岩塊を代表するものとして、比較的固結した凝灰岩からなる岩塊1個と、成層構造の顕著な火山礫凝灰岩岩塊に含まれていたスコリア礫2個を分析対象とした。

2016年10月19日に採取された固結した凝灰岩岩塊(表1;番号5)はみかけ密度2.0g/cm³程度、外観 は暗灰色の脆い溶岩状の角礫で(写真2左)、長径5 cm以下の凝灰質シルト岩片が多数含まれている。表面 付近は赤色酸化している。鏡下では組織の異なる部分がパッチワーク状に接している構造を持っており(写 真2右)、火山礫・火山灰粒子が固着して形成されたと考えられる。気泡や空隙の部分には白色及び淡緑色 の細粒な二次鉱物が生成している。

2017年1月10日に第一火口縁で観察された成層構造の顕著な火山礫凝灰岩岩塊(長径約3m)にはスコ リア礫が多数含まれていた(写真3左)。そこから採取したスコリア礫(表1;番号6~7)を分析に使用し た。スコリア礫の火山ガラスは比較的新鮮であるが、内部の気泡表面まで白色・黄色・褐色の細粒な二次 鉱物が多量に生成している(写真3右)。

○全岩化学組成

上記の7試料について変質の弱い部分を使用して東京大学地震研究所の蛍光X線分析装置にて測定した。 主成分合計 100wt%に再計算した結果を表2に示す。2015年10月23日噴火による試料はいずれもソレアイ ト質の玄武岩質安山岩の組成をもち、1970~90年代や2014年11月末~2015年3月の中岳火山の噴出物に 類似している(図1)。2016年10月8日噴火の試料は組成変化図上でやや異なる特徴を示した(図1)。 固結した凝灰岩岩塊は2014年-2015年噴出物よりSiO₂やCaOに富み、MnO・MgO・K₂Oに乏しい。中岳火山 新期以降の噴出物と比較してもCaOやK₂Oの違いは大きい。成層した火山礫凝灰岩岩塊のスコリア礫では 2014年-2015年噴出物よりSiO₂やCaOに乏しく、MnOやMgOに富む。中岳火山新期以降の噴出物の組成変 化トレンドと比較してもCaOに乏しくMnO・Na₂O・P₂O₅に富む傾向にある。

○ まとめ

分析結果に産状や岩石組織の観察結果と合わせて解釈すると、2015年10月23日噴火では2014年以降 と類似した玄武岩質安山岩マグマによる水蒸気マグマ噴火が生じ、高温で可塑性のある発泡したマグマ片 と、少量の急冷固結したあまり発泡していないマグマの破片が放出された。

2016年10月8日噴火では、関与したマグマの組成は明らかではない。少なくとも粗粒なマグマ片が放出された証拠は得られておらず、高温状態で定置した岩片は、火口底や火道周辺に存在し加熱されていた変質した2014年以降の噴出物もしくはより古い中岳火山噴出物が爆発の際に破壊・放出されたものと考えられる。

謝辞

現地調査の際に阿蘇火山防災会議協議会には立入許可をいただいた。分析用試料作製の際には日本大学 文理学部の金丸龍夫博士に御協力をいただいた。記して御礼申し上げる。

			4A 1	J J D H W H J J J H					
番号	試料名	長径	みかけ密度	採集日	推定噴出日	採集地点、産状など			
1	ASO16051401-01(スコリア質火山弾)	13cm	$0.65 g/cm^3$						
2	ASO16051401-03(スコリア質火山弾)	11cm	0.76g/cm ³	2016年	2015年	第二火口南側展望台の柵周辺の火山灰質堆積物上部より採取。			
3	ASO16051401-04(スコリア火山礫)	6cm	$0.67 g/cm^3$	5月14日	10月23日	一部の火山弾では表面に対着した火山灰が赤色散化している。 堆積物に埋没していた部分は表面から変質が進んでいる。			
4	ASO16051401-05(ガラス質火山礫)	10cm	2.10g/cm ³						
5	ASO1610YKO(固結した凝灰岩質火山岩塊)	26cm	2.04g/cm^3	2016年 10月19日	2016年 10月8日	第四火口南側木道上に定置しており、木道の材木を焦がしている。 岩塊表面は赤色酸化している。			
6	ASO170110-01(凝灰岩質岩塊中のスコリア礫)	12cm	1.06g/cm ³	2017年	2016年	第一火口南西縁Aカメラ脇に定置した長径約3mの成層構造が顕著な火山礫			
7	ASO170110-02(凝灰岩質岩塊中のスコリア礫)	6cm	1.07g/cm ³	1月10日	10月8日	酸化している)に含まれるスコリア礫。気泡内に二次鉱物が存在する。			

表1 分析試料リスト

写真1 2015年10月23日噴火の代表的な分析試料の写真。左:火山弾(番号1);右:ガラス質火山礫 (番号4)。

写真 2 2016 年 10 月 8 日噴火の固結した凝灰岩岩塊(番号 5)。左:全体像(表面の黒い部分は焦がした 木材の煤が付着している);右:顕微鏡写真(写真の横幅約 1.3mm)。

写真3 2016年10月8日噴火で火口縁に定置した成層した火山礫凝灰岩岩塊(長径約3m)に含まれる スコリア。左:岩塊に含まれるスコリア礫;右:スコリア礫(番号7)の断面。気孔を二次鉱物が充填し ている。写真の横幅約2.3mm。

-												
番号	試料名	SiO ₂	TiO2	Al ₂ O ₃	FeO*	MnO	MgO	CaO	Na₂O	K ₂ O	P ₂ O ₅	total (wt%)
1	ASO16051401-01	54.81	0.99	17.86	8.48	0.16	3.61	8.70	3.07	2.02	0.31	100.00
2	ASO16051401-03	54.64	0.96	18.25	8.29	0.15	3.49	8.72	3.17	2.01	0.31	100.00
3	ASO16051401-04	54.87	0.95	18.10	8.24	0.15	3.52	8.74	3.12	2.01	0.30	100.00
4	ASO16051401-05	54.59	0.98	17.88	8.48	0.16	3.71	8.75	3.13	2.03	0.31	100.00
5	ASO1610YKO	55.38	0.99	18.59	7.77	0.13	2.76	9.45	3.00	1.65	0.27	100.00
6	ASO170110-01	53.31	0.95	17.67	8.45	0.22	5.70	8.10	3.32	1.98	0.30	100.00
7	ASO170110-02	53.86	0.95	18.25	8.22	0.18	4.52	8.46	3.26	1.98	0.30	100.00

表 2 全岩化学組成(主成分 100% 再計算值)

図1 代表的なSiO2組成変化図

Sentinel-1A データを用いた SAR 干渉解析による霧島山周辺の地表変形

新燃岳火口:新燃岳火口内において、2011年から継続的に見られていた隆起を伴う地表変形は時間の経過と共に減少し、2016年7月25日から9月11日の期間およびそれ以降の期間においては、検出限界を超えるような隆起は検出されなかった。一方、隆起傾向の変化が見られていた領域の東側において、これまでには見られなかった、衛星-地表間距離の顕著な伸長変化(沈降もしくは西進)が見られるようになった(第1図)。この衛星-地表間距離の伸長変化の分布は、大きく変化しないように見えるが、大きさは時間的な揺らぎが見られる。2016年11月22日と2017年1月9日の期間におけるこの伸長変化は、最大でも1cm程度と求まった。

第1図. Sentinel-1A データを用いた SAR 干渉解析により求めた新燃岳火口周辺のスラントレンジ変化量分 布(灰色は低干渉領域). 各画像の上にしめす日付は、使用したデータの観測日を示す. 括弧内の 数字は、使用したデータの観測間隔(日数). 赤枠は、前回(第136回火山噴火予知連絡会)の報告 以降、新たに得られた結果を示す. 硫黄山: 2016年11月22日と2016年12月16日のデータペアの解析結果において、衛星-地表間距離(スラントレンジ)が短縮する地表変動(膨張もしくは東進が卓越)が生じていたこと を示す変化が、硫黄山付近の200-300m程度の範囲で見られた(第2図の赤枠)。2016年10 月29日と2016年12月16日の解析結果における最大変化量は1.5cm程度であった。それ以降のデータペアにおいては、同様の地表変動は検出されなかった。この領域では、2015年秋 から冬にかけてもスラントレンジ短縮変化が見られ、特に、その後期に変化が見られた領域と一 致するように見える。

第2図. Sentinel-1A データ用いた干渉解析から求めた硫黄山周辺のスラントレンジ変化分布.赤枠は、前回 (第 136 回火山噴火予知連絡会)の報告以降に、衛星-地表間距離の短縮が検出された結果を示 す.

謝辞.本解析で使用した Sentinel-1A データは Sentinel-1 Scientific Data Hub を通じて提供されたものである。 Sentinel-1A データの所有権は欧州宇宙機関が有する。解析および図の作成においては、国土地理院の基盤地 図情報 10m メッシュ DEM および地理院地図(電子国土 Web)の画像を使用した。 十勝岳

図1 十勝岳 GNSS 観測点の水平方向の変化の軌跡(上:観測値 下:推定値)

 ・前十勝観測点等における、膨張率の加速・減速の期間毎に色を分けた(期間は左上の経過図に示す).
・前十勝観測点が推定値の3倍大きく変化しているのは火口縁に設置されているためと推定される.
※例えばグランド火口観測点では、最初は東又は東南東方向へ向いていたのが、徐々に北向き成分が 大きくなっていく.また、62-3火口観測点については、最初は南東方向へ向いていたのが、徐々に南 向き成分が大きくなっていく.また、推定値の方が合計のベクトル量がやや大きい.

図2 十勝岳 2005 年6月から 2014 年6月の膨張率から求めた膨張源と膨張量 ・標高補正を加えた茂木モデル(気象研究所, 2008b)を仮定したグリッドサーチにより推定 ・大正火口寄り:標高1,400m 膨張率1.13×10⁴ [㎡/年] ・62-2 火口寄り:標高1,600m 膨張率0.42×10⁴ [㎡/年]

図3 十勝岳 各期間の水平変動量及び推定された圧力源の位置と水平変動量 ・標高補正を加えた茂木モデル(気象研究所, 2008b)を仮定したグリッドサーチにより推定

13

十勝岳

※2 2つの膨張量は増加→鈍化を繰り返している

大正火口寄りの膨張源が増加した後、62-2火口寄りが増加している

- 図6 十勝岳 円盤型のソース
 - ・広い面が膨らみ、次第に球に近づいていくとすると、広い面に直行する方向の変化は 次第に広がる方向に変化すると考えられる

図7 十勝岳 全磁力繰り返し観測により推定された消磁源 (第133回火山噴火予知連絡会 北海道大学資料より) ・2008年9月から 2015年の7月の平均的な全磁力変化から消磁源は大正火口付

近と 62-2 火口付近の 2 ヶ所に推定されている

青枠: 62-2 火口寄りの膨張量が増加した時期