# 箱根山・大涌谷における 2018 年 5 月 17 日の噴出現象\*

# A spurt phenomena in Owakudani, Hakone volcano on May 17, 2018

神奈川県温泉地学研究所

Hot Springs Research Institute of Kanagawa Prefecture 産業技術総合研究所地質調査総合センター Geological Survey of Japan, AIST

#### 1 はじめに

箱根山の大涌谷の 2015 年噴火の噴火中心域で 2018 年 5 月 17 日 10 時頃に確認された、水混じり土砂の噴出現象について報告する。なお、噴気孔の名称は神奈川県温泉地学研究所 (2018)による。

# 2 確認の状況と現地調査

大涌谷に常駐する箱根町の火口監視員の証言によれば、17日早朝の巡回では異常が無かったが、その後、霧で目視ができなくなった。10時頃に霧が晴れて目視できるようになったところ、2015年噴火の噴火中心域の地表が黒くなっていたとのことであった(第1図)。なお、温泉地学研究所の観測によれば当日および前後の日で、地震活動や地殻変動に異常は認められなかった。

同日12時頃から温泉地学研究所職員が現地を調査した結果、黒い固形物が水と一緒に15-4噴気孔からミスト状に噴出しているのを確認した(第2図)。噴出物の分布範囲は表面が完全に覆われている範囲が風下に約30m、うっすらと覆われている範囲が風下に約50mの範囲であった(第3図)。

15-4 噴気孔の噴気温度は 96.8℃であった。この噴気孔の温度は長らく測定されていなかったが(最後の温度測定は 2016 年 8 月 5 日で 123.0℃)、遠望観測では勢いよく噴気していたことが確認でき、噴気孔直上で噴気は透明であったことから、過熱蒸気を噴出していたと考えられる。パッシブ型検知管により噴気孔直下のガス濃度を 30 分間測定したところ、 $SO_2 = 6$  ppm,  $H_2S = 6$  ppm, HCI = tr. であったが、この  $SO_2/H_2S$  比は 15-2 噴気孔の普段の値と大きく変わらない。

# 3 噴出物の分析

噴出物中の鉱物組成を産業技術総合研究所設置の XRD (Rigaku RINT2500)、化学組成を神奈川県立生命の星・地球博物館設置の XRF (Rigaku ZSX Primus II) で分析を行った。なお、鉱物組成は水簸により濃集した粒径 63 μm 以下の粒子群に対する不定方位分析により行われた

その結果、噴出物中から、硫黄、Na-明ばん石、クリストバライト、黄鉄鉱、石英、トリディマイト、石膏、スメクタイトが確認できた(第4図)。これらの鉱物は、大涌谷の表層に通常存在する。噴出物の化学組成(第1表)をみると硫黄に富むものの、通常の噴気孔の中にある溶融硫黄に比べ、5月17日噴出物はSi、Fe、Mg などに富むことがわかった。

#### 4 考察

噴出中の噴気孔の温度が低く、噴出物が水分に富むことから、15-4噴気孔に表層近くの地下水が流入

\* 2018年8月21日受付

し、噴気とともに噴出したことが考えられる。噴出物中に大涌谷表層で一般的な鉱物が大量に含まれる のは、地下水とともに表層近くの土砂が流入したためと考えられる。

## 5 その後の様子

その後、5月25日に調査をしたところ、黒い固形物の噴出は停止していた。15-4噴気の温度は優勢なものが97.8 $^\circ$ 、これよりやや弱い噴気が112.5 $^\circ$ で、当地の沸点(96.8 $^\circ$ )を越えていた。この噴気孔は従来、直径数十cmの深い穴が開いていたが、7月頃までに閉塞し、原稿執筆時(2018年10月)は従来噴気孔があった地面から弱いものの沸点を超える噴気(98~115 $^\circ$ )が上がっている。

## 謝辞

化学組成の分析は、神奈川県立生命の星・地球博物館に実施して頂いた。

# 参考文献

1) 神奈川県温泉地学研究所(2018): 箱根山の活動(2015 年 6 月~2015 年 9 月),火山噴火予知連絡会会報,122,200~221.

第1表 全岩化学組成分析結果(wt%)\*

Table 1 Bulkrock compositions of the spurted material and sulfer from the 15-2 fumarole.

| サンプル      | $SO_3$ | $SiO_2$ | $TiO_2$ | $Al_2O_3$ | $Fe_2O_3$ | MgO  | CaO  | Na <sub>2</sub> O | $K_2O$ | $P_2O_5$ | Cl   |
|-----------|--------|---------|---------|-----------|-----------|------|------|-------------------|--------|----------|------|
| 5月17日噴出物  | 45.2   | 35.4    | 0.38    | 9.70      | 3.50      | 1.50 | 1.11 | 0.59              | 0.14   | 0.06     | 1.92 |
| 15-2 溶融硫黄 | 93.2   | 5.67    | 0.03    | 0.55      | 0.13      | 0.15 | 0.04 | 0.11              | 0.01   | 0.00     | 0.06 |

<sup>\*</sup> Fundamental Parameter 法により酸化物を仮定した計算値。分析は粉末ペレットについて行った。



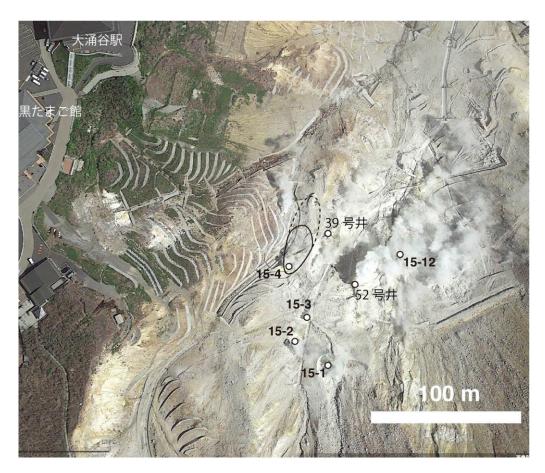
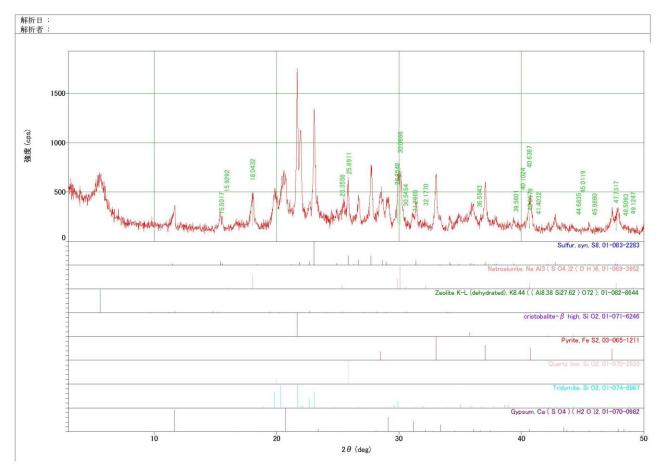

第1図 噴出現象が確認された直後の大涌谷の様子(10時頃、町職員が撮影)

Fig. 1. Owakudani just after the spurt event (approximately 10 a.m. Photo taken by a town official)




第2図 15-4 噴気孔を南側から見た様子 (17 日 11:57 撮影)。

Fig. 2. 15-4 fumarole from south (at 11:57 on May 17, 2018)



第3図 15-4 噴気孔と周辺の見取り図。実線は地表が黒く変色した範囲。点線は固形物が飛散した範囲。 Fig. 3. 15-4 fumarole and the adjacent area. Solid line indicates area covered by the black deposit completely. Broken line indicates area the black deposit was recognized.



第4図 5月17日噴出物の XRD プロファイル

Zeolite とされた  $2\theta$  =5.5° のピークは,エチレングリコール処理により膨潤が確認されたことから スメクタイトと判定された

Fig. 4. XRD profile of the material dispersed by the spurt phenomena on May 17, 2018

The peak at  $2\theta = 5.5^{\circ}$  had been judged as a peak of zeolite by the software; however, it was confirmed as an interlayer distance of smectite after an ethylene glycol treatment.