特集「海洋気象業務に関する最新の技術的動向」

日本沿岸海況監視予測システムによる 2011 年瀬戸内海異常潮位の再現実験

確氷 典久*1・坂本 圭*1・小川 浩司*2・藤井 陽介*1・辻野 博之*1・山中 吾郎*1・倉賀野 連*1・蒲地 政文*1

要 旨

日本沿岸海況監視予測システムのプロトタイプシステムとして、2 km解像度 の瀬戸内海周辺モデル及び4次元変分法による解析システムから成る,沿岸シ ステム (MOVE/MRI.COM-Seto)を開発した.本システムの性能評価のため, 2011年9月に瀬戸内海を中心とした日本南岸で発生した,異常潮位の再現実 験を行った.同化実験において,潮位データに見られる異常潮位に伴う水位変 化の特徴を高精度に再現することに成功した.また,予報実験からは,異常潮 位の約半月前から有意な予報結果が得られた.さらに,同化結果の解析から, 本事例に関して,以下の発生メカニズムが示唆された.9月中旬に紀伊半島沖 の黒潮が北上し,紀伊半島西側に反流(振り分け潮)を伴った低気圧性渦が形 成される.その結果,黒潮系暖水が紀伊水道に供給され,紀伊水道周辺の瀬戸 内海東部の水位が上昇する.9月下旬には,伊豆諸島付近における黒潮流路変 動により,高水位偏差を伴った沿岸捕捉波が励起され,日本南岸を西へ伝播す ることにより広範囲で水位上昇が生じた.

1. はじめに

現在,気象庁では海洋データ同化システム (MOVE¹/MRI.COM²;石崎ら,2009)が運用され ており,全球システム (MOVE/MRI.COM-G)が エルニーニョの監視・予測に,北西太平洋システ ム (MOVE/MRI.COM-WNP)が日本周辺におけ る海況監視・予測のために,それぞれ用いられて いる.

MOVE/MRI.COM-WNP には,水平解像度 1/10° の北西太平洋モデル(MRI.COM-WNP)及び 3 次 元変分法(3DVAR)に基づくデータ同化スキー ムが用いられており,黒潮の変動や外洋の中規模 渦などを高精度に再現することが実証されている (例えば,大崎ら,2009;北村ら,2010).しかし, 解像度等の制限から,沿岸現象の再現性は不十分 であり,沿岸域における海況監視・予測のために は,さらなるモデルの高解像度化及びスキームの 高精度化が必要である.

そのため、気象研究所では、気象庁における 沿岸海況の監視・予測情報及び沿岸防災情報の高 度化に資するため、日本沿岸海況監視予測システ ムを開発している.そのプロトタイプシステムと して、瀬戸内海周辺域に限定した、沿岸システ ム(MOVE/MRI.COM-Seto)を開発し、2015年度

^{*1} 気象研究所海洋·地球化学研究部

^{*2} 気象研究所海洋·地球化学研究部(現 福岡管区気象台)

¹ Meteorological Research Institute Multivariate Ocean Variational Estimation (気象研究所海洋データ同化システム)

² Meteorological Research Institute Community Ocean Model (気象研究所共用海洋モデル)

に現業化する予定である. MOVE/MRI.COM-Seto は,現行の MOVE/MRI.COM-WNP に比べて,モ デルの高解像度化及び同化スキームの高精度化が 図られており,沿岸域における海洋現象の再現性 の向上が期待される.

本稿では、MOVE/MRI.COM-Setoの再現性の検 証を目的として実施した、2011年9月に発生し た異常潮位の再現実験の結果について報告する. この異常潮位では、瀬戸内海を中心とする日本南 岸の広範囲において20~30cmの潮位偏差が観 測され、大潮の時期とも重なったため、各地で浸 水などの被害が発生した(小川ら、2014).

異常潮位は、様々な要因により発生することが 指摘されている.野崎(2004)は、2001年7月 に沖縄本島で発生した異常潮位が暖水渦の接近に より生じたと報告している.一方,末永ら(2003) は、2001年9月に広島湾で発生した異常潮位の 要因として、黒潮や太平洋沿岸を伝播した陸棚波 の影響を指摘している.また、高木ら(2008)は、 2006年10月の東京湾で発生した異常潮位が、そ の直前に通過した低気圧により生じた陸棚波が伝 播することによりもたらされたと指摘している. なお、ここで着目する2011年の事例については、 具体的な発生要因は明らかになっていない.よっ て、本報告では、異常潮位の再現実験結果の検証 とともに、本事例の発生要因を明らかにすること も目的とする.

以下,第2章で MOVE/MRI.COM-Seto の概要 について述べる.第3章では同化実験の設定及び 結果について述べ,第4章において,同化実験結 果を用いて異常潮位の発生要因について議論す る.第5章では,同化結果を初期値とした予報実 験結果を紹介し,第6章でまとめを述べる.

2. システムの概要

MOVE/MRI.COM-Seto では、数値海洋モデル として、気象研究所共用海洋モデル(MRI.COM; Tsujino *et al.* 2010)を用い、データ同化システ ムとして、4 次元変分法(4DVAR)に拡張した MOVE システム(MOVE-4DVAR; Usui *et al.* in preparation)を用いている.

数値モデルは、瀬戸内海周辺モデル (MRI.

COM-Seto; 坂本ら, 2014) 及び北西太平洋モデ ル (MRI.COM-WNP) から構成され, 両モデルは, 単方向ネスティングにより接続されている. なお, MRI.COM-WNP は,現行の海況監視予測システ ム MOVE-WNP (石崎ら, 2009) に用いられてい るものと同じモデルであり MRI.COM バージョン 2.4 に基づいている.

MRI.COM-Seto は MRI.COM バージョン 3.2 に 基づいており、水平解像度は1/33°(東西)× 1/50°(南北)の約2kmである.鉛直方向には 6300m までに 50 レベルを有し, 層厚は第1層が 4m,最下層で600mとなっている.モデル領域 は、129E-138E、28N-35.2N であり(第1図)、瀬 戸内海を含む西日本の沿岸域をカバーする. 使用 している主な物理スキームとしては、移流スキ $-\Delta \& \cup \subset$ Second Order Moment (SOM; Prather, 1986) 用いており、水平拡散・粘性は、倍調和型 の Smagorinsky 粘性 (Griffies and Hallberg, 2000), 鉛直拡散・粘性は、海面混合層モデル(Noh and Kim,1999) により決定される. なお, MRI.COM-Seto で採用されているバージョン 3.2 では,バー ジョン2に比べて,SOMをはじめとしてより多 様な物理スキームの導入が図られている.また, 主要モデル変数を定義するレベルが各鉛直層の中 点に変更された点、入出力ファイルに関して、変

第1図 MRI.COM-Seto モデル領域

陰影はモデルの海底地形を表す.四角で(MI)舞阪, (ST)洲本,(UW) 宇和島,(AB) 油津の各検潮所を 示す.また,135.5°E に沿った南北線を白黒の点線で 示す. 数ごとに柔軟に設定が変更できるようになった点 もバージョン2からの大きな変更である.より詳 細なモデル設定については、本特集号の坂本ら (2014)を参照されたい.

データ同化は、MRI.COM-WNP に対して適用 し、得られた北西太平洋域の 1/10° 解像度の解析 場を用いて、MRI.COM-Seto を初期化する. この 方法は、高解像度モデルの最適化問題を、低解像 度モデルを用いた問題へと近似して解く、インク リメンタル法(Courtier *et al.*,1994)と同じ思想に 基づく.しかし、通常、インクリメンタル法で は、低解像度モデルを用いた解析の際、その基本 場には高解像度モデルのフォワード結果を用いる が、本システムでは MOVE-4DVAR の解析の際に MRI.COM-Seto のフォワード結果は用いていない ことに注意されたい.

同化手法には、4次元変分法を用いている.評 価関数は、現行 MOVE の水温・塩分結合鉛直 EOF (TS-EOF) を用いた3次元変分法 (Fujii and Kamachi, 2003)の自然な拡張として定式化され ている. すなわち, MOVE-4DVAR においても, 現行 MOVE と同じ背景誤差共分散行列を用いて おり、TS-EOFの振幅を制御変数として、同化 期間初期の水温塩分場の最適値を推定する.ま た, MOVE-4DVAR の特徴として, Incremental Analysis Update (Bloom et al., 1996) による初期化 ルーチンを併用していることが挙げられる.これ は、4DVAR においても、初期のインクリメント の空間構造は、統計的に決められた背景誤差共分 散に基づいており、ノイズを含むためである. な お、アジョイント変数に対しては、IAUのアジョ イントに対応する、デジタルフィルターが施され ることになるが、両者は同じフィルター特性を持 っことが知られている (Polavarapu et al., 2004).

第2図に、同化サイクルの模式図を示す.ここで、MOVE-Setoとは、IAUによりMOVE-4DVAR 解析値が反映されたMRI.COM-Setoのことを指 す.この初期化の際、MOVE-4DVAR解析値は、 水平・鉛直方法の線形内挿により、Seto格子に内 挿される.この初期化を毎同化サイクル実施する ことにより、現実の場を反映したMOVE-Seto解 析値が得られる.

3. 同化実験

3.1 実験設定

2011 年 9 月 の 異 常 潮 位 事 例 を 対 象 と し た, MOVE/MRI.COM-Seto に よる 同 化 実験 を 行った. 実験 設定 は,以下の とおり である.

同化実験は、2011年7月21日から10月31 日の期間実施した.同化間隔は、旬ごととし、 MOVE-4DVARで併用しているIAUによる初期化 期間は3日とした.また、MOVE-SetoのIAUに よる初期化期間は、同化ウィンドウ内の4日目か ら6日目までの3日間とした(第2図).その際、 MOVE-Setoに対するインクリメントは、MOVE-4DVARの5日目の解析値(日平均場)をもとに 作成される.

同化には、気象庁海洋気象情報室で収集して いる現場観測データ(水温・塩分プロファイル)、 衛星海面水温(MGDSST;栗原ら、2006)、及び Jason-2の軌道沿い海面高度偏差を用いた.大気 フォーシングには、気象庁気候データ同化システ ム JCDAS (JMA Climate Data Assimilation System; Onogi *et al.*, 2007)の日別値を用いた.

なお、本実験では、モデルの海面高度変動に海 面気圧の効果は含まれてないので、潮位観測との 比較の際には、潮位計データに対して、気圧補正 を施している(小川ら、2014).

第2図 MOVE/MRI.COM-Seto 同化サイクル概念図.

また、比較のために 3DVAR による同化実験 を同期間行った.この実験では、3DVAR の同化 間隔を旬ごととし、MOVE-4DVAR と同じ観測 データを同化に使用した.MOVE-Setoの初期化 サイクルも 4DVAR を用いた際と同じ条件とし、 3DVAR の日平均解析値を用いて、3日の IAU を 毎サイクル実施することにより、3DVAR バージ ョンの MOVE-Seto 解析値を得た.

3.2 結果

第3図に舞阪,洲本,宇和島,及び油津における MOVE-Seto の水位偏差を、各検潮所で観測 された潮位偏差と比較する.観測値は、日平均の 潮位偏差であり、直近の地上観測点における海 面気圧をもとに気圧補正を施している(小川ら, 2014).また,MOVE-Seto 解析値の水位偏差の 元となる平均場は、MOVE-WNPの1993年から 2007年までの再解析値(5日ごとの出力)をもと に、5日ごとの年サイクル気候値を seto 格子に内 挿することにより求めた.さらに、第3図の比較 において、比較期間(2011年9月1日~10月10 日)の平均値が観測と同じとなるように補正を施 している.

各地点において9月下旬に見られる,20~ 30cm 程度の水位偏差が、ここで着目する異常潮 位に対応するシグナルである.なお、洲本では9 月初旬に、舞阪では9月21日頃に突発的な高水 位偏差が見られるが、これらは、台風12号と15 号によりもたらされたものである.

同化手法に 4DVAR を用いた MOVE-Seto 解析 値は, 観測値を良く追従しており, 異常潮位に伴 う水位上昇については, 定量的にも良く再現して いることが分かる.一方, 3DVAR による MOVE-Seto 解析値は, 異常潮位による水位上昇は, 定性 的には,表現されているものの, 観測や 4DVAR の結果と比べて, 過小評価となっている. なお, 舞阪における台風に伴う水位上昇は, モデルで再 現されていないが,これは大気フォーシングの時 間間隔が粗い(日別)ことが一つの要因として考 えられる.

以上のように、4DVAR を用いた MOVE-Seto 解 析値が、異常潮位に伴う水位変化が高精度に再現 することが分かった.次節では、MOVE-Seto 解 析値をもとに、この異常潮位事例の発生機構につ

第3図 2011年9月1日から10月10日にかけての日本南岸4地点における水位偏差時系列
 (a) 舞阪,(b) 洲本,(c) 宇和島,(d) 油津(各検潮所の位置は第1図を参照). 灰色実線:各検潮所における潮位偏差,○:4DVARを用いた MOVE-Seto 解析値の水位偏差,+:3DVAR による MOVE-Seto 解析値の水位偏差. MOVE-Seto の水位偏差の算出方法については本文を参照されたい.

いて見て行く. さらに、3DVAR と 4DVAR の結 果の違いが何に起因しているのかについても議論 する.

同化結果から見た 2011 年異常潮位の発生 要因

第3図から、洲本では、異常潮位に伴う水位変動の特徴が他の地点と異なることが分かる.他の3地点では、水位上昇は、9月下旬の1回のみであるのに対し、洲本では、大きく分けて9月中旬と下旬の2度、水位上昇が生じている.他の潮位データを見ると、この洲本の特徴は、瀬戸内海東部の潮位計データに共通して見られる特徴であることが分かった

そこで、まず瀬戸内海東部における9月中旬 の水位上昇の要因について調べる. 紀伊半島沖の 黒潮との対応を見るために、第4図に135.5°Eに 沿った MOVE-Seto 400 m水温の緯度・時間断面 図と洲本における水位偏差(MOVE-Seto 解析値) を示す.

緯度・時間断面における水温勾配の大きな部分 が黒潮流軸に対応する位置である.図から,9月 中旬に紀伊半島沖の黒潮が北上しており,この北 上と洲本の水位上昇の時期が良く対応しているこ とが分かる.外洋場に着目すると,黒潮再循環域 を低気圧性の中規模渦が西方伝播し,9月中旬か ら下旬にかけて,黒潮に沿って渦が九州南東から 四国沖に北上していた(図略).紀伊半島沖の黒 潮流路の変動は,この低気圧性渦の接近と関係し ている可能性が考えられる.

第5図に、この時の紀伊水道周辺の海面流速場の時間発展を示す.この時期、日本南岸の黒潮流軸は、直進路をとっており、水位上昇が開始される前の9月13日の時点で既に、黒潮流軸の北縁が紀伊半島南端に接していることが分かる.その後、紀伊半島南端の紀伊水道側で流軸がさらに北上し、その結果、紀伊半島の西側に、陸に沿った北西向きの反流、いわゆる振り分け潮(Takeuchi et al., 1998)が発生する(第5図b).振り分け潮は、 9月19日にかけて強化され、紀伊水道内に発達した低気圧性渦が形成される.

先行研究(例えば, Nagata et al., 1999, 前川ら, 2011)によると,振り分け潮の出現時,紀伊半島 南西側に黒潮系暖水が供給されることにより,紀

第4図 (a) 洲本における MOVE-Seto 水位偏差. (b) 紀伊半島沖(135.5°E; 第1図参照)に
 おける MOVE-Seto 解析値による 400m 水温の緯度・時間断面図
 2011 年9月1日から10月25日までを示す.

伊半島西側の水位が上昇し、串本・浦神の水位差 が強化されると指摘している。潮位データから串 本・浦神の水位差を見ると、MOVE-Setoで振り 分け潮が解析されていた期間に水位差が増大して おり(図略)、実際に振り分け潮が発生していた ことが示唆される。

第6回に瀬戸内海東部での水位上昇期間(9月 15日~19日)における MOVE-Seto の水位変化 量と9月19日の海面流速場を示す.図から紀伊 水道の低気圧性渦の外縁に沿って顕著な水位上昇 が見られ,それが瀬戸内海東部に及んでいること が分かる.この特徴は、上述の先行研究で指摘さ れている、振り分け潮発生時の水位変化の特徴と 整合的である.

次に、9月下旬に日本南岸の広範囲で生じた水 位上昇の要因について見て行く.黒潮流路に着目 すると、9月上旬から中旬にかけて直進路をとっ ていたが、異常潮位の発生した9月下旬に東海沖 で一時的に流路変動が生じていたことが分かっ た.第7図 a-cに MOVE-4DVAR における、9月 22日から26日にかけての海面高度場の推移を示 す.図から、東海沖で蛇行路が出現している様子 が分かる.伊豆諸島周辺の黒潮に着目すると、蛇 行の東側のリッジ(第7図 aの伊豆半島南の流路 が凸状である部分)が伊豆半島から房総半島に接 近し、その結果、外洋域に分布していた正の海面

第5図 2011年9月13日から19日にかけての紀伊水道周辺の海面流速場の時間発展. 陰影で流れの強さ(cm s⁻¹)を示す.

第6図 2011年9月15日から19日にかけての紀伊水道周辺における水位上昇の空間分布(陰影;cm)と9月19日の海面流速場(ベクトル; cm s⁻¹).

第7図 2011年9月22日から26日にかけての海面高度場の時間発展
 等値線がモデル海面高度,陰影が偏差を示す(単位:cm). MOVE-4DVAR 解析値(a-c)及び
 3DVAR 解析値(d-f)を比較する.

高度偏差が沿岸域へと侵入し(第7図b),26日 にかけて房総半島以西の日本南岸の水位が上昇し ている様子が分かる.このことは,伊豆諸島付近 における流路変化により正の海面高度偏差を伴う 沿岸捕捉波が励起され,それが日本南岸を伝播し たことを強く示唆する.この特徴は,小川ら(2014) で示された,潮位データに見られた特徴と整合す る.

第7図 d-f に示す 3DVAR による海面高度場を 見ると,黒潮流路のパターンや渦の位置など,外 洋の特徴は,MOVE-4DVAR とよく一致している. しかし,第7図 e-f の日本南岸での水位上昇は, MOVE-4DVAR のそれと比べて明らかに過小であ ることが分かる.この差は,沿岸捕捉波の励起源 となったと考えられる,伊豆諸島付近の黒潮流路 変動の表現の違いに起因すると考えられる.

このことをより詳しく見るために,第8図に三 宅島における 2011 年 9月1日から10月15日ま での水位変化の様子を示す. 三宅島では,9月下 旬から10月上旬にかけて,蛇行路の東進により, 蛇行内側域の冷水渦が接近し,水位が急激に低 下する. MOVE-4DVAR では,この水位低下量を 観測と同程度に再現することに成功しているが, 3DVAR では,水位低下は再現されているものの, 観測と比べて過小に表現されている(水位低下量 は,観測の6割程度).この黒潮変動の表現の違 いが,その後の沿岸波動のシグナル及び異常潮位 の再現性の違いをもたらしたと考えられる.

この水位低下は、9月末から10月初めにかけ てのわずか15日程度の期間に生じている.した がって、同化期間内(本実験では10日)の観測 をすべて同時刻とみなす3DVARでは、現象の再 現性が低下したと考えられる.一方、4DVARでは、 同化期間内の現象の時間発展を陽に解析するため に、観測と同程度の水位低下が再現されたと考え られる.

5. 予報実験

最後に、予報実験結果について紹介する.実験 は、4DVAR 及び 3DVAR で作成された初期値を 用いて、初期時刻を9月1日と9月11日とした、 合計4ケース実施し、10月末までの予報計算を 行った.予報期間の大気フォーシングは、同化計 算時と同様に JCDAS の日別値を用いた.本来は、 大気場も予報値又は気候値外力を使用すべきであ るが,前節で述べた様に,この異常潮位事例は, 主に海況要因により生じたと考えられるので,こ こでは JCDAS をそのまま使用した.

第9図に洲本における水位偏差予報値を観測値 と比較する.なお,第3図と同様に,図に表示し ている予報期間内(9月1日~10月10日または,

第8図 三宅島における 2011 年9月1日から10月15日までの水位変動

灰色実線:観測された潮位偏差,〇:MOVE-4DVARの水位偏差,+:3DVARの水位偏差.同化結果は, いずれも期間内の平均値が観測と同じとなるように補正している.

(a)4DVAR を用いた MOVE-Seto 解析値を初期値とした場合,(b)3DVAR による MOVE-Seto 解析値を初期値 としたケース. 灰色実線:洲本の潮位偏差観測値,×:9月1日初期値の結果,□:9月11日初期値の結果.

9月11日~10月10日)の平均値が観測と同じ となるように補正を施している.

9月1日初期値のケースでは、3DVAR、4DVAR ともに異常潮位に対応する9月中旬以降の水位上 昇傾向が不明瞭であるが、9月11日初期値の例 では、概ね観測の傾向が再現されている。特に9 月11日の4DVAR初期値のケースでは、水位上 昇量は若干観測より小さいものの、異常潮位に伴 う水位変化の傾向を良く捉えている。

以上を踏まえると、水位のピークが9月下旬で あることから、この事例に関しては、約半月前か らの予測が可能であると言える.

6. まとめ

日本沿岸海況監視予測システムのプロトタイ プシステムとして開発された,MOVE/MRI.COM-Setoを用いて,2011年9月に発生した異常潮位 の再現実験を行った.同化手法を現行の3DVAR から4DVARへ高度化することにより,黒潮の短 期的な変動の再現性が向上し,本異常潮位事例が 高精度に再現されることが分かった.

また,MOVE-Seto同化結果の解析から,本事 例について,以下の発生メカニズムが示唆された. 紀伊水道周辺の瀬戸内海東部では,他に先行する ように9月中旬に最初の水位上昇が生じていた. この水位上昇は,紀伊半島沖の黒潮が北上し,そ の結果,紀伊半島西側に反流(振り分け潮)を伴 った低気圧性渦が形成されることにより,黒潮系 暖水が紀伊水道に供給され水位が上昇した.9月 下旬には,東海沖で短期的な黒潮流路変動が生じ, その結果,流路のリッジ部が伊豆半島から房総半 島に接近し,高水位偏差を伴った沿岸捕捉波が励 起され,日本南岸を西へ伝播することにより,広 範囲で水位上昇が生じた.

また、本事例の予報実験を実施したところ、異 常潮位の約半月前の9月11日初期値のケースに おいて、その後の水位上昇の再現に成功した.

以上から, MOVE/MRI.COM-Seto が異常潮位を はじめとする,沿岸域の海況監視及び予測に有効 であることが示された.しかしながら,まだ1事 例のみでの検証であり,今後さらに多くの事例に ついて調べる必要がある.

参考文献

- Bloom, S. C., L. L. Takacs, A. M. daSilva and D. Ledvina (1996) : Data assimilation using incremental analysis updates. *Mon. Wea. Rev.*, **124**, 1256-1271.
- Courtier, P., J. N. Thépaut, and A. Hollingsworth (1994): A strategy for operational implementation of 4D-Var, using an incremental approach. *Quart. J. Roy. Meteor.* Soc., 120, 1367–1387.
- Fujii, Y. and M. Kamachi (2003): Three-dimensional analysis of temperature and salinity in the equatorial Pacific using a variational method with vertical coupled temperature-salinity empirical orthogonal function modes, J. Geophys. Res., **108**(C9), 3297, doi:10.1029/2002JC001745.
- Griffies, S.M. and R.W. Hallberg (2000) : Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. *Mon. Weather Rev.*, **128**, 2935-2946.
- 石崎士郎・曽我太三・碓氷典久・藤井陽介・辻野博 之・石川一郎・吉岡典哉・倉賀野連・蒲地政文 (2009): MOVE/MRI.COMの概要と現業システムの 構築. 測候時報, 76, 特別号, S1-S15.
- 北村知之・大崎晋太郎・志賀達 (2010):本州南方にお ける黒潮流路の定量的な表現と流路変動. 測候時 報,77,特別号, S129-S139.
- 栗原幸雄・桜井敏之・倉賀野連(2006):衛星マイクロ 波放射計,衛星赤外放射計及び現場観測データを 用いた全球日別海面水温解析.測候時報,73,特別 号,S1-S18.
- 前川陽一・中村亨・仲里慧子・小池隆・竹内淳一・永 田豊(2011):潮岬周辺海域の微細海況と串本・浦 神間の水面高度分布,海の研究, 20,167-177.
- Nagata, Y., J. Takeuchi, M. Uchida, Y. Morioka, and T. Koike (1999): Current nature of the Kuroshio in the vicinity of the Kii Peninsula, *J. Oceanogr.*, 55, 407-416.
- Noh, Y. and H. J. Kim (1999) : Simulation of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. *J. Geophys. Res.*, **104**, 15621-15634.
- 野崎太 (2004): 中規模渦による南西諸島の異常潮位. 海と空, **79**, 39-49.

小川浩司・碓氷典久・倉賀野連・藤井陽介・豊田隆寛・

蒲地政文(2014): MOVE/MRI.COM-WNP 再解析 データに見られた黒潮流路変動と瀬戸内海水位変 動との関係,測候時報,81,特別号,S77-S91.

- Onogi, K., J. Tsutsui, H. Koide, M. Sakamoto, S. Kobayashi, H. Hatsushika, T. Matsumoto, N. Yamazaki, H. Kamahori, K. Takahashi, S. Kadokura, K. Wada, K. Kato, R. Oyama, T. Ose, N. Mannoji and R. Taira (2007) : The JRA-25 Reanalysis. *J. Meteor. Soc. Japan*, 85, 369-432.
- 大崎晋太郎・有吉正幸・志賀達・岩尾尊徳 (2009): MOVE/MRI.COM-WNP を用いた日本南方におけ る黒潮流路変動の解析. 測候時報, 76, 特別号, S37-S54.
- Polavarapu, S., S. Ren, A.M. Clayton, D. Sankey, and Y. Rochon (2004): On the Relationship between Incremental Analysis Updating and Incremental Digital Filtering. *Mon. Wea. Rev.*, **132**, 2495-2502.
- Prather, M.J. (1986): Numerical Advection by Conservation of Second-Order Moments. *J. Geophys. Res.*, **91**, 6671-6681.
- 坂本圭・山中吾郎・辻野博之・中野英之・平原幹俊 (2014):水平解像度 2km の瀬戸内海モデル MRI. COM-Seto 及び日本沿岸モデル MRI.COM-JPN の開 発,測候時報, 81, 特別号, S63-S75.

- 末永正次・松本英雄・板橋直樹・三原正裕・梅木康之・ 磯部雅彦(2003):広島湾の異常潮位について.海 岸工学論文集, 50,1316-1320.
- 高木泰士・木津翔平・柴山知也(2008):東京湾にお ける陸棚波に起因した異常潮位の分析とその将来 影響.海岸工学論文集, **55**, 1306-1310.
- Takeuchi, J., J. Honda, Y. Morikawa, T. Koike, and Y. Nagata (1998): Bifurcation Current along the the southeast coast of the Kii Peninsula, *J. Oceanogr.*, 54, 45-52.
- Tsujino, H., T. Motoi, I. Ishikawa, M. Hirabara, H., H.
 Nakano, G. Yamanaka, T. Yasuda, and H. Ishizaki (2010): Reference manual for the Meteorological Research Institute Community Ocean Model (MRI.COM) version 3. Technical reports of the Meteorological Research Institute, 59, Meteorological Research Institute, Japan.
- Usui, N., S. Ishizaki, Y. Fujii, H. Tsujino, T. Yasuda, and M. Kamachi (2006): Meteorological Research Institute multivariate ocean variational estimation (MOVE) system: Some early results. *Adv. Space Res.*, **37**, 806-822.