三宅島の地殻変動*

Crustal Deformations around Miyakejima Volcano

国土地理院

Geospatial Information Authority of Japan

第1図、第2図は、三宅島における GNSS 連続観測結果である。第1図上段に基線図の配置を、下段 に各観測点の保守の履歴を示した。第2図は、三宅島における GNSS 連続観測結果の最近約5年間の時 系列である。第2図上段は、基線長の時系列グラフであり、第2図下段は比高の時系列グラフである。 「三宅4」関係の基線では、2006年からゆるやかな伸びの傾向がみられていた。「三宅1」と「三宅 4」では、2013年4月17日17時57分に発生した三宅島近海の地震(M6.2)の前後で、小さな変動 が観測された。その後、(2)等一部の基線で地殻変動の傾向が変わった可能性もある。

第3図は三宅島島内における GNSS 連続観測点における約1年間の地殻変動ベクトル図である。第3 図上段が水平変動ベクトル、下段が上下変動量である。わずかに島の膨張傾向が見られる。

[三宅島近海の地震に伴う地殻変動]

第4~6図は、2013年4月17日に発生した三宅島近海の地震(M6.2、最大震度5強、横ずれ断層型)に伴う地殻変動結果である。第4図上段はGNSS連続観測による水平変動ベクトル図である。第4 図下段と第5図は2013年3月から2013年4月の約2ヶ月間の3成分の時系列である。この地震に伴い、三宅島内で最大約2cmの地殻変動が観測された。第6図(a)は、この地震の断層モデルを、断層 面が南北走向の場合について推定した結果で、縦ずれ成分を伴う横ずれ型の断層運動で、モーメント マグニチュードは5.9と推定される。第6図(b)は、気象庁の一元化震源に東西方向に伸びる余震分布 も見られることから、断層面が東西方向の場合について推定した断層モデルである。こちらのモデル でも地殻変動データを説明することは可能である。

^{* 2013}年7月8日受付

三宅島 GNSS連続観測基線図 93059 三宅 1 7′ 6′ 0599 定 3 5′ J606 村営枚場南 4′ _93060 三宅2 3′ 34° 2′ 139°26 28′ 32′ 27 29' 30′ 31' 33' 34' 35 36' 三宅島の各観測局情報

点番号	点名	日付	保守内容
93059	三宅1	20041216	アンテナ交換
		20041223	アンテナ交換・角度調整
		20080609	レドーム交換
		20100217	レドーム開閉・受信機交換
		20121023	アンテナ交換
93060	三宅2	20020220	アンテナ交換
		20080609	レドーム交換
		20100215	レドーム開閉・受信機交換
		20121023	アンテナ交換
960599	三宅3	20041223	受信機交換
		20080609	レドーム交換
		20100216	レドーム開閉・受信機交換
		20101214~	通信障害によるデータ欠測
		20121024	アンテナ交換
960600	三宅4	20080609	レドームネジ交換
		20100216	レドーム開閉・受信機交換
		20121024	アンテナ交換

第1図 三宅島の GNSS 連続観測基線図(上段:基線図、下段:保守履歴)

Fig.1 Site location map of the GNSS continuous observation network around Miyakejima Volcano; (upper) Site location map, (lower) History of site maintenance.

第2図 三宅島の GNSS 連続観測結果時系列(上段:基線長、下段:比高)(2008年5月~2013年5月) Fig.2 Time series of continuous GNSS observation results around Miyakejima Volcano (upper: Baseline length; lower: Relative height) from May 2008 to May 2013.

第3図 三宅島における GNSS 観測点の変動ベクトル図(2012 年4月~2013 年4月) (上段:水平変動、 下段:上下変動)

Fig.3 Horizontal and vertical displacement of GNSS stations in Miyakejima Volcano from April 2012 to April 2013 (upper: Horizontal, lower: Vertical).

三宅島近海の地震(4月17日 M6.2)前後の観測データ(1)

この地震に伴う小さな地殻変動が観測された...

第4図 三宅島近海の地震(4月17日 M6.2)前後の観測結果(上段:GNSS 観測点の変動ベクトル図 2013年4月、下段:GNSS 連続観測結果 3成分時系列 2013年3月~2013年4月) Fig.4 Crustal deformation before and after the M6.2 near Miyakejima Island Earthquake on April 17, 2013

(horizontal).

三宅島近海の地震(4月17日 M6.2)前後の観測データ(2)

成分変化グラフ

第5図 三宅島近海の地震(4月17日 M6.2)前後の GNSS 連続観測結果3成分時系列(2013年3月~ 2013年4月)

Fig.5 Crustal deformation before and after the M6.2 near Miyakejima Island Earthquake on April 17, 2013 (horizontal).

2013年4月17日の三宅島近海の地震の矩形断層モデル(暫定)

緯度、経度、走向、傾斜、幅、長さは気象庁一元化震源の震源分布から設定。深さ、 すべり量、すべり角を逆解析で推定した。剛性率30GPa。

使用データ: F3解 期間 4月9-15日~4月21-27日 固定局:南伊豆 <u>青丸 震源位置:気象庁一元化震源(期間 4月11~22日)</u> 赤四角:断層面

第6図(a) 2013年4月17日の三宅島近海の地震の矩形断層モデル(南北方向)

Fig.6 (a) NS-strike rectangular Fault model of the M6.2 near Miyakejima Island Earthquake on April 17, 2013.

2013年4月17日の三宅島近海の地震の矩形断層モデル(暫定)

緯度、経度、幅、長さは気象庁一元化震源の震源分布から設定。走向、傾斜、深さ、すべり量、 すべり角を逆解析で推定した。剛性率30GPa。

使用データ: F3解 期間 4月9-15日~4月21-27日 固定局:南伊豆 <u>青丸 震源位置:気象庁一元化震源(期間 4月11~22日</u>) 赤四角:断層面

第6図(b) 2013年4月17日の三宅島近海の地震の矩形断層モデル(東西方向)

Fig.6 (b) EW-strike rectangular Fault model of the M6.2 near Miyakejima Island Earthquake on April 17, 2013.