メソスケール気象予測の現状と展望

令和2年3月 March 2020

気 象 庁 予 報 部

はじめに*

今回の数値予報課報告・別冊では、「メソスケール気象予測の現状と展望」として、メソ モデルやメソアンサンブル予報システム、メソ解析の近年の改良や課題等についてとりあ げる。

メソスケール現象の予測については、局地的大雨等の顕著現象により甚大な災害がたびた び発生する状況の中で、その予測技術の確立と精度向上は長年、大きな期待が持たれてい ると認識している。スーパーコンピュータの性能が現在ほど高くはなかった前世紀の末期、 メソスケール現象を対象とした数値予報の課題や展望について検討が行われ、水平格子間隔 10 km 程度の数値予報モデルが開発され、2001 年 3 月に初代メソモデル (MSM)の本運用 が開始された。その後、レーダーデータなどの観測データ利用技術も大幅に進化し、さらに 2002 年に世界的にも画期的な成果である 4 次元変分法を用いたメソ解析システムや、2004 年には静力学平衡の近似を用いない気象庁非静力学モデル JMA-NHM が実用化された。現 在の防災気象情報の基盤は、実況監視やナウキャスト技術に加え、メソモデルや局地モデル の予測資料となっている。

雲物理過程の高度化など様々な改良が実現された一方、将来のさらなる高度化にあたり 既存のモデルの拡張に制約があることから、次世代の数値予報モデル asuca の開発に着手、 2015 年には局地モデル (LFM)、2017 年には MSM へそれぞれ asuca が導入された。また MSM の不確実性を捉えるためのメソアンサンブル予報システム MEPS の本運用を 2019 年 6月に開始したことは、令和元年度数値予報研修テキストでも解説した通りである。さらに、 4 次元変分法で用いるモデルにも asuca が導入され、JMA-NHM から asuca への移行はほぼ 完了し、いよいよ最終段階を迎えている。本別冊報告ではいわば完結編として、メソスケー ル気象予測のための開発課題を、より専門的な視点で盛り込んでいる。

2018 年 8 月にまとめられた交通政策審議会気象分科会提言において、顕著な災害をもた らす激しい気象現象の予測のため、メソモデル等の更なる精度向上が必要とされている。そ してその提言を受けて同年 10 月に策定した「2030 年に向けた数値予報モデル技術開発重点 計画」でも、豪雨防災・台風防災への対応を目的として、線状降水帯の予測精度向上や台風 に伴う雨や風の分布を精度よく予測すること等を目標としたメソモデルの高度化を主な開発 項目として掲げている。次世代モデルとして開発を続けてきた asuca を今後の基盤技術とし て、顕著現象予測の諸課題を解決していきたいと考えている。

本別冊報告で述べられた現状や課題が広く共有され、重点計画でも触れられている大学等との幅広い連携に今後つながることを切に願っている。

* 室井 ちあし

はじめに

メソスケール気象予測の現状と展望

目 次

	Λ = ποι	
第 1章		1
1.1	メソ・局地数値予報システムの改良	1
1.2	豪雨防災に貢献するための高解像度領域モデルの課題	8
1.3	メソ解析における観測データ利用の現状と展望	14
第2章	メソモデルの現状と課題	19
2.1	力学過程	19
2.2	積雲対流パラメタリゼーション	33
2.3	雲過程······	45
2.4	雲量	56
2.5	放射	61
2.6	境界層	69
2.7	地表面過程	79
第3章	メソアンサンブル予報システム	85
3.1	はじめに	85
3.2	メソアンサンブル予報システム開発の経緯	86
3.3	メソアンサンブル予報システムの仕様	90
3.4	メソアンサンブル予報システムの本運用に向けた開発	96
3.5	今後の展望	108
第4章	メソ解析での各種観測データの利用 1	16
4.1	地上 GNSS データ	116
4.2	航空機観測データ	120
4.3	マイクロ波散乱計海上風	124
4.4	マイクロ波イメージャ・・・・・・	129
4.5	静止気象衛星ひまわり CSR	133
4.6	SSR モード S データの同化実験	142
4.7	観測誤差相関を考慮した変分法によるドップラー速度データ同化の検討	145
付録 A	略語表 1	156
付録 B	数値予報課報告・別冊で用いた表記と統計的検証に用いる代表的な指標 1	159

付録 C 電子計算室報告、同別冊、数值予報課報告·別冊 発行履歴

1.1 メソ・局地数値予報システムの改良¹

1.1.1 はじめに

数値予報課報告・別冊第54号では、本田 (2008a) が 2007年までの気象庁メソ数値予報システム2の歴史に ついてまとめている。ここでは最初に、2007年までの メソ数値予報システムのおもな仕様の変遷を振り返っ ておく。気象庁では、2001年3月にメソ数値予報シス テムの現業運用を始めた (萬納寺 2000)。メソ数値予報 システムの予報モデルであるメソモデル (MSM) では、 現業運用を始めた当初は水平格子間隔が10kmの静力 学モデルを、2004年9月からは水平格子間隔が10km の気象庁非静力学モデル (JMA-NHM; 気象庁予報部 2003) を用いており、2006 年3月には水平格子間隔を 5kmに高解像度化した。MSMに初期値を与えるメソ 解析として、2002年3月から当時の静力学モデルに基 づくメソ4次元変分法(石川・小泉 2002)を用いていた。 メソ数値予報システムのおもな目的は防災気象情報や 航空気象情報の作成の支援と降水短時間予報への入力 であり、目先の顕著現象の予測を重視して、現業運用 を開始した当初は予報時間を18時間としていた。その 後、2007年5月には初期時刻 03, 09, 15, 21 UTC から の予報時間を33時間に、初期時刻00,06,12,18 UTC からの予報時間を15時間とした。メソ数値予報システ ムの予測精度の向上とともに、目先の天気予報におい て低気圧の位置や中心気圧、降水量や風速の量的な見 積もりのために MSM の結果が重視されるようになっ た(例えば、若杉 2019)。

一方、時空間規模が小さく、MSM の分解能では適 切に表現することができない顕著現象の予測精度を向 上させるため、水平格子間隔が2kmのJMA-NHMを 局地モデル (LFM)とする局地数値予報システムの開 発を進めた。2007年6月からの関東周辺の領域を対象 とする局地数値予報システムの予備的な実験運用(氏 家 2009)、2009年8月からの西日本、2011年5月から の東日本を中心とした領域を対象とする実験運用と試 験運用(永戸ほか 2010)を経て、2012年8月に本運用 を開始した(永戸ほか 2012)。

さらに、MSM による予測の不確実性に関する情報を 付加することを目的に、メソアンサンブル予報システ ム (MEPS)の開発を進めた。2015年3月からの MEPS の部内試験運用 (小野 2016)を経て、2019年6月に水 平格子間隔を MSM と同じ5 km でメンバー数を21 と して本運用を開始した。MEPS の仕様と特性について は、第3章や河野ほか (2019)にまとまっている。 本節では、本田 (2008a) に続く 2008 年から本稿執 筆時点(2019 年 12 月)までの間にメソ数値予報シス テムと局地数値予報システムに導入し現業化したおも な改良項目について、概要を報告する。第1.1.2 項では メソ数値予報システム、第1.1.3 項では局地数値予報 システムそれぞれの予報領域の拡張と予報時間の延長 についてまとめ、解析とモデルの改良項目について述 べる。メソ数値予報システムについては、第1.1.2 項 (4)で本運用を開始した 2001 年 3 月から 2019 年 8 月 までの降水予測の検証結果を示す。それぞれのシステ ムにおける観測データの利用については気象庁予報部 (2015)に、メソ解析における観測データの利用につい ては第1.3 節、第4章にまとまっている。また、現在 の MSM の各過程については第2章の各節で述べられ ている。

1.1.2 メソ数値予報システム

(1) 予報領域の拡張と予報時間の延長

予報領域の拡張

MSM のような領域モデルには、予報領域の外側に おける大気の状態を与える側面境界値が必要である。 一般に、側面境界値を与える数値予報モデルと内側の 数値予報モデルでは鉛直層間隔や水平格子間隔、時間 積分の間隔が異なっており、人為的に設けた側面境界 の扱いに工夫が必要になる。MSM では、側面境界付 近に緩和領域を設けるレイリーダンピングと呼ばれる 手法を用いている (河野・荒波 2014)。

2013年3月に、日本付近への緩和領域の影響を軽減 することを目的としてメソ数値予報システムの予報領 域を拡張した(越智・石井 2013)。拡張前の格子数は東 西 721 格子、南北 577 格子で、拡張後の格子数は東西 817 格子、南北 661 格子である。拡張前後の予報領域を 図 1.1.1 に示す。事例検証によると、領域の拡張前は側 面境界の緩和領域であったため観測データが適切に同 化されなかった領域において、拡張後は観測データが 適切に同化されるようになった。このため、観測デー タの情報が反映されて初期場の精度が高くなり、降水 予測の精度が向上した。統計検証によると、領域の拡 張前後で MSM の気温や相対湿度、風速の予測精度に 明確な差は見られなかったものの、拡張後は利用でき る観測データが増加したことによって、とくに夏季の 降水予測の精度が向上した。

予報時間の延長

2013 年 5 月には、MSM の 3 時間ごとの初期時刻の予 報時間をすべて 39 時間に延長した (越智・石井 2013)。 予報時間の延長の目的は、短期予報と航空予報への利 用の要望に対応することであった。

さらに、2019年3月には初期時刻00 UTCと12 UTC の予報時間を51時間に延長した(荒巻・氏家 2018)。

¹ 成田 正巳

²本稿では、メソ解析とメソモデル(メソ予報)を合わせて メソ数値予報システムと呼ぶ。 同様に、局地解析と局地モ デル(局地予報)を合わせて局地数値予報システムと呼ぶ。

図 1.1.1 領域拡張前と現在の MSM の予報領域(越智・石 井 (2013)から引用)

予報時間の延長により、従来からのおもな目的であっ た防災気象情報や航空気象情報の作成の支援と降水短 時間予報への入力に加えて、MSMの予測結果を明日 までの短期予報の作成に利用できるようになった。

(2) メソ解析の改良

非静力学メソ4次元変分法の導入

2009年4月には、メソ解析にJMA-NHMに基づく非 静力学メソ4次元変分法(JNoVA;気象庁予報部2010) を導入した(本田・澤田2009)。前述のとおり、それよ り前のメソ解析では静力学モデルに基づくメソ4次元 変分法(石川・小泉2002)を利用しており、メソ解析に おける時間推進演算子としての予報モデルとメソ予報 における予報モデルが異なっていた。JNoVAの導入に より両者が同様の予報モデルを用いることになり、一貫 性のあるシステムとなった。統計検証の結果、JNoVA を導入したことにより MSM による地上、高層の各気 象要素の予測精度が導入する前と同等以上になり、と くに夏冬ともに降水量の予測精度に明らかな改善が見 られた。

レーダー反射強度の同化

2011年6月には、メソ解析において地上レーダー反 射強度の3次元データの同化を開始した(幾田 2011)。 この手法では、まず MSM の予測値である第一推定値 からレーダー反射強度を算出するレーダーシミュレー タを用いる。続いて、シミュレートされた反射強度と観 測された反射強度に基づいて相対湿度の疑似観測デー タを作成し、品質管理を経て、データ同化で利用する。 解析予報サイクル実験の結果、反射強度の同化により 水蒸気の分布や降水量の予測精度を改善できることを 確認した。 さらに、2013 年 6 月にはメソ解析において反射強度 から相対湿度の疑似観測データを推定するための手法 を改良した (幾田 2014b)。この改良により、降水量の 予測精度を改善することができた。とくに、前線や台 風による強い降水の予測精度を改善したことで、防災 情報の作成の支援における MSM の有用性を向上させ ることができた。

積雪域解析の改良

2014年11月には、冬季の夜間における地上気温の 予測精度の改善を目的として、積雪域の初期値を作成 する手法を高度化した(草開 2015)。変更前のメソ解析 では、全球積雪深解析から得られた積雪域の分布を第 一推定値として、観測値により補正することで積雪域 を解析していた。ここで用いる全球積雪深解析はMSM の水平格子間隔より粗い1度格子ごとの分布であり、 積雪域を広げすぎる傾向があった。

この問題を解決するため、MSM による気温や湿度、 降水量などの予測値とアメダスによる日照時間の観測 値および解析雨量を入力値とする水平格子間隔 5 km のオフライン陸面モデルを導入し、高分解能かつ現実 的な積雪域の第一推定値を作成するようにした。冬季 を対象とする解析予報サイクル実験の結果、積雪域の 初期値を作成する手法の改良により多雪地帯における 積雪域の縁辺付近、南岸低気圧などにより一時的に積 雪が起こる地域、観測点が少ない地域において、とく に夜間における MSM による地上気温の予測精度に改 善が見られた。

背景誤差の改良

2015年12月には、メソ解析に用いる背景誤差を改良 した(藤田ほか 2016)。それより前は、当時のJNoVA とは異なる 2005年時点のメソ数値予報システム、つ まり静力学モデルに基づくメソ4次元変分法(石川・ 小泉 2002)による初期値を用いた水平格子間隔10 km のMSMの予測値から作成した背景誤差を使っていた。 その後、JNoVAによる初期値を用いた水平格子間隔 5 kmのMSMの運用期間が十分に長くなり、統計サ ンプルを更新するために必要なデータが揃ったことか ら背景誤差を見直した。これと合わせて、背景誤差の 共分散の定式化において水平相関の指定を鉛直共分散 の固有モードごとから鉛直層ごとに変えることにより、 共分散の空間構造の歪みを大幅に軽減した。

これらの改良によって、メソ解析では第一推定値の 確度が従来より高いものとして扱われるようになった。 この結果、予報初期における高度や気温、気圧の急激 な変動を緩和できた。また、解析予報サイクル実験の 結果から、第一推定値と観測値との乖離が全般的に小 さくなったこと、MSM による降水量の予測精度が高 くなったことを確認した。

(3) メソモデルの改良

雲氷の数濃度の予報変数化

2008 年 12 月に、冬季の日本海沿岸付近における降 雪の予測精度の改善をおもな目的として、MSM の雲 物理過程において雲氷の数濃度を予報変数に追加した (成田 2009)。それ以前の MSM の雲物理過程では、計 算時間を短縮するため雲水、雲氷、雨、雪、あられの 混合比だけを予報することにして、凝結物の数濃度の 時間変化を計算する素過程を省略していた。また、雲 氷から雪への変換や雲氷が過冷却の雲水を捕捉するラ イミングによるあられへの変換の素過程の一部を省略 していたため、雪とあられの生成に現実よりも時間が かかっていた (成田 2008b)。このため、冬型の気圧配 置となったときの季節風の風下にあたる日本海や東北 地方から中国地方にかけての日本海沿岸付近において、 MSM が予測した降雪量が実況と比べて過少となる事 例が見られた。

そこで、雪とあられの生成の効率を高くするため雲 氷の数濃度を予報変数とした結果、MSM が予測する 降雪の分布と実況の分布との対応が良くなった。また、 この変更により暖候期において予報時間とともに対流 圏上層に雲氷が過剰に蓄積していく問題 (林ほか 2008) が解消された。これ以前の放射過程は雲氷の数濃度を 予報しない場合の過剰な雲氷に適合するように雲氷の 有効半径を診断していたため、雲氷の数濃度の予報変 数化に合わせて雲氷の有効半径を診断する方法を変更 した (長澤 2009)。この結果、それ以前の MSM の予測 に見られた 200 hPa 付近の気温の負バイアスを軽減す ることができた。合わせて、雲の長波放射の計算にお ける鉛直解像度への依存性を緩和するなどの改良を加 えた。

対流スキームの修正

2004 年 9 月に MSM で Kain-Fritsch 対流スキーム (Kain and Fritsch 1990; Kain 2004) を用いるように なった頃から、とくに梅雨期の九州や四国の南西岸に おいて地形に沿った不自然な降水を予測してしまう問 題があった (成田 2008a)。これは、本田 (2008b) で解 決が急務であると指摘されていた問題のひとつである。 この問題を解決するため、2010年11月に、MSMで用 いている対流スキームにおいてサブグリッドスケール の対流雲が周囲の大気と混合する割合を、雲底高度に 応じて大きくする修正を加えた (成田・森安 2010)。こ の修正の結果、地形に沿った不自然な降水を軽減する ことができた。一方、混合の割合を大きくしたことに より対流スキームが大気の成層状態を安定化する効率 が低くなったため、弱い降水を生成する割合が低くな り、雲物理過程により強い降水を生成する割合が高く なることがわかっていた。統計検証の結果から、夏季 における5mm/3h以下の弱い降水の頻度が実況より低 くなった。夏季と冬季における 5 mm/3h~30 mm/3h の降水の頻度が高くなり実況に近づいたが、台風など に伴う 30 mm/3h 以上の強い降水の頻度が実況より高 くなることがわかった。このように課題は残ったもの の、当時は MSM による地形に沿った不自然な降水の 予測の軽減を優先して現業化することになった。

境界層過程の改良

第 2.6 節で述べられるように、2015 年 5 月には境界 層過程において asuca の開発により得られた知見を活 かした改良が加えられた (原ほか 2015b)。MSM では、 境界層過程として Mellor-Yamada-Nakanishi-Niino レ ベル 3 モデル (MYNN3; Nakanishi and Niino 2009) にさまざまな変更を加えて用いていた (原 2008)。変更 のひとつに、逆勾配項(第 2.6.3 項 (2))を求める際の 計算安定性のため、拡散係数が負にならないように制 限を加える処置がある。

その後、鉛直1次元モデルによる評価から鉛直輸送 量が過大となる場合があることがわかり、拡散係数に 対する制限が不要となるように改良が加えられた (原 2012)。一方で、この手法を当時のメソ数値予報シス テムの予報モデルであった JMA-NHM に実装すると 計算量の増加によって計算時間が長くなり、現業数値 予報モデルとしての利用には耐えられないと予想さ れた (原ほか 2015b)。そこで、逆勾配項を考慮しな い Mellor-Yamada-Nakanishi-Niino レベル 2.5 モデル (MYNN25)を試したところ、MYNN3で問題となった 過大な鉛直輸送は見られなくなり、冬季の日本海にお ける寒気移流に伴う雲や低気圧の表現に改善が見られ た。さらに、MYNN25を導入した解析予報サイクル実 験の結果から冬季を中心に予測精度の改善を確認でき たため、2015 年 5 月に MSM の境界層過程を MYNN3 から MYNN25 に変更することにした。

非静力学モデル asuca の導入

2017年2月に、メソ数値予報システムの予報モデル をJMA-NHMから新しい気象庁非静力学モデルasuca (気象庁予報部2014)に置き換えた(原2017)。本田 (2008b)で解決が急務であると指摘されていた計算不安 定の回避は、asucaの力学コアの開発理念(石田・藤田 2014)のひとつである。現業化にあたっては、原(2017) にあるとおり多くの物理過程を改良した。とくに、境界 層過程においてJMA-NHMを予報モデルとするMSM への導入を見送った拡散係数に対する制限が不要とな るように改良を加えた MYNN3を採用した。asucaの 導入による MSM の予測特性の変化については、原・ 倉橋(2017)にまとまっている。また、各過程の改良や その後の開発の成果については、第2章の各節で述べ られている。

(4) 統計検証の結果

図 1.1.2 に MSM による降水予測の検証の結果を示 す。期間は MSM の本運用を開始した 2001 年 3 月から

図 1.1.2 解析雨量に対する MSM による降水予測の 2001 年 3 月から 2019 年 8 月までの検証結果。 検証格子の大きさは 20 km で、予報時間 FT=3 から FT=15 までの 3 時間ごとの平均を求めた。 (左上) 閾値 1 mm/3h のエクイタブルスレットスコ ア (ETS)、(右上) 閾値 10 mm/3h の ETS、(左下) 閾値 1 mm/3h のバイアススコア (BI)、(右下) 閾値 10 mm/3h の BI で、赤線は月平均値、黒線は前 12ヶ月移動平均値、青点は解析雨量の 20 km 検証格子数。

2019 年 8 月までで、検証格子の大きさを 20 km とす るエクイタブルスレットスコア (ETS) とバイアススコ ア (BI) をそれぞれ予報時間 FT=3 から FT=15 まで 3 時間ごとに平均している。それぞれの前 12ヶ月移動平 均したスコアから、つぎの経年変化が見られる。

- 閾値 1 mm/3h の ETS に示される予測精度は、
 2011 年頃まで緩やかに改善し、その後は 2015 年
 頃まで大きな変化が見られず、2015 年以降は改善が見られる。
- 閾値 10 mm/3h の予測精度には短期間の変動が見 られるものの、緩やかな改善が続いている。
- ・ 閾値1mm/3hのBIに示される予測頻度は、2008 年頃までは予測過多だったが、2009年頃から予測 頻度が観測頻度に近づき、2017年頃からわずかに 予測過多となっている。
- ・ 閾値 10 mm/3hの予測頻度は、2007 年頃まで予 測過多でとくに月平均では冬季に顕著だったが、 その後は 2015 年頃まで予測過少となり、さらに 2017 年頃から予測過多となっている。

なお、近年の MSM と LFM による降水量と気温の 予測の検証結果については、安斎 (2018) にまとまって いる。

1.1.3 局地数値予報システム

(1) 予報領域の拡張と予報時間の延長

2012 年 8 月に、東日本を中心とした領域を対象とし て局地数値予報システムの本運用を始めた (永戸ほか 2012)。当時の LFM には水平格子間隔 2 km の JMA-NHM を用いており、9 時間予報を 3 時間ごとの頻度で 実行していた。

2013 年 5 月には、局地数値予報システムの予報領 域を日本全域に拡大するとともに、直近の観測データ を利用して目先の予測精度を改善するため 1 時間ごと の頻度で 9 時間予報を実行するようにした (永戸ほか 2013)。

さらに、2019 年 3 月には予報頻度は 1 時間ごとのま まで LFM の予報時間を 10 時間に延長した (荒巻・氏 家 2018)。

(2) 局地解析の改良

asuca に基づく3次元変分法の導入

本運用を始めたときの局地数値予報システムの解析 システムには、JMA-NHMに基づく3次元変分法(藤 田 2008;藤田・倉橋 2010)を用いていた。その後、2015 年1月にLFMの予報モデルをJMA-NHMから asuca に置き換えるとともに、局地解析を asuca に基づく3 次元変分法 asuca-Var (幾田 2014a) に置き換えた (幾 田 2015)。

メソ解析では4次元変分法を用いているが、局地解 析では計算時間を短くするため3次元変分法を用いて いる。このため、メソ解析では初期値を作成する対象 である解析時刻の3時間前からの観測値を同化するこ とにより大気の時間発展をとらえることができるのに 対して、局地解析では原理的に解析時刻における観測 値しか同化できない。局地数値予報システムの運用で は、3次元変分法による解析と1時間予報を解析時刻 の3時間前から繰り返すことにより観測値を同化して いる。

地中温度と土壌体積含水率の解析変数への追加

2015年1月の局地解析への asuca-Var の導入と合わ せて、地中温度と土壌体積含水率を解析変数に追加し た(幾田 2015)。変更前の局地解析では、地表面温位を 解析変数とすることにより降水量の予測精度の改善が 見られていた(永戸ほか 2012)。変更後は、衛星観測に よる土壌水分量プロダクトなどの利用を可能にするた め、地表面温位に替えて地表面温度を含む地中温度を 解析変数とし、土壌体積含水率を解析変数に追加した。 この変更により解析時刻と予報時間の初期において局 地数値予報システムによる地上気温の精度の改善が見 られ、解析時刻と予報時間を通して地上比湿の精度の 改善が見られた。

過飽和除去処理の改良

4次元変分法により得られた解析値は、数値予報モ デルによる拘束条件に従っている。一方、3次元変分法 により得られた解析値は、力学過程や物理過程に従っ ていない。局地解析では3次元変分法を採用しており、 得られた解析値は力学的にバランスがとれていなかっ たり、現実的ではない分布になったりすることがある。 ここでは、幾田 (2015)が挙げた問題を考える。例え ば、過剰な水蒸気量の解析インクリメントが第一推定 値に加算されると、その格子では周辺と比べて過飽和 度が異常に大きくなることがある。この状態を初期値 として予報モデルを実行すると、過飽和となった水蒸 気が1回の時間積分で凝結する。この相変化に伴って 過剰な潜熱が放出されると局所的に大気の成層状態が 不安定になり、過大な上昇流が発生することにより計 算不安定の原因となる。

本運用を始めたときの局地解析では、解析値が過飽 和となったときはその分の水蒸気を除去することによ り対処していた。この対処では、過飽和となった雲域 で不必要に水蒸気が除去されてしまうなど、解析と予 報のサイクルにおいて不連続が生じてしまう。そこで、 この問題に対処するため、幾田 (2015) は 2015 年 8 月 に局地解析に偽相対湿度インクリメント調整を導入し た。この方法では、第一推定値に反映する前に解析イ ンクリメントを調整し、過飽和の扱いを変更した。偽 相対湿度インクリメント調整の導入により、夏はLFM による閾値10 mm/h以下の降水の予測精度が有意に 改善すること、すべての閾値で降水の予測頻度が高く なることがわかった。また、冬は閾値3 mm/h以下の 降水の予測精度が有意に改善すること、閾値5 mm/h 以下の降水の予測頻度が高くなることがわかった。い ずれも、予報開始の直後におけるスピンアップの悪影 響を軽減できたことに起因する。

晴天域の衛星輝度温度と衛星土壌水分の同化

2017年1月に、局地解析で晴天域の衛星輝度温度と 衛星土壌水分の同化を開始した(幾田 2017)。これらの 観測値を同化するにあたって適切にバイアスを補正す るため、変分法バイアス補正(佐藤 2007)を導入した。 データ同化に用いる観測の設定や測器の劣化、数値予 報モデルの変更などに起因するバイアスを補正するた めに、変分法バイアス補正は有効な手法である。

晴天域の衛星輝度温度の同化によりLFMの予測に おける湿潤バイアスを軽減し、相対湿度の鉛直分布の 予測精度が改善した。降水の予測精度の改善は、夏は 有意ではなかったものの、冬は有意であった。

前述のとおり、局地解析では地中温度と土壌体積含 水率を解析変数として持っている。したがってこれら の要素を変換することなく直接同化することができる が、地中の直接観測は広くは行われていない。一方、 衛星観測では土壌水分に関するプロダクトがあり、広 範囲のデータを定常的に利用できる。衛星土壌水分を 同化して観測インパクト実験を行ったところ、LFM が 予測する地上気温に見られた日中の負バイアスを軽減 し、予測精度を高めることができた。

(3) 局地モデルの改良

前述のとおり、本運用を始めた当初の LFM には水 平格子間隔 2 km の JMA-NHM を用いていた。LFM の運用とともに局地モデルとして asuca の開発を進め (河野ほか 2014; 河野・原 2014)、2015 年 1 月には 局地解析への asuca-Var の導入と同時に予報モデルを JMA-NHM から asuca に置き換えた (原 2015)。これ より前の LFM に見られた積雲対流の発生や終息の遅 れと予報時間の初期における過少な降水の問題 (永戸 ほか 2013) が、asuca を導入した LFM では改善され た (原ほか 2015a)。

1.1.4 おわりに

本田 (2008b) に述べられている 2007 年末時点におけ るメソ数値予報の将来計画に挙げられた LFM と MEPS の導入はいずれも達成された。とくに、本田 (2008b) では MEPS の仕様として、MSM より低分解能な水平 格子間隔が 10 km の数値予報モデルを用いてメンバー 数を5以上とする計画が示されていた。実際には、前述 のとおり MEPS の水平格子間隔は MSM と同じ5 km で、メンバー数は 21 となったことにより、MEPS の 各メンバーの予測から算出した統計量により決定論的 な MSM の予測の不確実性を把握する手段を得ること ができるようになった。

本田 (2018) が挙げている 2018 年時点における改良 計画のうち、初期時刻 00 UTC と 12 UTC の MSM の 予報時間の 51 時間への延長と LFM の予報時間の 10 時間への延長を 2019 年 3 月に実現し、MEPS の本運 用を 2019 年 6 月に実現した。本稿執筆時点(2019 年 12 月)では、asuca に基づく 4 次元変分法 asuca-Var (幾田 2014a) をメソ数値予報システムに導入する準備 を進めている。

参考文献

- 安斎太朗, 2018: メソモデル、局地モデルの検証. 平成 30 年度数値予報研修テキスト, 気象庁予報部, 43-47.
- 荒巻健智,氏家将志,2018:メソ・局地モデルの予報時 間延長.平成 30 年度数値予報研修テキスト,気象庁 予報部,7-8.
- 永戸久喜,藤田匡,原旅人,2012:局地モデルの本運用. 平成24年度数値予報研修テキスト,気象庁予報部, 72-86.
- 永戸久喜, 原旅人, 倉橋永, 2013: 日本域拡張・高頻度 化された局地モデルの特性. 平成 25 年度数値予報研 修テキスト, 気象庁予報部, 18–41.
- 永戸久喜,石田純一,藤田匡,石水尊久,平原洋一,幾田 泰酵,福田純也,石川宜広,吉本浩一,佐藤芳昭,2010: 局地モデルの試験運用.平成22年度数値予報研修テ キスト,気象庁予報部,1-27.
- 藤田匡, 2008: 高分解能局地モデル用局地解析. 数値予 報課報告・別冊第54号, 気象庁予報部, 214-222.
- 藤田匡,福田純也,塚本暢,2016:メソ数値予報システムの背景誤差の改良.平成28年度数値予報研修テキスト,気象庁予報部,63-67.
- 藤田匡, 倉橋永, 2010: 局地解析. 数値予報課報告・別 冊第56号, 気象庁予報部, 68-72.
- 原旅人, 2008: 改良 Mellor-Yamada モデル. 数値予報 課報告・別冊第54号, 気象庁予報部, 128–132.
- 原旅人, 2012: 鉛直1次元モデルによる評価 (1)—雲の ない陸上の境界層の日変化 (GABLS2). 数値予報課 報告・別冊第58号, 気象庁予報部, 138–149.
- 原旅人, 2015: はじめに. 平成 27 年度数値予報研修テ キスト, 気象庁予報部, 1.
- 原旅人, 伊藤享洋, 松林健吾, 2015a: asuca が導入され た局地数値予報システムの特性. 平成 27 年度数値予 報研修テキスト, 気象庁予報部, 9–18.
- 原旅人,飯塚義浩,白山洋平,工藤淳,2015b:境界層過 程・地上物理量診断の改良.平成27年度数値予報研 修テキスト,気象庁予報部,24-43.
- 原旅人,2017:メソ数値予報システムの改良の概要.平成 29年度数値予報研修テキスト,気象庁予報部,42-47.

- 原旅人, 倉橋永, 2017: メソ数値予報システムの特性の 変化. 平成 29 年度数値予報研修テキスト, 気象庁予 報部, 48–55.
- 林修吾, 荒波恒平, 山田芳則, 2008: 雲氷落下の導入と 改良. 数値予報課報告・別冊第54号, 気象庁予報部, 98-99.
- 本田有機,2008a: メソ数値予報モデルと気象庁非静力 学モデルの歴史.数値予報課報告・別冊第54号,気 象庁予報部,1-6.
- 本田有機, 2008b: メソ数値予報の将来計画. 数値予報 課報告・別冊第54号, 気象庁予報部, 12–17.
- 本田有機,澤田謙,2009: 非静力学メソ4次元変分法の 現業化.平成21年度数値予報研修テキスト,気象庁 予報部,65-71.
- 本田有機, 2018: NAPS10 における改良計画. 平成 30 年度数値予報研修テキスト, 気象庁予報部, 2-5.
- 幾田泰酵,2011: メソ解析におけるレーダー反射強度 データの同化.平成23年度数値予報研修テキスト, 気象庁予報部,9-12.
- 幾田泰醇, 2014a: asuca 変分法データ同化システム. 数 値予報課報告・別冊第 60 号, 気象庁予報部, 91–97.
- 幾田泰酵, 2014b: レーダー反射強度の同化手法の改良. 平成 26 年度数値予報研修テキスト, 気象庁予報部, 100–101.
- 幾田泰酵, 2015: 局地解析の更新と改良. 平成 27 年度 数値予報研修テキスト, 気象庁予報部, 2-8.
- 幾田泰酵,2017:局地数値予報システムにおける新規観 測データの利用開始及び同化手法の高度化.平成29 年度数値予報研修テキスト,気象庁予報部,82-85.
- 石田純一,藤田匡, 2014: asuca の開発理念. 数値予報 課報告・別冊第 60 号, 気象庁予報部, 19–28.
- 石川宜広,小泉耕,2002:メソ4次元変分法.数値予報 課報告・別冊第48号,気象庁予報部,37-59.
- Kain, J. S., 2004: The Kain-Fritsch Convective Parameterization: An Update. J. Appl. Meteor., 43, 170–181.
- Kain, J. S. and J. M. Fritsch, 1990: A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization. J. Atmos. Sci., 47, 2784–2802.
- 河野耕平, 荒波恒平, 2014: 側面・上部境界条件. 数値 予報課報告・別冊第 60 号, 気象庁予報部, 57-61.
- 河野耕平, 原旅人, 2014: LFM としての asuca の特性. 平成 26 年度数値予報研修テキスト, 気象庁予報部, 108–117.
- 河野耕平,松林健吾,倉橋永,2014: 局地モデルとして の現状.数値予報課報告・別冊第60号,気象庁予報 部,113-120.
- 河野耕平,氏家将志,國井勝,西本秀祐,2019:メソアン

サンブル予報システム. 令和元年度数値予報研修テ キスト,気象庁予報部, 1–15.

- 気象庁予報部, 2003: 気象庁非静力学モデル. 数値予報 課報告・別冊第 49 号, 気象庁予報部, 194 pp.
- 気象庁予報部, 2010: 非静力学メソ4次元変分法. 数値 予報課報告・別冊第56号, 気象庁予報部, 106 pp.
- 気象庁予報部, 2014: 次世代非静力学モデル asuca. 数 値予報課報告・別冊第60号, 気象庁予報部, 151 pp.
- 気象庁予報部, 2015: 観測データ利用の現状と課題. 数 値予報課報告・別冊第61号, 気象庁予報部, 98 pp.
- 草開浩, 2015: 積雪域解析の高度化. 平成 27 年度数値 予報研修テキスト, 気象庁予報部, 44-49.
- 萬納寺信崇, 2000: 領域モデル (RSM, MSM, TYM). 平成 12 年度数値予報研修テキスト, 気象庁予報部, 23-27.
- 長澤亮二,2009: メソ数値予報モデルの放射過程の改 良. 平成 21 年度数値予報研修テキスト,気象庁予報 部,77-78.
- Nakanishi, M. and H. Niino, 2009: Development of an Improved Turbulence Closure Model for the Atmospheric Boundary Layer. J. Meteor. Soc. Japan, 87, 895–912.
- 成田正巳, 2008a: Kain-Fritsch スキームの改良とパラ メータの調整. 数値予報課報告・別冊第54号, 気象 庁予報部, 103–111.
- 成田正巳,2008b: 降水予報特性の問題点と改善,気象庁 予報部. 平成 20 年度数値予報研修テキスト,43-47.
- 成田正巳,2009: メソ数値予報モデルの湿潤過程の改 良. 平成 21 年度数値予報研修テキスト,気象庁予報 部,72-76.
- 成田正巳, 森安聡嗣, 2010: メソモデルの対流スキーム の変更. 平成 22 年度数値予報研修テキスト, 気象庁 予報部, 53-61.
- 越智健太,石井憲介,2013:領域拡張・予報時間 39時 間化されたメソモデルの特性.平成 25 年度数値予報 研修テキスト,気象庁予報部,1-17.
- 小野耕介, 2016: メソアンサンブル予報システムの開発 状況. 数値予報課報告・別冊第 62 号, 気象庁予報部, 100–113.
- 佐藤芳昭, 2007: 変分法バイアス補正. 数値予報課報告・ 別冊第 53 号, 気象庁予報部, 171–175.
- 氏家将志,2009: 高分解能局地モデルの開発と実験運用. 平成 21 年度数値予報研修テキスト,気象庁予報部,90-96.
- 若杉栄一, 2019: 天気予報発表作業. 平成 30 年度予報 技術研修テキスト, 気象庁予報部, 4-16.

1.2 豪雨防災に貢献するための高解像度領域モデ ルの課題¹

1.2.1 はじめに

本節では、線状降水帯²等の豪雨予測における、水平 格子間隔5kmのメソモデル (MSM)、2kmの局地モ デル (LFM)といった高解像度領域モデルの現在の課 題や今後必要な技術の展望について、現業モデルの結 果や国内外の研究開発動向を踏まえつつ述べる。豪雨 防災への貢献は気象庁の数値予報技術開発において重 点的に取り組むべき事項のひとつであり、交通政策審 議会気象分科会における提言、及び提言を受けて気象 庁が策定した「2030年に向けた数値予報技術開発重点 計画」において重点目標として示されている。

近年の豪雨等の自然災害の激甚化に見られるような 自然環境の変化、少子高齢化等の社会環境の変化を踏 まえ取りまとめられた、平成30年8月の交通政策審議 会気象分科会提言「2030年の科学技術を見据えた気象 業務のあり方(提言)」(以下、分科会提言)では、観 測・予測精度向上に向けた技術開発の目標のひとつと して、半日前からの早め早めの防災対応に直結する予 測精度の向上が挙げられた。また、分科会提言の中で は、線状降水帯の発生・停滞等に伴う集中豪雨に対し て夜間の大雨にも明るいうちから対応できるよう、半 日程度先までに特別警報級の大雨となる確率メッシュ 情報の提供、それを実現するための数値予報技術の向 上が言及された。

分科会提言を受け、気象庁は「2030 年に向けた数値 予報技術開発重点計画」(以下、重点計画)を策定し、 数値予報技術開発における4つの重点目標を示した。 その中のひとつである「豪雨防災」では、明るいうち からの避難を可能にするための線状降水帯等による集 中豪雨の予測精度向上が必要であるとした。重点計画 では、開発の方向性として局地モデルの高解像度化、 局地アンサンブル予報システムの開発、観測データ利 活用の高度化、データ同化手法の高度化などを定めて いる。今後、重点計画の中で定めた方向性に沿って技 術開発やその計画をより具体化し、推進していく必要 がある。

1.2.2 MSM, LFM による線状降水帯予測の課題

気象庁は、防災気象情報作成を支援するため、 MSM, LFMを運用している。また、MSMの予測の不 確実性を捉えるためのメソアンサンブル予報システム (MEPS)の運用を2019年6月に開始した。MSM, LFM の予測精度は年々着実に向上しているが、線状降水帯 の空間スケールはこれらのモデルが陽に表現すること ができる最小の現象の空間スケールに近く、その予測 は難しい。線状降水帯の予測には、環境場や対流の表 現、初期値、位置や持続時間の不確実性等、多くの要素 が関わっており、それぞれについて多くの課題がある。

線状降水帯に関わる対流や降水システムの表現につ いて、MSM, LFM はそれぞれに性質の異なる課題が ある。図 1.2.1 に示す、平成 29 年 7 月九州北部豪雨で の予測例はその課題を端的に示したものとなっている。 実況(図1.2.1(a))では、2017年7月5日の午後には 九州北部脊振山地東部で発生した積乱雲が上空の風に よって東に流される状況が継続し、同じ場所に強い降 水をもたらしていた。MSM (図 1.2.1(b)) は九州北部 に降水を予測しているものの、その形状は線状になっ ておらず、対流セルの風下への移動が表現されていな い。また、量的にも実況に比べて過少である。その他、 MSM は長崎半島で実況にはない降水を予測している 一方で、五島列島の南の弱い降水を予測していない。 MSM の予測の不確実性を表現する MEPS(当時は部 内試験運用)の予測についても、MSM の降水予測同様 東西に伸びる降水を表現できず、また降水予測の位置 ずれも大きく、現象の捕捉が難しい事例であった(図 略)。また、MSM の降水予測は積雲対流パラメタリ ゼーション(第2.2節)の設定にも敏感である。その最 も極端な例として、図 1.2.1(c) に MSM で積雲対流パ ラメタリゼーションを用いない場合の降水予測を示す。 東西に伸びる線状の降水域が予測されるようになるも のの、線状の降水のサイズは太く、50 mm/3h 以上の 降水の領域も過大である。LFM の予測(図 1.2.1(d)) では線状の降水域がある程度表現されるものの、降水 量が観測に対して過大な複数の線状の降水域を予測し ている他、発生位置にずれが生じている。また、降水 域が同じ位置に持続せず下流に流れてしまう(図略)。 これらの傾向は平成29年7月九州北部豪雨に限らず、 平成30年7月豪雨期間中に各地で発生した線状降水帯 の予測においても同様であった(図略)。

このように、空間スケールが数 10 km 程度の線状降 水帯の予測は難しく、MSM, LFM においてその予測 精度は十分とは言えない。また、線状降水帯をもたら す環境場についても、不安定な成層や地上気温傾度帯 といった、平成 29 年 7 月九州北部豪雨の発生要因と言 われている要素の表現が数値予報では不十分であった (欠畑・白山 2018)。

1.2.3 必要な技術開発

対流の表現の向上

線状降水帯の予測精度向上に必要な技術のひとつと して、線状降水帯をもたらす直接的な現象である、対流 やメソ対流系の表現の向上が挙げられる。対流について

¹ 氏家 将志

²線状降水帯の定義については、本稿執筆時点(2019年12月)では学術的に厳密な定義はない(津口 2016)が、本節で は厳密な定義にはこだわらずに、日本の集中豪雨の多く(津 ロ・加藤 2014)を占める、「積乱雲、積乱雲群、線状の降水 域の階層的な構造を持つ」、「降水の走向が高度 2-3 km の 水平風向に平行なタイプ(いわゆるバックビルディング型)」 といった特徴を持つメソβスケールの停滞する線状の降水域 のことを線状降水帯と呼ぶこととする。

は、高解像度化により表現の向上が期待される (Vosper 2015)。日本におけるメソβスケールの集中豪雨を予 測するには少なくとも1 km 以下の水平格子間隔が必 要であることがいくつかの先行研究から示されている (加藤ほか 2016; 津口ほか 2016; Oizumi et al. 2018 な ど)。LFM ではまだ解像度が不足していると考えられ、 重点計画で定めた方向性のひとつとしても、LFM の高 解像度化が含まれている。一方、平成 29 年 7 月九州北 部豪雨の事例では、LFM の水平格子間隔を2km から 1 km にするのみでは、降水予測に大きな変化は見ら れなかった(図1.2.1(e))。さらなる高解像度化による 効果について計算機資源の制限から詳細には調査でき てはいないものの、水平格子間隔を1km にした LFM の結果は、線状降水帯の予測精度向上には単純な高解 像度化に加え、対流に関わる過程のモデリングの高度 化が必要となることを示唆している。特にモデルで解 像できない対流のパラメタリゼーション (または対流 の中のプロセスのパラメタリゼーション)の精度向上、 モデルが解像する対流の表現向上の2種類の方向の開 発を同時に進めていくことが必要となると考えられる。

前者について、詳細は第2.2.5項で議論するので、 ここでは概要を述べるのみにとどめる。対流は空間的 なスケールが小さいことを考えると、水平格子間隔が 数 km 程度のモデルでは十分には解像できない。その ため、対流のパラメタリゼーションを用いる必要があ り、MSM, LFM では Kain and Fritsch (1990) に基づ く積雲対流パラメタリゼーションを採用している。水 平格子間隔数 km 以下のモデルでは、既存の積雲対流 パラメタリゼーションでおいている仮定のいくつか³が 成り立たなくなっている他、パラメタリゼーションが 対象とする対流が、モデルが解像する対流と重複して いる。モデルが解像する対流を維持しつつ、モデルが 解像できないプロセスを表現するような、これまでと 異なる考え方の積雲対流パラメタリゼーションが必要 である。また、LFM より低解像度の MSM では、今後 も積雲対流パラメタリゼーションの必要性が高いと考 えられる。現在の MSM は、積雲対流パラメタリゼー ションによって不安定な成層が必要以上に安定化され ている可能性がある他、対流セルの移動をパラメタリ ゼーションで表現できないという問題点がある。豪雨 防災の観点から、MSM における積雲対流パラメタリ ゼーションのあり方についても再度見直しをする必要 がある。

モデルが解像する対流の表現については、対流は、 不安定な成層状態のもとで、(1)下層の収束や地形等 の強制によって持ち上がった気塊が、(2)持ち上げ凝 結高度で凝結し、(3)自由対流高度まで到達すれば浮 力を得て強制がなくても上昇するようになり、(4)水 の相変化(凝結・凍結等)に伴う潜熱により気塊の気 温が周囲のそれよりも高くなることで浮力を取得する ことと、周囲の大気の取り込みにより浮力が減少する ことの兼ね合いによって、(5)気塊が上昇するととも に次第に浮力を失い、やがて停止する、といったプロ セスを有する。また、気塊が持ち上がる過程で、雲や 降水が生成され、対流の衰退期には降水による大気の 引きずり下ろしや降水の蒸発等により下降流が卓越す る。したがって、対流を数値予報モデルで表現するに は、水の相変化に伴う非断熱過程、特に雲に関わる物 理過程の考慮と、浮力による上昇流の変化の考慮が必 要になる。

雲に関連する過程について、モデルで表現されるメ ソ対流系の振る舞いは雲微物理過程のパラメタリゼー ションに敏感であることが知られている(Bryan and Morrison 2012; Weverberg et al. 2013 など)。雲微物 理過程のパラメタリゼーションでは、相変化に直接関 わる過程に加え、水物質の落下過程や粒径分布、数濃 度なども雲水や雲氷の分布の変化を通して相変化に関 わる過程に影響し、間接的に浮力の生成に影響する。 このため、豪雨予測の観点からの雲微物理過程の高度 化が必要となる。特に、雲微物理過程については、衛 星シミュレータ等を用いた観測データとの比較検証の 高度化(Eito and Aonashi 2009; 幾田 2019 など)と あわせて開発を進めていくことも重要である。

浮力による上昇流の変化を直接表現するには、鉛直 流を予報変数に持つ非静力学モデルが最低限必要であ る。MSM, LFM においては、予報モデルとして非静 力学モデル asuca を用いることでこの点はすでに担保 されている。今後、対流に伴う格子スケールの熱・水・ 運動量輸送をさらに精緻に表現するには、移流スキー ムの高度化等といった継続的な改良を進める必要があ る他、物理過程と力学過程との相互作用(第 2.1.7 項) の高度化による対流の表現の向上にも取り組む必要が ある。

環境場の系統誤差の減少

対流は成層不安定な環境場のもとで、下層の収束等 をトリガーに発生する。また、メソ対流系の形状は環 境場の風速ベクトルやその鉛直シアーにも関係する (瀬 古 2010)。このため、成層や循環等の環境場の予測も、 線状降水帯の予測において重要である。日本に線状降 水帯をもたらす環境場については、下層水蒸気の流入 (Unuma and Takemi 2016b; 気象研究所 2017 など) や風の鉛直シアー(Yoshizaki et al. 2000; 瀬古 2010; Unuma and Takemi 2016a など)、上空の寒気(気象研 究所 2017)等、多くの先行研究でその特徴が示されてい る。また、線状降水帯に限った話ではないが、対流の発 達高度には対流圏の中層の湿りが大きく影響している と言われている(Derbyshire et al. 2004; Kikuchi and Takayabu 2004; Unuma and Takemi 2016b など)。こ れらのことから、線状降水帯をもたらす環境場として

³ 格子内の対流域は定常かつ、面積が格子全体の面積に対し て十分小さいことなど。詳細は第 2.2 節。

の成層状態(気温、水蒸気の鉛直分布)の表現が特に 重要となる。また、MSM は LFM に側面境界を提供す ることから、LFM の予測精度向上にとっても MSM の 環境場の精度向上が重要となる。

環境場の予測精度向上のためには、モデルの持つ系 統誤差の問題を解決しなければならない。MSM の予測 には、下層の水蒸気(例えば潜熱フラックスの正バイ アス、図 1.2.2(a)) や循環場(7月の太平洋高気圧の西 への張り出しが強い、図 1.2.2(b))に系統誤差があり、 これらの誤差の縮小には物理過程の総合的な改良が必 要である。特に、予測誤差はモデルの諸過程が複雑に 絡み合った結果生じているという認識に基づき、各過 程間の相互作用や整合性を考慮して、モデルの系統誤 差を減少させることが重要である。例えば、雲の生成 や雲量は、大気中の気温や放射フラックスを通じて成 層状態を変化させるため、豪雨をもたらす環境場の表 現にとって重要であるが、モデルにおける雲過程と放 射過程の間で雲の生成や雲量の扱いの整合性がないと 想定外の系統誤差をもたらすことがある。この例につ いては第2.4節でも議論する。また、現在の気象庁の 現業データ同化システムで採用されている手法は、モ デルに系統誤差が無いことを前提とした理論に基づい ている。そのため、モデルの系統誤差減少はデータ同 化の手法高度化や観測データ利用拡充の観点でも重要 である (Geer et al. 2018)。

さらに、モデルの系統誤差の減少のためには、評価・ 検証の高度化も必要である。物理過程の変更による環 境場の系統誤差へのインパクトを適切に把握すること、 さらに意図しないインパクトを見落とさないことを目 的とした標準的な検証ツールの整備が重要となる。特 に、線状降水帯をもたらす環境場の系統誤差減少の観 点では、海上を含む予報場の面的な検証、3次元的な 検証や、衛星リモートセンシング等を含む各種観測と の比較に基づく評価・検証を充実させていくことが重 要である。

観測データ利用高度化

線状降水帯等による豪雨の予測のための初期値の精 度向上に資するような観測データとしては、降水その ものを捉えるレーダーデータ(反射強度、ドップラー 速度)、水蒸気量を捉える地上 GNSS データ、地上比 湿データ、水蒸気・雲・降水の情報を持つマイクロ波 放射計(輝度温度)、静止気象衛星ひまわり8号による 高密度・高頻度データ(大気追跡風、輝度温度)があ る。特に、ひまわり8号データの高度利用が豪雨予測 の精度向上に資することが平成27年9月関東・東北豪 雨を対象とした先行研究で示されている。Kunii et al. (2016)はひまわり8号高頻度大気追跡風(2.5分毎の 観測から算出)の同化によって、初期値が改善し豪雨 の予測精度が向上することを示した。また、Kazumori (2018)は、ひまわり8号の水蒸気バンドの晴天輝度温 度の同化による水蒸気場の改善を通じて降水予測が改 善することを示した⁴。Honda et al. (2018) は、ひまわ り8号の赤外バンドの全天候・高頻度同化(10分間隔) により、降水予測を改善させる他、高頻度で解析・予 測を行うことで洪水リスクをより長いリードタイムで 捉えられることを報告した。これらの先行研究は、高 密度・高頻度観測データの利用が豪雨予測にとって重 要な鍵となることを示している。

データ同化システムの高度化

高密度・高頻度観測データを有効利用するためには、 データ同化システム側の対応も必要となる。例えば、現 在の気象庁のメソ解析及び局地解析では計算の効率化 のため、観測誤差相関が無視できるものと仮定し、観 測誤差共分散行列の非対角成分を考慮していない。そ のため、この仮定が適切なものになるよう、利用する 観測データを空間的に間引いている。さらに、同化に よる過度な修正を緩和するため、観測誤差の大きさを 膨張させた上で同化を行っている。今後、高密度観測 データを有効利用するためにはこれらの仮定や調整を 廃して、観測データの持つ情報を可能な限り活用でき るシステムの検討が必要である。また、変動の激しい 対流周辺では、背景誤差やその相関構造も大きく変動 する。ハイブリッド同化等の流れに依存する背景誤差 を考慮したデータ同化システムも、気象場の状況に即 した観測データ利用の高度化に必要である。これらに ついては、第4.7節で気象研究所での取り組みを報告 する。

雲微物理関連の変数を解析の対象とすることも重要 な開発課題である。現在のメソ解析は4次元変分法、 局地解析は3次元変分法を用いているが、雲水等の雲 微物理関連の変数は解析変数に含まれていない。しか し、豪雨予測のための初期値の精度向上のためには、 これらの解析変数化が必要となる。また、雲微物理関 連の変数を適切に解析するために、雲微物理過程の接 線形・随伴モデルや、アンサンブルによる雲微物理関 連の変数を含む背景誤差の導入をあわせて検討する必 要がある。特に、レーダー反射強度の同化の高度化を 通じた豪雨予測の精度向上のためには、データ同化に おける雲微物理関連の変数の扱いが重要な技術となる (Ikuta 2016; Kawabata et al. 2018 など)。

アンサンブル摂動のあり方

MEPS では主に総観規模、メソ α スケール、メソ β スケールの現象の予測における MSM の不確実性を捕 捉するため、初期摂動作成手法として全球 SV (水平 格子間隔約 270 km) と 2 種類のメソ SV (水平格子間 隔 80 km, 40 km)を用いている (小野 2016; 河野ほか 2019; 第 3.3.1 項)。一方、空間スケールが数十 km 程 度である線状降水帯自体の予測の不確実性は、現在の MEPS の摂動の空間スケールでは十分に捉えられない。

⁴ この改良は平成 31 年 3 月 22 日にメソ解析に導入された。

図 1.2.1 2017 年 7 月 5 日 15 JST を対象とした前 3 時間雨量 [mm/3h]。(a) 解析雨量、(b) MSM、(c) MSM、ただし積雲対 流パラメタリゼーションなし、(d) LFM、(e) LFM の水平格子間隔を 1 km に変更。

図 1.2.2 2018 年 7 月平均における (a) MSM による潜熱フラックス [W m⁻²] の全予報時間の OAFlux プロダクト (Yu et al. 2008) に対する誤差。(b) 海面更正気圧 [hPa] (黒) FT=48 の MSM、(緑) メソ解析、(カラー) FT=48 の MSM のメソ解 析に対する誤差。

メソβスケールの中でも空間スケールの小さい現象の 不確実性を捉えるアンサンブル摂動の検討が必要とな る。メソスケール現象の不確実性を捉えるアンサンブ ル予報システム (EPS: Ensemble Prediction System) の摂動については、アメリカの事例等における先行研 究が報告されている (Nielsen and Schumacher 2016; Weyn and Durran 2018 など)。これらの研究では、前 線や地形等の強制力が弱い場におけるメソスケール現 象の誤差成長や、メソ対流系の組織化における小スケー ルの初期摂動(及び大規模スケール現象との相互作用) の重要性が示されている。また、雲解像モデルによる EPS の初期摂動としてのアンサンブルデータ同化や、 低解像度 EPS からのダウンスケーリング、あるいは両 者の併用の有用性を示す研究成果が出始めている。よ り詳しいレビューは第 3.5.3 項を参照されたい。 一方で、線状降水帯等の日本で発生するメソβスケー ルの現象にターゲットを絞ったアンサンブル予報シス テムに関する研究は少ない。このため、(1)線状降水 帯をもたらすシステムの発生位置の不確実性を捉える にはどのような空間スケールの摂動が必要か、(2)そ の摂動は、初期摂動・境界摂動・モデル摂動のいずれ に由来するべきか等、未解明の部分が多い。今後基礎 研究を含む知見の蓄積が必要な分野でもある。

1.2.4 まとめ

高解像度領域数値予報モデルによる線状降水帯等の 豪雨の予測精度向上に関しては、対流の表現、環境場 の系統誤差、観測データ利用、データ同化システム、 アンサンブル摂動いずれの分野においても課題があり、 その一方で、予測精度向上に有望な技術が近年の先行 研究から示されつつある。しかしながら、「この手法を 導入すれば線状降水帯の予測精度が劇的に向上する」 ということが確約されているわけではない。先行研究 で示された手法の有用性は実験と検証によって実証す る必要がある。そのために知見の取り込み・開発・評 価のサイクルを効率的に行える仕組みや計算機資源を 含む開発環境を構築することが必要である。また、高 解像度モデルにおける対流の扱いや、線状降水帯の予 測の不確実性を捉えるアンサンブル摂動のあり方等の 必要とされる技術は研究開発の分野としても最先端の ものであり、国内の大学等研究機関と連携して研究開 発を推進することが重要となる。一方、環境場の系統 誤差軽減等、必要とされる技術は決して線状降水帯の 予測に特化したものだけでなく、数値予報システムの 総合的な性能向上に関わるものも多い。

最新の研究開発の成果を迅速に試すことができる開 発環境を整え、総合性能を上げるための地道な開発を 続けつつ、豪雨防災に貢献する高解像度領域数値予報 システムの開発を推進していくことが今後さらに重要 となる。

参考文献

- Bryan, G. H. and H. Morrison, 2012: Sensitivity of a Simulated Squall Line to Horizontal Resolution and Parameterization of Microphysics. *Mon. Wea. Rev.*, 140, 202–225.
- Derbyshire, S. H., I. Beau, P. Bechtold, J.-Y. Grandpeix, J.-M. Piriou, J.-L. Redelsperger, and P. M. M. Soares, 2004: Sensitivity of moist convection to environmental humidity. *Quart. J. Roy. Meteor. Soc.*, 130, 3055–3079.
- Eito, H. and K. Aonashi, 2009: Verification of Hydrometeor Properties Simulated by a Cloud-Resolving Model Using a Passive Microwave Satellite and Ground-Based Radar Observations for a Rainfall System Associated with the Baiu Front. J. Meteor. Soc. Japan, 87A, 425–446.
- Geer, A. J., K. Lonitz, P. Weston, M. Kazumori, K. Okamoto, Y. Zhu, E. H. Liu, A. Collard, W. Bell, S. Migliorini, P. Chambon, N. Fourrié, Min-Jeong Kim, C. Köpken-Watts, and C. Schraff, 2018: All-sky satellite data assimilation at operational weather forecasting centres. *Quart. J. Roy. Meteor. Soc.*, 144, 1191–1217.
- Honda, T., S. Kotsuki, G.-Y. Lien, Y. Maejima, K. Okamoto, and T. Miyoshi, 2018: Assimilation of Himawari-8 All-Sky Radiances Every 10 Minutes: Impact on Precipitation and Flood Risk Prediction. Journal of Geophysical Research: Atmospheres, 123, 965–976.
- 幾田泰酵, 2019: 雲物理過程の改良と GPM 衛星観測の

再現. ワークショップ降雪に関するレーダーと数値モ デルによる研究(第 18 回) 講演要旨集.

- Ikuta, Y., 2016: Data Assimilation with Adjoint Model including Three-Ice Bulk Cloud Microphysics. Abstracts of the 5th Annual International Symposium on Data Assimilation.
- Kain, J. S. and J. M. Fritsch, 1990: A onedimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784–2802.
- 欠畑賢之,白山洋平,2018:事例調査:平成29年7月九 州北部豪雨.平成30年度数値予報研修テキスト,気 象庁予報部,48-53.
- 加藤亮平, 下瀬健一, 清水慎吾, 2016: 雲解像数値モデ ルによる 2014 年広島豪雨の予測可能性-水平解像 度と数値粘性に対する感度-. 防災科学技術研究所 研究報告, 82, 1-16.
- Kawabata, T., T. Schwitalla, A. Adachi, H.-S. Bauer, V. Wulfmeyer, N. Nagumo, and H. Yamauchi, 2018: Observational operators for dual polarimetric radars in variational data assimilation systems (PolRad VAR v1.0). *Geosci. Model Dev.*, **11**, 2493– 2501.
- 河野耕平,氏家将志,國井勝,西本秀祐,2019:メソアン サンブル予報システム.令和元年度数値予報研修テ キスト,気象庁予報部,1-15.
- Kazumori, M., 2018: Assimilation of Himawari-8 Clear Sky Radiance Data in JMA's Global and Mesoscale NWP Systems. Journal of the Meteorological Society of Japan. Ser. II, 96B, 173–192.
- Kikuchi, K. and Y. N. Takayabu, 2004: The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. *Geophys. Res. Lett.*, **31**, L10 101.
- 気象研究所, 2017: 平成 29 年 7 月 5-6 日の福岡県・大 分県での大雨の発生要因について. 平成 29 年 7 月 14 日 報道発表, 1-8.
- Kunii, M., M. Otsuka, K. Shimoji, and H. Seko, 2016: Ensemble Data Assimilation and Forecast Experiments for the September 2015 Heavy Rainfall Event in Kanto and Tohoku Regions with Atmospheric Motion Vectors from Himawari-8. SOLA, 12, 209– 214.
- Nielsen, E. R. and R. S. Schumacher, 2016: Using Convection-Allowing Ensembles to Understand the Predictability of an Extreme Rainfall Event. *Mon. Wea. Rev.*, 144, 3651–3676.
- Oizumi, T., K. Saito, J. Ito, T. Kuroda, and Le Duc,2018: Ultra-High-Resolution Numerical WeatherPrediction with a Large Domain Using the K Com-

puter: A Case Study of the Izu Oshima Heavy Rainfall Event on October 15-16, 2013. J. Meteor. Soc. Japan, **96**, 25–54.

- 小野耕介, 2016: メソアンサンブル予報システムの開発 状況. 数値予報課報告・別冊第 62 号, 気象庁予報部, 100–113.
- 瀬古弘, 2010: 中緯度のメソβスケール線状降水系の 形態と維持機構に関する研究. 気象庁研究時報, **62**, 1–74.
- 津口裕茂,加藤輝之,2014:集中豪雨事例の客観的な 抽出とその特性・特徴に関する統計解析.天気,**61**, 455–469.
- 津口裕茂, 2016: 線状降水带. 天気, 63, 727-729.
- 津口裕茂, 下瀬健一, 加藤亮平, 栃本英伍, 横田祥, 中野 満寿男, 林修吾, 大泉伝, 伊藤純至, 大元和秀, 山浦剛, 吉田龍二, 鵜沼昂, 2016: 「2014 年広島豪雨に関する 予測検討会」の報告. 天気, **63**, 95–103.
- Unuma, T. and T. Takemi, 2016a: Characteristics and environmental conditions of quasi-stationary convective clusters during the warm season in Japan. Quart. J. Roy. Meteor. Soc., 142, 1232– 1249.
- Unuma, T. and T. Takemi, 2016b: A Role of Environmental Shear on the Organization Mode of Quasi-Stationary Convective Clusters during the Warm Season in Japan. SOLA, 12, 111–115.
- Vosper, S., 2015: UK models, resolution and physical parametrizations. MOSAC paper 20.18, 1–9.
- Weverberg, K. Van, A. M. Vogelmann, W. Lin, E. P. Luke, A. Cialella, P. Minnis, M. Khaiyer, E. R. Boer, and M. P. Jensen, 2013: The Role of Cloud Microphysics Parameterization in the Simulation of Mesoscale Convective System Clouds and Precipitation in the Tropical Western Pacific. J. Atmos. Sci., 70, 1104–1128.
- Weyn, J. A. and D. R. Durran, 2018: The scale dependence of initial-condition sensitivities in simulations of convective systems over the southeastern United States. *Quart. J. Roy. Meteor. Soc.*, 145, 57–74.
- Yoshizaki, M., T. Kato, Y. Tanaka, H. Takayama, Y. Shoji, H. Seko, K. Arao, K. Manabe, and Members of X-BAIU-98 Observation, 2000: Analytical and Numerical Study of the 26 June 1998 Orographic Rainband Observed in Western Kyushu, Japan. Journal of the Meteorological Society of Japan. Ser. II, 78, 835–856.
- Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and

Sensible Heat Fluxes, Ocean Evaporation, and Related Surface Meteorological Variables. *Technical Report OA-2008-01, Woods Hole Oceanographic Institution, Woods Hole, MA.*

メソ解析における観測データ利用の現状と展望¹

1.3.1 はじめに

気象庁では全球予報、全球アンサンブル予報、メソ 予報、局地予報に対し、それぞれ観測データを利用し て初期値を作成している。数値予報の予測精度の向上 には数値予報モデルの改良と共に精度の高い初期値を 作成することが非常に重要である。そのためには現実 の大気を測定した観測データを多く活用して初期値を 作成する必要があるが、数値予報モデルの格子点値に 対して観測データだけで精度のよい初期値を作成す ることは困難である。そこで全ての格子点に対して必 要な情報を持っている数値予報モデルの短時間予測値 をたたき台(第一推定値)にして、その第一推定値を 観測データによって修正する「データ同化」の手法を 用いている。データ同化によって観測の情報が取り込 まれた最適な初期値を作成することができる。

本節では気象庁メソ数値予報システムの初期値作成 (メソ解析)に利用している観測データの変遷と現状、 メソ解析に重要な観測データの特徴と今後の展望と課 題について全体像を述べる。第4章では近年現業化し た改良や気象研究所での研究内容を観測種別毎に記し ているので参照頂きたい。

1.3.2 観測データの利用の変遷と現状

メソ解析では2002年3月に現業領域数値予報システ ムでは世界で初めて4次元変分法の導入に成功した(石 川・小泉 2002)。4次元変分法では衛星輝度温度データ のように解析する物理量へ直接変換できない観測デー タや観測時間の異なるデータをモデルの物理法則に基 づいて時間発展を考慮して同化できることから、以前 の同化手法である3次元最適内挿法(多田 1997)と比 較して多くの観測データが利用できるようになった。 2002 年 3 月以降の観測データの主な導入・改良履歴 を表 1.3.1 に、観測種別毎の利用データ数の時間推移 を図 1.3.1 に示す。4 次元変分法の導入と同時にアメ ダス雨量と気象レーダーから算出した解析雨量が同化 され、予測初期における降水予測精度の向上に貢献し ている。2010年12月には放射伝達モデル RTTOVを 用いた衛星輝度温度データの直接同化を導入し (計盛 2011)、それ以降、衛星データ利用拡大に対応できるよ うになった。

表 1.3.2 に 2019 年 12 月現在メソ解析で利用されて いる観測データを示す。ただし、地表面解析のみで利 用し、数値予報の初期値に反映しない観測データは記 載していない。メソ解析における観測データ利用に関 した特筆事項の一つとして、解析雨量の同化 (Koizumi et al. 2005) やマイクロ波イメージャから算出した降水 強度の同化(佐藤 2003)が挙げられる。降水現象は様々 な過程を経て起こり、時間変化も大きい。4次元変分 法では数値予報モデルの降水過程によって計算された 降水量と実際の観測した降水量を繰り返し比較するこ とで、物理法則に整合した初期値を得ることができる。 現在の解析システムではメソ解析以外で降水量を同化 していない。なぜなら、全球解析では、水平格子間隔 が約 20 km であるため、観測データから得られる降水 現象のスケールよりも粗く、降水量の情報を反映させ ることは難しいからである。局地解析では、水平格子 間隔が 5 km であるが、データ同化手法が 3次元変分 法であるため降水量を同化できないからである。

気象レーダーから得られるデータを積極的に利用し ていることもメソ解析の特徴である。気象レーダーは 実況監視用として国内に広く展開されており、測定か ら入手まで時間が短く、かつ定常的にデータが得られ ることから、日本付近を予測範囲とするメソ解析にとっ て活用しやすいデータである²。中でもドップラーレー ダーから得られるドップラー速度は 2005 年から利用し ており (小泉 2005)、高密度・高頻度データ利用の先駆 けとなっている。

他にも GPS ゾンデによって得られた高密度データ を、その移動の効果も考慮して利用する手法の導入 (酒 匂 2016) や 12.5 km 間隔の ASCAT 海上風データの導 入(第 4.3 節)など、高密度データの利用が進められ ている。

1.3.3 メソ解析に重要な観測データ

数値予報での観測データの有効利用には、観測デー タの特性だけでなく、

- 数値予報の目的や運用形態
- 数値予報モデルやデータ同化の特性

を考慮する必要がある。このため、観測データの選択 や同化手法などを使い分け、数値予報の目的等に適し た観測データを利用して、予測精度を向上させること が重要である。本項ではメソ数値予報システムの目的 等から特に重要な観測データの特徴について述べる。

メソ予報の目的は防災気象情報、航空気象情報など への利用であり、豪雨の予測に重点を置いている。豪 雨の予測精度を向上するには、その発生要因を初期値 に反映することが不可欠であり、特に下層の水蒸気を 測定できる観測データの利用が重要である。メソ予報 の運用面では、3時間おきに1日8回分の初期値を作成 する必要があることから、静止気象衛星に代表される ような定常的に入手できる観測データの利用が重要で ある。また、メソ予報は速報性が求められるため、観 測データの入手は初期時刻から 50 分で打ち切ってい る。そのため最新の観測データをより早く入手して利 用する必要がある。

² 局地解析においても、メソ解析と同様の理由で気象レー ダーから得られる観測データを活用している。

¹ 太田 行哉

導入年月	内容
2002年3月	静力学4次元変分法 解析雨量 (石川・小泉 2002)
2002年8月	JAL ACARS
2003年9月	ANA ACARS
2003年10月	マイクロ波イメージャによる可降水量、降水量 (佐藤 2003)
2005年3月	空港気象レーダードップラー速度 (小泉 2005)
2006年12月	気象レーダードップラー速度 (石川 2007)
2009年4月	非静力学 4 次元変分法 (本田・澤田 2010)
2009 年 10 月	地上 GNSS 可降水量 (石川 2010)
2010 年 12 日	衛星輝度温度直接同化 (計盛 2011)
2010 - 12 / 1	(AMSU-A, MHS, TMI, AMSR-E, SSMIS, MTSAT-2/CSR)
2011年6月	レーダー反射強度推定湿度 (幾田 2011)
2013 年 9 月	GCOM-W/AMSR2 (江河 2014)
2013 年 11 月	Metop-B (守谷ほか 2014)
2014年5月	台風ボーガス改良 (髙坂 2015)
2015 年 12 月	ASCAT 海上風 (守谷 2016)
	ひまわり 8 号/AMV, CSR (山下 2016; 計盛 2016b)
2016 年 3 日	GPM-Core/GMI, DPR (計盛 2016a; 幾田 2016)
2010 4 5 71	GNSS 掩蔽 (平原 2016)
	国内高密度ラジオゾンデ移動効果 (酒匂 2016)
	ひまわり 8 号/CSR バンド 9, 10 (第 4.5 節)
2019 年 3 日	航空機気温データバイアス補正 (第 4.2 節)
2013年3月	地上 GNSS 降水域 (第 4.1 節)
	高解像度 ASCAT 海上風 (第 4.3 節)

表 1.3.1 メソ解析における観測データの主な導入・改良履歴

図 1.3.1 メソ解析における観測種別毎の利用データ数の時間推移。1日当たりの平均利用数を月別に集計した。保存データの 関係上、解析雨量やマイクロ波イメージャから算出した降水強度データは集計していない。図中の縦線は表 1.3.1 に記した観 測データの主な導入・改良履歴の時期を示し、黒線が同化システムの改良、赤線が新規観測データの導入、青線が観測データ 利用法改良を示す。

	種別またはセンサー	利用要素
	地上観測	気圧
古控知測	海上観測	気圧
旦]女甙积	航空機観測	気温、風
	高層観測	気圧、気温、風、湿度
	ウインドプロファイラ	風
地上リエートセンシング	ドップラーレーダー	ドップラー速度、湿度
地上リモードビンシング	解析雨量	降水量
	地上 GNSS	可降水量
疑似観測	台風ボーガス	気圧、風
垫止伤 目	大気追跡風	風
肘止伸生	晴天放射輝度温度	輝度温度
	マイクロ波サウンダ	輝度温度
	マイクロ波イメージャ	輝度温度、降水量
低軌道衛星	マイクロ波散乱計	風
	GNSS 掩蔽観測	屈折率
	衛星搭載レーダー	湿度

表 1.3.2 メソ解析で利用されている観測(2019年12月現在)

メソ解析で使用しているモデルは水平格子間隔5 km、 鉛直 48 層でモデルトップは約 22 km であるが、モデ ルの格子間隔よりも高密度な観測データを直接初期値 に反映することはモデルにとってノイズとなり適切で はない。4 次元変分法の計算時間の制約上、第一推定値 に与える修正量(インクリメント)の水平格子間隔は 15 km であるため、そのスケールに合わせて観測デー タを間引く、もしくは複数のデータを集計して代表す る値を求めるなどの工夫が必要となる。

メソ予報の予測時間は最長 51 時間であるが、後半ほ どメソモデル領域外からの影響を受ける。メソ予報の 予測精度を向上するには、側面境界値となる全球予報 の改善も必要になる。従ってメソ領域内の観測データ の利用開発だけでなく、全球解析での観測データ利用 高度化も必要である。特に日本の上流領域での全球解 析による観測データの利用が重要である。

1.3.4 観測データの展望と利用上の課題

前項では、豪雨の発生要因を初期値に反映するため には、下層の水蒸気を測定できる観測データが重要で あることを述べた。本節では下層水蒸気が測定できる 観測データをいくつか取り上げ、今後の展望とメソ解 析へ利用する上での課題を述べる。

(1) 地上 GNSS 等の電波の遅延による観測

GNSS は地殻変動の把握、車や航空機などの交通ナビ ゲーションのために位置を測定することが本来の目的で あるが、気象分野では、その誤差要因となる水蒸気量を 逆にシグナルとして活用している (Bevis et al. 1992)。 現在、国土地理院の電子基準点からの地上 GNSS デー タを1時間毎に利用しているが、測量自体は秒単位に 連続観測していることから高頻度に利用できる可能性 がある。GNSSの受信機は陸上に設置されたものが多 いが、海上での観測データは乏しい。周囲を海に囲ま れた日本では、海上から進入する水蒸気の把握が重要 である。船舶やブイにGNSS受信機を搭載することで 観測密度の低い海上での水蒸気量データの利用が期待 できる。

放送、通信などの地上から発信されている様々な電 波も GNSS と同様の原理で水蒸気の情報が得られる可 能性があり、利用検討が進められている。気象研究所 ではレーダー電波の位相時間変化から得られる水蒸気 の時間変動 (気象庁 2015)を研究しており、また情報 通信研究機構電磁波研究所では地上デジタル放送の電 波の遅延量から水蒸気量を推定する手法が開発されて いる。このような研究成果を活用することにより多く の水蒸気データをデータ同化に利用することも可能に なってくる。

(2) レーダー観測

気象レーダーや空港レーダーといったレーダー観測 を取り上げる。レーダーは降水粒子から反射された電 波を分析することで、降水粒子の位置や密度、ドップ ラーシフトによる風を高密度に観測することができる。 現在、数値予報ではレーダーから得られる一部の観測 データしか利用しておらず十分ではない。レーダー反 射強度から推定した相対湿度の利用では、固相の降水 粒子からの反射強度は利用していない。レーダー反射 強度は現状のモデルでの降水物質の予測精度や、線形性 を仮定したデータ同化手法では取り扱いが難しく、レー

ダー反射強度を有効に利用できるモデルの改良やデー タ同化手法の開発が必要となる。固相の降水粒子から の反射強度が利用可能になれば、主に冬季の水蒸気の 情報が増加し降雪予測の精度向上が期待できる。レー ダー自体も改良が続けられている。2018年3月に、関 西国際空港と東京国際空港に二重偏波ドップラーレー ダーが導入された。二重偏波ドップラーレーダーでは、 降水粒子から返ってきた水平・垂直の2種類の受信波 を組み合わせて解析することで、より精度良く降水強 度を推定できるようになる。気象レーダーにおいても 2020年3月から随時、二重偏波ドップラーレーダーへ の更新が予定 (気象庁 2018) されており、全国で降水 域の観測精度向上が期待できる。また 2015 年に気象研 究所に導入されたフェーズドアレイレーダーから高速 スキャンによって短時間に変化する現象を立体的に観 測することが可能となる。

(3) 衛星観測

衛星による観測データは、地上施設では観測が困難 な海上域でも観測情報が得られるため重要である。近年 では輝度温度データの雲・降水域の利用(全天同化)に 向けた開発を重点的に行っており、全球解析では 2019 年12月11日に低軌道衛星に搭載されている水蒸気に 感度のあるマイクロ波イメージャやマイクロ波水蒸気 サウンダの輝度温度データの全天同化を導入した(令 和元年12月10日報道発表資料「台風進路予測や降水 予測の精度が改善します」3)。メソ解析では静止気象 衛星ひまわりから得られる赤外域輝度温度データの全 天同化を気象研究所で開発中である (Okamoto et al. 2019)。低軌道衛星では日本付近を観測できる時間帯が 限られており、同一領域を高頻度で観測できる静止衛 星の方がメソ解析には有効である。また 2029 年に打ち 上げ予定のひまわり後継静止気象衛星にはハイパース ペクトル赤外サウンダを搭載することが検討されてい る。静止気象衛星搭載のハイパースペクトル赤外サウ ンダからは同一領域での大気の鉛直構造の情報を高頻 度に得ることができるため、豪雨の発生要因である水 蒸気の変化をいち早く捉えることが可能である。

地上 GNSS、レーダー、静止衛星から得られる観測 データのように高頻度・高密度の観測データが増えて きており、今後も増加する見込みである。しかし単に 現状の手法を踏襲するだけでは高頻度・高密度な観測 データからの情報を十分に活用することは難しい。観 測誤差の空間・時間相関を考慮することや、現状の1時 間間隔より短い時間間隔で背景場と比較することなど、 適切な設定や改良をすることにより観測データの情報 を十分に引き出すことが可能となる。まだまだ利用可 能な観測データは多数あり、現在利用しているデータ にも利用手法の改善の余地は残っている。メソ解析へ の利用にはデータの持つ誤差等の特性調査、品質管理 手法、及び、データ同化手法の開発、モデル特性に応 じた観測データの利用方法の検討など観測データそれ ぞれに対して利用に向けた開発課題が多数ある。メソ 予報の主目的である豪雨予測の精度向上のためにモデ ルやデータ同化手法の改良と共に観測データの利用開 発を進めていく。

参考文献

- Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, 1992: GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System. J. Geophys. Res., 97, 15787–15801.
- 江河拓夢, 2014: GCOM-W 衛星搭載のマイクロ波イ メージャAMSR2の利用開始. 平成 26 年度数値予報 研修テキスト, 気象庁予報部, 101–104.
- 平原洋一, 2016: GNSS 掩蔽観測データのメソ解析での 利用開始. 平成 28 年度数値予報研修テキスト, 気象 庁予報部, 53–55.
- 本田有機,澤田謙,2010: 非静力学メソ4次元変分法. 数値予報課報告・別冊第56号,気象庁予報部,7-37.
- 幾田泰酵,2011: メソ解析におけるレーダー反射強度 データの同化.平成23年度数値予報研修テキスト, 気象庁予報部,9-12.
- 幾田泰醇, 2016: GPM/DPR データのメソ解析での利 用開始. 平成 28 年度数値予報研修テキスト, 気象庁 予報部, 51–53.
- 石川宜広,小泉耕,2002:メソ4次元変分法.数値予報 課報告・別冊第48号,気象庁予報部,37-59.
- 石川宜広, 2007: ドップラーレーダーデータの利用. 平 成19年度数値予報研修テキスト, 気象庁予報部, 102– 103.
- 石川宜広, 2010: 地上 GPS データのメソ解析での利用. 数値予報課報告・別冊第 56 号, 気象庁予報部, 54-60.
- 計盛正博,2011: メソ解析における衛星観測輝度温度 データの同化.平成23年度数値予報研修テキスト, 気象庁予報部,3-8.
- 計盛正博, 2016a: GPM マイクロ波イメージャ輝度温 度の利用開始. 平成 28 年度数値予報研修テキスト, 気象庁予報部, 50-51.
- 計盛正博, 2016b: ひまわり 8 号晴天放射輝度温度の利 用開始. 平成 28 年度数値予報研修テキスト, 気象庁 予報部, 46-49.
- 気象庁, 2015: 気象ドップラーレーダーの電波の位相情 報を利用した水蒸気量の把握手法の開発. 気象業務 はいま 2015, 126.
- 気象庁, 2018: 気象レーダーの観測機能強化~二重偏波 レーダーの導入~. 気象業務はいま 2018, 30.

³ https://www.jma.go.jp/jma/press/1912/10c/ 20191210_initial_value.html

Koizumi, K., Y. Ishikawa, and T. Tsuyuki, 2005:

Assimilation of precipitation data to the JMA mesoscale model with a four-dimensional variational method and its impact on precipitation forecasts. *SOLA*, **1**, 45–48.

- 小泉耕, 2005: データ同化システム. 平成 17 年度数値 予報研修テキスト, 気象庁予報部, 33-37.
- 高坂裕貴, 2015: 台風ボーガス作成手法の改良. 平成 27 年度数値予報研修テキスト, 気象庁予報部, 50-53.
- 守谷昌己,大和田浩美,山下浩史,江河拓夢,2014:
 Metop-B データの利用開始.平成26年度数値予報
 研修テキスト,気象庁予報部,104–107.
- 守谷昌己,2016:マイクロ波散乱計の全球解析での利用 方法の変更及びメソ解析での利用開始.平成28年度 数値予報研修テキスト,気象庁予報部,55-57.
- Okamoto, K., Y. Sawada, and M. Kunii, 2019: Comparison of assimilating all-sky and clear-sky infrared radiances from Himawari-8 in a mesoscale system. *Quart. J. Roy. Meteor. Soc.*, **145**, 745–766.
- 佐藤芳昭, 2003: メソ解析へのマイクロ波放射計データ 同化. 平成 15 年度数値予報研修テキスト, 気象庁予 報部, 7-12.
- 酒匂啓司, 2016: 国内ラジオゾンデ高解像度観測データ のメソ解析での利用開始. 平成 28 年度数値予報研修 テキスト, 気象庁予報部, 59-62.
- 多田英夫, 1997: 大気客観解析. 数値予報課報告・別冊 第 43 号, 気象庁予報部, 62-86.
- 山下浩史,2016: ひまわり8号大気追跡風データの利 用開始. 平成28年度数値予報研修テキスト,気象庁 予報部,43-46.

2.1 力学過程¹

2.1.1 はじめに

メソモデル (MSM) は、静力学スペクトルモデル (巽 1986; Tatsumi 1986) によって 2001 年 3 月に運用が開 始され、2004 年 9 月には気象庁非静力学モデル (JMA-NHM; 気象庁予報部 2003; Saito et al. 2006) が導入さ れた。2017 年 2 月には JMA-NHM を置き換える形で新 しい気象庁非静力学モデル asuca(気象庁予報部 2014) が導入されている。局地モデル (LFM) は、JMA-NHM を用いて 2012 年 8 月に運用が開始され、2015 年 1 月 に JMA-NHM を置き換える形で asuca が導入されて いる。

asuca は、第9世代のスーパーコンピュータ導入の 検討に際し、LFM における JMA-NHM の計算効率が 懸念されたことをきっかけに開発が開始され、計算機 の趨勢に合わせた改良を念頭に置きながら、保存性の 向上、計算安定性の向上、計算精度と計算効率の両立 等を目指して開発が進められた (石田・藤田 2014)。

asuca の力学過程の詳細は、これまで数値予報課報 告・別冊第60号(気象庁予報部2014;以下、単に「第 60号」と記述する)の第2章「力学過程」の各節(河 野ほか(2014)、松林ほか(2014b)、松林ほか(2014c)、 松林ほか(2014a)、河野・荒波(2014))で報告されて いる。その内容は、LFMへの導入を直近の目標として 開発を進めていた当時のものであるが、現在も基本的 に変更されていない。ただし、その後、MSMへの導 入に向けた開発が進められる中で、計算安定性や計算 効率、予測精度の点で変更が加えられた。

この節は、現在、MSM および LFM の数値予報モデ ルとして利用されている asuca の力学過程を概説する ことと、第 60 号以降の変更点を述べることの 2 つを 狙いとする。第 2.1.2 項から第 2.1.5 項までで、本稿執 筆時点(2019 年 12 月)の asuca の力学過程(支配方 程式、空間離散化、時間積分法、側面・上部境界条件) の概要を解説する。次に、第 2.1.6 項で第 60 号以降の 変更の内容と背景を説明する。第 2.1.2 項から第 2.1.5 項の力学過程の概説の各項の末尾に「第 60 号からの変 更点」として第 2.1.6 項の関連箇所を示すようにした。 最後に第 2.1.7 項でまとめと今後の課題を述べる。

2.1.2 支配方程式

asuca で用いる支配方程式は、完全圧縮の非静力学方 程式系であり、質量、運動量、温位、水物質の保存則と 状態方程式から構成される。一般座標 (ξ, η, ζ) での方 程式系を用いるが、後述する split-explicit 法の利用な ど主に計算効率の観点から、 ζ 軸と重力加速度を平行と する制限を設けている。MSM, LFM では、水平方向に は球面直交曲線座標(地図投影法を利用)を、鉛直方 向には地形に沿った座標を用い、shallow assumption² を導入している。

大気が乾燥大気 (*d*)、水蒸気 (*v*)、雲水 (*c*)、雨 (*r*)、 雲氷 (*i*)、雪 (*s*)、あられ (*g*) といった成分で構成され ていることを考慮して定式化し、大気の各成分の密度 の和を全密度と定義する。局所直交直線座標における 大気速度 (*u*, *v*, *w*)、密度 ρ 、温位 θ 、全密度と大気の 各成分の密度の比を *q* とする。大気の各成分について 記述する場合は、下付きの添字 α で区別し、各成分の 和をとる場合は \sum_{α} で表す。全密度は

$$\rho = \sum_{\alpha} \rho_{\alpha} \quad = \rho_d + \rho_v + \rho_c + \rho_r + \rho_i + \rho_s + \rho_g \quad (2.1.1)$$

と表す。また、大気の鉛直速度と降水粒子の落下速度 の違いを考慮し、大気の各成分によってそれぞれの落 下速度 $w_{t\alpha}$ を定義する。そして、落下速度を持つ水物 質を sed で表すものとし、乾燥大気と落下速度を持た ない水物質の密度の合計 ρ_b を以下で定義する³。

$$\rho_b = \sum_{\alpha \neq \text{sed}} \rho_\alpha = \rho \left(1 - \sum_{\alpha = \text{sed}} q_\alpha \right)$$
(2.1.2)

局所直交直線座標 (x, y, z) から一般座標 (ξ, η, ζ) への変換のヤコビアン J は、

$$I \equiv \begin{vmatrix} \xi_x & \xi_y & \xi_z \\ \eta_x & \eta_y & \eta_z \\ \zeta_x & \zeta_y & \zeta_z \end{vmatrix}$$
(2.1.3)

と定義される。なお、変換のメトリック $(\partial \xi / \partial x)_{y,z}$ を ξ_x のように表記している (他のメトリックも同様)。 ζ 軸 を重力加速度と平行とする制限によって、 $\xi_z = \eta_z = 0$ である。一般座標系における大気速度 (U, V, W) は、

$$U = \xi_x u + \xi_y v + \xi_z w$$

$$V = \eta_x u + \eta_y v + \eta_z w$$

$$W = \zeta_x u + \zeta_y v + \zeta_z w$$
(2.1.4)

一般座標系における落下速度 W_{tα} は、

$$W_{t\alpha} = \zeta_z w_{t\alpha} \tag{2.1.5}$$

で定義される。

予報変数は、 ρ' , ρu , ρv , ρw , $(\rho \theta_m)'$, $\rho q_\alpha (\alpha \neq d)$ で あり、それぞれ全密度の基本場⁴からの偏差、局所直交

¹ 河野 耕平

²地球半径に対して、大気の高度が十分小さいとする近似。 3 質量保存の式、運動量保存の式において、「落下速度を持た ない成分の鉛直移流」と「落下速度を持つ成分の鉛直移流」 に分けて扱うため。詳細は第 2.1.6 項 (2) を参照。

⁴ 計算機上の桁落ちによる計算精度の低下を防ぐ目的で用い る。(2.1.7) 式を満たすようにとっている。

直線座標 (x, y, z) 方向の運動量、 $\rho \theta_m$ の基本場からの 偏差、水物質の密度を表す。 θ_m は、乾燥大気の気体定 数 R_d と水蒸気の気体定数 R_v の比を $\epsilon = R_d/R_v$ とし て、以下で定義する。

$$\theta_{m} = \theta \left(\frac{\rho_{d}}{\rho} + \frac{\rho_{v}}{\epsilon \rho} \right)$$
$$= \theta \left(\frac{\rho - \rho_{v} - \sum_{\alpha \neq d, v} \rho_{\alpha}}{\rho} + \frac{\rho_{v}}{\epsilon \rho} \right)$$
$$= \theta \left(1 + \left(\frac{1 - \epsilon}{\epsilon} \right) q_{v} - \sum_{\alpha \neq d, v} q_{\alpha} \right)$$
(2.1.6)

基本場からの偏差は「′」を、基本場の値は「-」をつけ て表す。基本場は次式の静力学平衡を満たすよう作成 し、時間変化はしないものとする。

$$\gamma R_d \overline{\Pi} \frac{1}{J} \zeta_z \frac{\partial}{\partial \zeta} \left(\overline{\rho \theta_m} \right) + \frac{\overline{\rho}g}{J} = 0 \qquad (2.1.7)$$

ここで、 γ は乾燥大気の定圧比熱 C_p と定積比熱 C_v の 比である ($\gamma = C_p/C_v$)。П はエクスナー関数で、気 圧 p、基準気圧 p_0 (= 1000 hPa) として次式で定義さ れる。

$$\Pi = \left(\frac{p}{p_0}\right)^{\frac{R_d}{C_p}} \tag{2.1.8}$$

以下に支配方程式を示す。式の導出の詳細は河野ほ か (2014) を参照していただきたい。各方程式の F で 表す項は、この後の各節で説明される物理過程から得 られる項である。現状、MSM, LFM ともに $F_{\rho} = 0$ 、 $F_{\rho u}, F_{\rho v}, F_{\rho w}$ は境界層過程(第2.6節)から、 $F_{\rho \theta_m}, F_{\rho \alpha}$ は積雲対流(第2.2節)、雲(第2.3節)、境界層(第 2.6節)、地表面(第2.7節)の各過程から時間変化率 を得ている。各方程式の D で表す項は第2.1.5 項で説 明する境界の扱いのために付加されるレイリーダンピ ングの項((2.1.35) 式)である。

質量保存の式

$$\frac{\partial}{\partial t} \left(\frac{1}{J} \rho' \right) = -\frac{\partial}{\partial \xi} \left(\frac{1}{J} \rho U \right) - \frac{\partial}{\partial \eta} \left(\frac{1}{J} \rho V \right)
- \frac{\partial}{\partial \zeta} \left(\frac{1}{J} \rho_b W \right) - \sum_{\alpha = \text{sed}} \frac{\partial}{\partial \zeta} \left(\frac{1}{J} \rho q_\alpha \left(W + W_{t\alpha} \right) \right)
+ \frac{1}{J} F_\rho + \frac{1}{J} D_\rho$$
(2.1.9)

運動量保存の式

$$\begin{aligned} \frac{\partial}{\partial t} \left(\frac{1}{J} \rho u \right) &= -\frac{\partial}{\partial \xi} \left(\frac{1}{J} \rho u U \right) - \frac{\partial}{\partial \eta} \left(\frac{1}{J} \rho u V \right) \\ &- \frac{\partial}{\partial \zeta} \left(\frac{1}{J} \rho_b u W \right) - \sum_{\alpha = \text{sed}} \frac{\partial}{\partial \zeta} \left(\frac{1}{J} \rho q_\alpha u \left(W + W_{t\alpha} \right) \right) \\ &- \gamma R_d \Pi \left\{ \frac{1}{J} \xi_x \frac{\partial}{\partial \xi} \left(\rho \theta_m \right)' + \frac{1}{J} \eta_x \frac{\partial}{\partial \eta} \left(\rho \theta_m \right)' \right. \\ &\left. + \frac{1}{J} \zeta_x \frac{\partial}{\partial \zeta} \left(\rho \theta_m \right)' \right\} \\ &- \frac{1}{J} \rho v \Gamma - \frac{1}{J} \rho v f + \frac{1}{J} F_{\rho u} + \frac{1}{J} D_{\rho u} \end{aligned}$$
(2.1.10)

$$\begin{aligned} \frac{\partial}{\partial t} \left(\frac{1}{J} \rho v \right) &= -\frac{\partial}{\partial \xi} \left(\frac{1}{J} \rho v U \right) - \frac{\partial}{\partial \eta} \left(\frac{1}{J} \rho v V \right) \\ &- \frac{\partial}{\partial \zeta} \left(\frac{1}{J} \rho_b v W \right) - \sum_{\alpha = \text{sed}} \frac{\partial}{\partial \zeta} \left(\frac{1}{J} \rho q_\alpha v \left(W + W_{t\alpha} \right) \right) \\ &- \gamma R_d \Pi \left\{ \frac{1}{J} \xi_y \frac{\partial}{\partial \xi} \left(\rho \theta_m \right)' + \frac{1}{J} \eta_y \frac{\partial}{\partial \eta} \left(\rho \theta_m \right)' \right. \\ &\left. + \frac{1}{J} \zeta_y \frac{\partial}{\partial \zeta} \left(\rho \theta_m \right)' \right\} \\ &+ \frac{1}{J} \rho u \Gamma + \frac{1}{J} \rho u f + \frac{1}{J} F_{\rho v} + \frac{1}{J} D_{\rho v} \end{aligned}$$
(2.1.11)

$$\frac{\partial}{\partial t} \left(\frac{1}{J} \rho w \right) = -\frac{\partial}{\partial \xi} \left(\frac{1}{J} \rho w U \right) - \frac{\partial}{\partial \eta} \left(\frac{1}{J} \rho w V \right)
- \frac{\partial}{\partial \zeta} \left(\frac{1}{J} \rho_b w W \right) - \sum_{\alpha = \text{sed}} \frac{\partial}{\partial \zeta} \left(\frac{1}{J} \rho q_\alpha w \left(W + W_{t\alpha} \right) \right)
- \gamma R_d \Pi \left\{ \frac{1}{J} \zeta_z \frac{\partial}{\partial \zeta} \left(\rho \theta_m \right)' \right\} + \left(\frac{\rho'}{J} - \frac{\Pi'}{\overline{\Pi}} \frac{\overline{\rho}}{J} \right) g
+ \frac{1}{J} F_{\rho w} + \frac{1}{J} D_{\rho w}$$
(2.1.12)

ここで、fはコリオリパラメータ、gは重力加速度である。(2.1.10)式、(2.1.11)式の曲率項の Γ については後述する。なお、(2.1.12)式の気圧傾度力項に関して、 $\xi_z = \eta_z = 0$ によって、これらの項は表記していない。

温位の式

$$\frac{\partial}{\partial t} \left(\frac{1}{J} \left(\rho \theta_m \right)' \right) = -\frac{\partial}{\partial \xi} \left(\frac{1}{J} \rho \theta_m U \right) - \frac{\partial}{\partial \eta} \left(\frac{1}{J} \rho \theta_m V \right) \quad (2.1.13) - \frac{\partial}{\partial \zeta} \left(\frac{1}{J} \rho \theta_m W \right) + \frac{1}{J} F_{\rho \theta_m} + \frac{1}{J} D_{\rho \theta_m}$$

水物質の式

$$\frac{\partial}{\partial t} \left(\frac{1}{J}\rho q_{\alpha}\right) = -\frac{\partial}{\partial \xi} \left(\frac{1}{J}\rho q_{\alpha}U\right) - \frac{\partial}{\partial \eta} \left(\frac{1}{J}\rho q_{\alpha}V\right) - \frac{\partial}{\partial \zeta} \left(\frac{1}{J}\rho q_{\alpha}(W+W_{t\alpha})\right) + \frac{1}{J}F_{\rho\alpha} + \frac{1}{J}D_{\rho\alpha}$$
(2.1.14)

状態方程式

$$p = R_d \Pi \rho \theta_m \tag{2.1.15}$$

以上が支配方程式となる。運動量保存の式の曲率項 の Γ は、*x*,*y* 方向のマップファクター *m*₁, *m*₂ を用い て次式で表す。

$$\Gamma = u \frac{m_2}{m_1} \frac{\partial m_1}{\partial \eta} - v \frac{m_1}{m_2} \frac{\partial m_2}{\partial \xi}$$
(2.1.16)

MSM, LFM では地図投影法にランベルト等角投影法 を用いており、

$$m_1 = m_2 = m = \left(\frac{\cos\varphi}{\cos\varphi_1}\right)^{a-1} \left(\frac{1+\sin\varphi_1}{1+\sin\varphi}\right)^a$$
(2.1.17)

である。ここで、

$$a = \ln\left(\frac{\cos\varphi_1}{\cos\varphi_2}\right) / \ln\left\{\frac{\tan\left(45^\circ - \frac{\varphi_1}{2}\right)}{\tan\left(45^\circ - \frac{\varphi_2}{2}\right)}\right\} (2.1.18)$$

であり、 φ_1, φ_2 は基準緯度で MSM, LFM ともに $\varphi_1 = 30^\circ, \varphi_2 = 60^\circ$ としている。

第60号からの変更点

- (2.1.10) 式−(2.1.12) 式の気圧傾度力項の扱いに変 更がある。第 2.1.6 項 (1) で説明する。
- (2.1.9) 式、(2.1.10) 式–(2.1.12) 式の「落下速度を 持つ水物質の鉛直移流」による変化の項の扱いに 変更がある。第 2.1.6 項 (2) で説明する。

2.1.3 空間離散化

格子系は、水平方向には Arakawa-C 格子 (Arakawa and Lamb 1977)、鉛直方向には Lorenz 格子 (Lorenz 1960; Arakawa and Konor 1996)を採用している。す なわち、 ρ , $\rho\theta_m$ などのスカラー量はセルの中心に定義 し、u, v, w はセル中心からそれぞれ ξ , η , ζ 方向に半格 子だけずらしてセルの境界に配置する。MSM と LFM では、水平方向には球面直交曲線座標(ランベルト等角 投影法を利用)を、鉛直方向には石田 (2008a)による 鉛直ハイブリッド座標を採用している。MSM と LFM の具体的な鉛直層設定について付録 2.1.A に示す。 空間離散化には有限体積法を採用し、セル中心に定 義したスカラー量は、そのセル内の体積平均であると する。セル内のスカラー量の総量の時間変化を、セル 境界でのフラックスによる出入りによって求めていく。

移流スキームは、3 次精度風上差分を基本とし、単 調性を保つために Koren (1993)の流束制限関数を用い る。asuca の移流の計算安定性の条件を付録 2.1.B に 示す。

ここで、以降の空間離散化に関する表記を説明して おく。セル中心は ξ , η , ζ 方向の格子番号をi,j,k と表 し、i,j,k とi+1,j+1,k+1のセル境界はi+1/2,j+ 1/2,k+1/2 と表す。また、 ξ 方向のフラックスの流出 入の和を () $_{i-1/2}^{i+1/2}$ のように表す。 η 方向と ζ 方向につい ても同様である。

asuca の空間離散化の狙いや有限体積法で離散化した式などの詳細は松林ほか (2014b)を、移流スキームの詳細は松林ほか (2014a)を参照していただきたい。

第60号からの変更点

変更点はない。

2.1.4 時間積分法

(1) 時間積分の構造

物理過程を含めた asuca の時間積分構造を図 2.1.1 に示す。以下、この図に沿って説明する。 「timestep_long」で示した時間積分のループが1ス テップを示す。この積分時間間隔を Δt とする。

力学過程

時間積分スキームとして Wicker and Skamarock (2002) による 3 段階ルンゲクッタ法(以下、RK3)を 用いる。「RK_long」で示したのが Δt の RK3 の時間 積分ループである。(2.1.9) 式-(2.1.14) 式の移流項、コ リオリ項、曲率項およびレイリーダンピング項を評価 する。

計算効率を考慮して Δt はできるだけ長く設定し、一 方で Δt では安定に時間積分できない現象(伝搬速度 の速い現象)に関する項は、それぞれの現象に応じた 短い積分時間間隔($\Delta \tau$ で表す)に分割して積分を行 う。現状、時間分割を適用する現象は、以下の3つで ある。

- 1. 音波と重力波
- 2. 鉛直移流
- 3. 落下速度を持つ水物質の鉛直移流

「音波と重力波の時間分割」は、音速により分割回数 nsound が決まる。「short」(ショートタイムステップ)と示した時間積分ループである。この項の (2) で説明する。

「鉛直移流の時間分割」は、局所的な大気速度 に応じて必要な場合にのみ時間分割が発生する。 「dynamics_run_rk_long」の中の移流計算の手続き内 に含まれ、鉛直移流による時間変化率を得る。この項

timestep_long: do	! 時間積分(間隔Δ t)のループ開始
call diagnose_run_long	! 診断変数の計昇 ・ 物理選組の 取 の試算(現場・故社 接田屋 地主西 (会議員社法)
call physics_run_long	! 物理適程のFLの計昇(現状:放射・境界層・地衣曲・◎傾雲対流) -
RK_long: do rk_count = 1, 3	: ! ルンゲクッタ法 (long) のループ開始
call diagnose_run_rk_long	!診断変数の計算
call physics_run_rk_long	!物理過程の Frk の計算(現状:◎ MSM の凝結計算)
call dynamics_run_rk_long	! 力学過程の Frk の計算(現状:移流(◎鉛直移流の時間分割を含む)、 ! コリオリカ、曲率、レイリーダンピング)
call sediment_run	! 落下速度を持つ水物質の鉛直移流の時間分割による時間積分 -
short: do count_s = 1, nsound	! ショートタイムステップのループ開始
RK_short: do $rk_count_s = 1, 3$! ショートタイムステップの中のルンゲクッタ法のループ開始
call diagnose_run_rk_short	!診断変数の計算
call dynamics_run_rk_short	! split-explicit 法による時間積分
end do RK_short	! ショートタイムステップの中のルンゲクッタ法のループ終了
end do short	! ショートタイムステップのループ終了
call tmanage_post_short	! ! ショートタイムステップ後の時間積分(現状:落下速度を持たない水物質
and do DV lang	! および乱流統計重) ルンゲクッタ法 (1
end do RK_IONg	
call tmanage_post_long	・ ロングタイムステップ後の時間積分(現状:地面温度、土壌水分)
call diagnose adjust long	: 診断変数の計算
call physics adjust long	! 物理過程の Fa の計算(現状:雲物理)
call tmanage post adjust	! 時間積分(現状:水物質、温位、密度)
· · · · · · · · · · · · · · · · · · ·	
end do timestep_long	! 時間積分(間隔Δt)のループ終了

図 2.1.1 時間積分の順序を表す模式図。図中 F1, Frk, Fa はそれぞれ (2.1.19) 式-(2.1.22) 式の F₁, F_{rk}, F_a を表す。松林ほか (2014c)の図 2.3.1 の一部を現状の内容に合わせて更新(本節で説明する更新事項には◎を付した)。

の(3)で説明する。

「落下速度を持つ水物質の鉛直移流の時間分割」は 局所的な大気速度と水物質の落下速度に応じて必要な 場合にのみ時間分割が発生する。「sediment_run」の 手続き内に含まれ、落下速度を持つ水物質の時間積分 がこの中で行われる。この項の(4)で説明する。

物理過程を組み込んだ全体

この時間積分構造に物理過程をどのように組み込むか には任意性があり、その検討が必要になる。現状、MSM と LFM の物理過程には、各過程の時間変化率を独立に 評価するパラレルスプリッティングとして扱うものと、 その他の過程による時間変化率を足し込んだ後(時間 変化後)の状態から時間変化率を求めるシーケンシャル スプリッティングとして扱うものがある。パラレルスプ リッティングとして扱う時間変化率のうち「RK_long」 ループの外で計算するものを F_l 、「RK_long」ループの 中で計算するものを F_{rk} 、シーケンシャルスプリッティ ングとして扱う時間変化率を F_a とすると、予報変数 fの時間積分は以下のように書ける。ここで、時刻 t にお ける $f \in f^t$ と表し、仮積分値は上付きの「*」で表す。

$$f^* = f^t + F(f^t) \cdot \frac{1}{3} \Delta t$$

= $f^t + \{F_{\rm rk}(f^t) + F_{\rm l}(f^t)\} \cdot \frac{1}{3} \Delta t$ (2.1.19)

$$f^{**} = f^t + F(f^*) \cdot \frac{1}{2} \Delta t$$

= $f^t + \{F_{\rm rk}(f^*) + F_{\rm l}(f^t)\} \cdot \frac{1}{2} \Delta t$ (2.1.20)

$$f^{***} = f^{t} + F(f^{**}) \cdot \Delta t$$

= $f^{t} + \{F_{\rm rk}(f^{**}) + F_{\rm l}(f^{t})\} \cdot \Delta t$ (2.1.21)

$$f^{t+\Delta t} = f^{***} + F_{a}(f^{***}) \cdot \Delta t$$
 (2.1.22)

 $F_{\rm l}$ は時間積分ループの初めに計算を行い、 $[RK_long]$ ループ内 $F_{\rm rk}$ の計算を繰り返し、これらの時間変化率を加えた後に $F_{\rm a}$ を計算する。これら一連の計算により、1ステップの時間積分を行う。

第60号からの変更点

図 2.1.1 の時間積分構造自体は変更しておらず、図中 に「◎」を付した追加項目が変更点である。

- 「dynamics_run_rk_long」に「鉛直移流の時間 分割」を追加した。その手法は、この項の (3) で 解説し、その導入背景は第 2.1.6 項 (3) で述べる。
- 「physics_run_long」に「積雲対流」を追加した。
 これは、積雲対流パラメタリゼーションを MSM で利用し、第 60 号以降、対流の立ち上がりの効
 果を狙って LFM で利用するようにしたこと(第 2.2.4 項を参照)を表している。
- 「physics_run_rk_long」に MSM の凝結計算を 追加した。第 2.1.6 項 (4) で説明する。

(2) 音波と重力波の時間分割

音波と重力波に関する項は split-explicit 法 (Klemp et al. 2007)を用いて短い積分時間間隔 $\Delta \tau$ のショート タイムステップに分割して時間積分を行う。この方法で は鉛直方向にはインプリシットに計算を行うので、分割 回数 nsound は水平方向の格子間隔と音速から決まる。 ショートタイムステップへの時間分割は「RK_long」の 1 段階目、2 段階目、3 段階目のステップに対してそれ ぞれ行われる。ショートタイムステップの時間積分ス キームにも RK3を採用している(「RK_short」の時間 積分ループ)。

「RK_long」ループと「RK_short」ループの構造に ついて、MSM の設定を例にした模式図を図 2.1.2 に示 す。MSM は、水平格子間隔 5 km、積分時間間隔 $\Delta t =$ 100/3 s と設定している。この設定では、「RK_long」 ループの 1 段階目(積分時間間隔 $\Delta t/3$)、2 段階目 (積分時間間隔 $\Delta t/2$)、3 段階目(積分時間間隔 Δt) が、それぞれ 1 回(分割なし、 $\Delta \tau_1 = \Delta t/3$)、2 回 ($\Delta \tau_2 = \Delta t/4$)、3 回($\Delta \tau_3 = \Delta t/3$)のショートタイ ムステップに分割される⁵。 $\Delta \tau_1$, $\Delta \tau_2$, $\Delta \tau_3$ それぞれに ついて「RK_short」ループにより時間積分する。

LFM は、水平格子間隔 2 km、積分時間間隔 $\Delta t = 50/3$ s と設定しており、この設定では「RK_long」ループの 1 段階目、2 段階目、3 段階目はそれぞれ、2 回、4 回、4 回のショートタイムステップに分割される。

split-explicit 法の具体的な手続きについては松林ほか (2014c) を参照いただきたい。

第60号からの変更点

変更点はない。

(3) 鉛直移流の時間分割

時間積分スキームに RK3 を、移流スキームに流束制 限関数を用いると、1 次元移流の計算安定条件はクーラ ン数 C_1 について $|C_1| \le 1.25$ である(付録 2.1.B)。こ の時間積分方法のもとで移流項を 3 次元方向(ξ, η, ζ) にパラレルスプリッティングで扱う場合、計算安定条 件は以下のようになる。

$$C_3 \equiv |C_{\xi}| + |C_{\eta}| + |C_{\zeta}| \le 1.25 \tag{2.1.23}$$

ここで C_{ξ} , C_{η} , C_{ζ} は、それぞれ ξ , η , ζ 方向のクーラ ン数である。asuca でも通常この方法を用いているが、 積分時間間隔に対する (2.1.23) 式の制約は、台風のよ うな強い上昇流と強風を伴った現象を扱う場合には、 かなり厳しいものになりうる。この制約を緩和するた め、鉛直移流による時間変化率を評価する際に、3 次 元の移流の計算安定条件を考慮した時間分割を導入し ている。

鉛直移流の時間分割は、 Δt の RK3 (「RK_long」ルー プ)の1段階目、2段階目、3段階目のそれぞれを、 C_3 の 大きさ (それぞれ各段階の積分時間間隔 $\Delta t_{rk} = \Delta t/3$, $\Delta t/2$, Δt を使って評価される)に応じてサブステップ に分割する。サブステップは、RK3 の各段階のステッ プ全体の「鉛直移流による時間変化率」を求めるため に利用する。まずはじめに、 C_3 が 1.25 を超えたカラ ムでは、

$$|C_{\xi}| + |C_{\eta}| + \frac{|C_{\zeta}|}{N} \le 1.25$$
 (2.1.24)

を満たすように、サブステップの回数 N を決める⁶。1 回のサブステップでは、物理量 $\rho\phi$ について、以下のように鉛直移流項によって $\Delta \tau = \Delta t_{rk}/N$ の仮の時間積分を行う。仮の時間積分における仮の未来時刻及び現在時刻の値をそれぞれ上付き添字の $\tau + \Delta \tau \geq \tau$ で表し、 $\rho \geq W$ に関しては、仮の時間積分を繰り返す間は不変であるとして、現在値を上付き添字 t で表す。

$$\left(\frac{1}{J}\rho\phi\right)^{\tau+\Delta\tau} = \left\{ \left(\frac{1}{J}\rho\phi\right)^{\tau} - \left\{ \left(\frac{1}{J}\rho^{t}\phi^{\tau}W^{t}\right)_{k-\frac{1}{2}}^{k+\frac{1}{2}} \right\} \Delta\tau \right\}$$
(2.1.25)

 ϕ を仮積分値に更新しながら、サブステップをN回繰 り返すことによって、そのステップ全体の「鉛直移流 による時間変化率」 $(\partial F_{\zeta}/\partial \zeta)_{\rm rk}$ を得る。

$$\left(\frac{\partial F_{\zeta}}{\partial \zeta}\right)_{\rm rk} = \frac{1}{N} \sum_{s=0}^{N-1} \left\{ \left(\frac{1}{J} \rho^t \phi^{(\tau+s\Delta\tau)} W^t\right)_{k-\frac{1}{2}}^{k+\frac{1}{2}} \right\}$$
(2.1.26)

時間分割が発生する場合には、「音波と重力の時間分割」の場合と同様(図 2.1.2)に RK3 の各段階それぞれを RK3 に置き換え、RK3 の入れ子構造にする。

ここまで説明したように、この時間分割は N 回の サブステップによって仮の時間積分をしていくことで、 RK3 の各段階のステップ全体の時間変化率を求めよう とする方法である。実際の時間積分は、水平移流項と この方法により求めた鉛直移流項とを合わせて通常の RK3 により行われる。この方法により、積分時間間隔 に対する制約が緩和される⁷。

⁵ たとえば 3 段階目の分割回数 nsound は $(\Delta t)/(\Delta x/C_s) = (100/3)[s]/(5000[m]/400[m/s]) = 2.67 を整数に切り上げる$ $ことで決める。ここで、<math>C_s$ は音速で asuca では 400 m/s と している。

⁶ MSM, LFM では鉛直方向の CFL 条件を破るような上 昇流に対して、 $|C_{\zeta}|$ を1に近づけるような減衰項(WRF-ARW(Skamarock et al. 2008)で採用されている Vertical Velocity Dampingの項)を付加しているため、サブステッ プ数 N が極端に大きくなることはなく、したがって計算時 間が極端に延びることはない。

⁷ サブステップによって実際に時間積分を行えば、積分時間 間隔に対する制約はなくなる。しかし、この選択肢は asuca のソースコード構造上の理由で実現が容易ではなかった。

図 2.1.2 ショートタイムステップへの時間分割の模式図。 Δt の RK3 の 1 段階目 (1st.)、2 段階目 (2nd.)、3 段階目 (3rd.) がそれぞれ、1 回 (分割なし、 $\Delta \tau_1 = \Delta t/3$)、2 回 ($\Delta \tau_2 = \Delta t/4$)、3 回 ($\Delta \tau_3 = \Delta t/3$)のショートタイムステップに分割 される場合。

計算安定性をさらに高めるため、時間分割が発生し たカラムでは、水平と鉛直移流のシーケンシャルスプ リッティングを併用する。まず、水平移流項によって Δt_{rk} の仮の時間積分を行う。仮の時間積分における仮 の未来時刻の値を上付き添字の H*で表す。

$$\left(\frac{1}{J}\rho\phi\right)^{H*} = \left(\frac{1}{J}\rho\phi\right)^{t} - \left\{\left(\frac{1}{J}\rho\phi U\right)_{i-\frac{1}{2}}^{i+\frac{1}{2}} + \left(\frac{1}{J}\rho\phi V\right)_{j-\frac{1}{2}}^{j+\frac{1}{2}}\right\}\Delta t_{rk}$$

$$(2.1.27)$$

この式で得られた、水平移流項による仮の時間積分を 行った後の状態を、(2.1.25) 式の最初のサブステップ の入力として用いる。シーケンシャルスプリッティン グで時間積分する場合の計算安定条件は、パラレルス プリッティングの場合の(2.1.23) 式に比べ、

$$\max\left\{ \left(|C_{\xi}| + |C_{\eta}| \right), |C_{\zeta}| \right\} \le 1.25 \tag{2.1.28}$$

のように緩和される効果があるため、この方法を併用 することで計算安定性が向上する。一方、この方法を 用いると、移流において保たれるべき形状が仮積分の 順番に依存して変形してしまうため⁸、時間分割が発生 するような場に対してのみ計算安定性を確保する目的 で適用している。

以上の鉛直移流の時間分割の手続きをまとめると、

- RK3の各段階について、(2.1.24) 式からサブステップの回数 N を決める、
- N > 1 の場合は (2.1.27) 式により、水平移流項に よる Δt_{rk} の仮の時間積分を行う、
- 3. この仮積分値をベースに、(2.1.25) 式により、鉛 直移流項による $\Delta \tau = \Delta t_{rk}/N$ の仮の時間積分を N 回行う、

4. (2.1.26) 式により、RK3 の各段階のステップ全体 との「鉛直移流による時間変化率」を得る、

という流れになる。この手続きで得られた時間変化率 と水平移流による時間変化率とを合わせて RK3 で時 間積分を行う。

第60号からの変更点

この時間分割は、MSM への導入に際して計算安定 性を確保するために新しく導入した。第2.1.6 項(3)で 導入の背景を述べる。

(4) 落下速度を持つ水物質の鉛直移流の時間分割 水物質の式の鉛直移流項

水物質の大気速度からの相対的な落下速度 $w_{t\alpha}$ は、 水物質の混合比 q_{α} の関数として雲微物理過程により診 断される(第2.3.2 項を参照)。落下速度を持つ水物質 は、水平方向には大気速度で移流し((2.1.14)式の右辺 第1項、第2項)、鉛直方向には大気の鉛直速度と落下 速度を足し合わせた速度で鉛直移流する((2.1.14)式 の右辺第3項)ものとして、力学過程の移流として統 一的に扱う。このとき、鉛直方向のクーラン数($C_{t\zeta} = (W + W_{t\alpha})\Delta t/\Delta \zeta$)に応じて、鉛直方向の移流項を短 い積分時間間隔 $\Delta \tau$ のサブステップに分割して時間積分 する。時間分割せずに Δt で計算を行う項を $R_{q\alpha}$ とお いて、(2.1.14)式を離散化した式は次式のようになる。

$$\frac{\partial}{\partial t} \left(\frac{1}{J} \rho q_{\alpha} \right) = - \left(\frac{1}{J} \rho q_{\alpha} (W + W_{t\alpha}) \right)_{k - \frac{1}{2}}^{k + \frac{1}{2}} + R_{q\alpha}$$
(2.1.29)

ただし、

$$R_{q\alpha} = -\left(\frac{1}{J}\rho q_{\alpha}U\right)_{i-\frac{1}{2}}^{i+\frac{1}{2}} - \left(\frac{1}{J}\rho q_{\alpha}V\right)_{j-\frac{1}{2}}^{j+\frac{1}{2}} + \frac{1}{J}F_{\rho\alpha} + \frac{1}{J}D_{\rho\alpha}$$
(2.1.30)

⁸ 対策として、先に仮積分する方向をステップごとに変更す る方法 (Strang splitting; たとえば Durran (2010) などを 参照) もとられるが、asuca では計算効率の観点で鉛直移流 のフラックスを先に計算するのは難しい。

上記の式から ρq_{α} の未来値を求める。短い時間積分 における未来時刻及び現在時刻の値をそれぞれ上付き 添字の $\tau + \Delta \tau \geq \tau$ で表し、 $\rho, W, R_{q\alpha}$ に関しては、短 い時間積分を繰り返す間は不変であるとして、現在値 を上付き添字 t で表す。

$$\left(\frac{1}{J}\rho q_{\alpha}\right)^{\tau+\Delta\tau} = \left(\frac{1}{J}\rho q_{\alpha}\right)^{\tau} - \Delta\tau \left\{ \left(\frac{1}{J}\rho^{t}q_{\alpha}^{\tau}(W^{t}+W_{t\alpha}^{\tau})\right)_{k-\frac{1}{2}}^{k+\frac{1}{2}} \right\} + R_{q_{\alpha}}^{t}\Delta\tau$$

$$(2.1.31)$$

 $\Delta \tau$ は、各カラムごとに、カラム内の $|C_{t\zeta}|$ の最大から 以下のように決める。

$$\Delta \tau = \begin{cases} \Delta t & (\max(|C_{t\zeta}|) \le 1) \\ \beta \frac{\Delta t}{\max(|C_{t\zeta}|)} & (\max(|C_{t\zeta}|) > 1) \end{cases}$$

$$(2.1.32)$$

ここで、 β はクーラン数に対してどの程度の割合で短 い積分時間間隔をとるかを決める定数であり、 $\beta = 0.9$ として計算を行っている。

 $\Delta \tau$ で1回時間積分すると、残りの積分すべき時間 は $\Delta t' = \Delta t - \Delta \tau$ となる。 $\Delta t'$ についても短い積分時 間間隔を診断し、そのうえで時間積分する。残りの時 間がゼロになるまでこれを繰り返す。時間分割された サブステップの時間積分も RK3 で行う。

質量保存の式、運動量保存の式における「落下速度を 持つ水物質の鉛直移流」による変化の項

水物質の式の鉛直移流項について、たとえば $\Delta \tau_1$ と $\Delta \tau_2$ に分割した場合、質量保存の式の「落下速度を持 つ水物質の鉛直移流」による質量変化の項(PRC 項と する)は以下のように評価する。

$$PRC = -\sum_{\alpha = \text{sed}} \left(\frac{1}{J} \rho q_{\alpha} \left(W + W_{t\alpha} \right) \right)_{k-\frac{1}{2}}^{k+\frac{1}{2}}$$
$$= -\left(\sum_{\alpha = \text{sed}} \text{FLUX}_{\alpha} \right)_{k-\frac{1}{2}}^{k+\frac{1}{2}}$$
(2.1.33)

$$FLUX_{\alpha} \equiv \frac{1}{\Delta t} \left\{ \frac{1}{J} \rho^{t} q_{\alpha}^{t} (W^{t} + W_{t\alpha}^{t}) \Delta \tau_{1} + \frac{1}{J} \rho^{t} q_{\alpha}^{t+\Delta\tau_{1}} (W^{t} + W_{t\alpha}^{t+\Delta\tau_{1}}) \Delta \tau_{2} \right\}$$

$$(2.1.34)$$

FLUX_αは「落下速度を持つ水物質 α の鉛直移流」に よりセル境界を通過する質量フラックスを表す。PRC 項は長い積分時間間隔 Δt の時間変化率として質量保存 の式の時間積分に反映される。運動量保存の式 (2.1.10) 式、(2.1.11) 式、(2.1.12) 式 の「落下速度を持つ水物 質の鉛直移流」による運動量変化の項も、FLUX_{α} か ら求める。

第60号からの変更点

質量保存の式、運動量保存の式における「落下速度 を持つ水物質の鉛直移流」による変化の項の扱いを変 更した。第 2.1.6 項 (2) で説明する。

2.1.5 側面·上部境界条件

asuca は有限体積法で離散化しており、個々のセル ではそのセル境界のフラックスを介して物理量が出入 りする。計算領域の側面境界においても同様に計算領 域境界のフラックスを介して物理量が計算領域の内外 に出入りする。この計算領域境界上の出入りを移流ス キームで評価するため、それより広い領域のモデル(以 下、外側モデルと呼ぶ)から境界値を用意する⁹。上部 境界からの出入りはないものとしている(上部境界に おける W = 0)。

また、外側モデルの出力値から境界値を用意するこ とを想定すると、側面境界値は外側モデルから空間・ 時間分解能に応じた内挿処理により求める。これに関 連して、計算領域内の質量の時間変化が外側モデルの それに追随するように側面境界の質量フラックスを調 節している。

これらの境界は、外側の情報を反映させるために人 為的に設定したものであり、自然界には存在しない。そ のため、境界に起因した波の生成・反射をなるべく少 なくすることが必要となる。その方法としてレイリー ダンピングを用いている。レイリーダンピングは、予 報変数 $\rho', \rho u, \rho v, \rho w, (\rho \theta_m)', \rho q_\alpha$ の時間変化率に、以 下のように外側モデルの値に近づける効果を加えるも のである。

$$\frac{\partial \phi}{\partial t} = -m\left(x, y, z\right)\left(\phi - \phi_{\text{ext}}\right) \tag{2.1.35}$$

ここで下付き添字の ext をつけたものは、外側モデル から内挿で求めた値である。なお、 $\rho w_{\text{ext}} = 0$ とする。 m(x, y, z)はダンピングの強度を決めるパラメータ である。

$$m(x, y, z) = \max(m_x, m_y, m_z)$$
 (2.1.36)

$$m_x = \begin{cases} \gamma_h \sin^2 \left[\frac{\pi}{2} \left(1 - \frac{d_x}{d_h} \right) \right] & (d_x < d_h) \\ 0 & (d_x \ge d_h) \end{cases}$$

$$(2.1.37)$$

⁹ MSM は GSM から、LFM は MSM から境界値を用意。

$$m_y = \begin{cases} \gamma_h \sin^2 \left[\frac{\pi}{2} \left(1 - \frac{d_y}{d_h} \right) \right] & (d_y < d_h) \\ 0 & (d_y \ge d_h) \end{cases}$$

$$(2.1.38)$$

$$m_z = \begin{cases} \gamma_v \sin^2 \left[\frac{\pi}{2} \left(1 - \frac{d_z}{d_v} \right) \right] & (d_z < d_v) \\ 0 & (d_z \ge d_v) \end{cases}$$

$$(2.1.39)$$

ここで d_x, d_y, d_z は側面・上部境界からの距離を、また d_h, d_v はそれぞれ、側面と上部でダンピングをかける 範囲を表す。また γ_h, γ_v は、外部から経験的に与えら れるパラメータである。

側面・上部境界の詳細は、以下の変更点の他は河野・ 荒波 (2014) を参照されたい。

第60号からの変更点

レイリーダンピングのかけかたについて、河野・荒 波 (2014) では、予報変数ではなく u, v, w, θ_m に対して レイリーダンピングをかけていた点に違いがある。変 更の背景は第 2.1.6 項 (5) で述べる。

2.1.6 数値予報課報告・別冊第 60 号以降の変更と その理由

第2.1.2 項から第2.1.5 項で、現状の asuca の力学過 程の概要を説明し、それぞれの項の最後には「第60号 からの変更点」を補足してきた。変更点を並べると、

- (a) 気圧傾度力項の扱いの変更(第2.1.2項)
- (b) 質量保存の式、運動量保存の式における「落下速 度を持つ水物質の鉛直移流」項の扱いの変更(第 2.1.2 項と第 2.1.4 項 (4))
- (c)「鉛直移流の時間分割」の導入(第2.1.4項(1)と(3))
- (d)時間積分構造における MSM, LFM の積雲対流パ ラメタリゼーションの組み込み方(第2.1.4項(1))
- (e)時間積分構造における MSM の凝結計算の組み込み方(第2.1.4項(1))

(f) レイリーダンピングのかけかたの変更(第2.1.5項) である。

このうち (d) の「LFM の積雲対流パラメタリゼー ション」については、対流の立ち上がりの効果を狙っ て LFM に導入したことを指す(第 2.2.4 項を参照)。 この他は、2017 年 2 月の MSM への導入に向けた開発 の中での変更である¹⁰。LFM への導入以降の、MSM への導入に向けた asuca の力学過程の開発では、LFM に比べて水平格子間隔が大きくなること、積分時間間 隔 Δt が長くなること、鉛直層数増強も同時に計画し たことにより鉛直層間隔が小さくなること¹¹、といっ た点に特徴があり、その中で顕在化した課題に対応し ている。以下、(a), (b), (c), (e), (f) の順に変更内容と 背景を説明する。(d) の必要性は、第 2.2 節を参照され たい。

(1) 気圧傾度力項の扱いの変更

変更の内容

x 方向の運動量保存の式((2.1.10)式)を例に説明す る。河野ほか (2014) では、気圧傾度力項(PGF 項と する)を以下のようにしていた。

$$PGF = -\gamma R_d \Pi \left\{ \frac{\partial}{\partial \xi} \left(\frac{1}{J} \xi_x \left(\rho \theta_m \right)' \right) + \frac{\partial}{\partial \eta} \left(\frac{1}{J} \eta_x \left(\rho \theta_m \right)' \right) + \frac{\partial}{\partial \zeta} \left(\frac{1}{J} \zeta_x \left(\rho \theta_m \right)' \right) \right\}$$

$$(2.1.40)$$

これに対し、(2.1.10) 式では、以下のようにメトリッ クが空間微分の外に出る。

$$PGF = -\gamma R_d \Pi \left\{ \frac{1}{J} \xi_x \frac{\partial}{\partial \xi} \left(\rho \theta_m\right)' + \frac{1}{J} \eta_x \frac{\partial}{\partial \eta} \left(\rho \theta_m\right)' + \frac{1}{J} \zeta_x \frac{\partial}{\partial \zeta} \left(\rho \theta_m\right)' \right\}$$

$$(2.1.41)$$

変更の背景

MSM の格子間隔での離散化誤差の拡大に伴う、高 度場予測の系統誤差拡大への対策として変更した。河 野ほか (2014) では、運動量保存の式の一般座標系への 変換過程において、

$$\frac{\partial}{\partial\xi} \left(\frac{1}{J}\xi_x\right) + \frac{\partial}{\partial\eta} \left(\frac{1}{J}\eta_x\right) + \frac{\partial}{\partial\zeta} \left(\frac{1}{J}\zeta_x\right) = 0$$
(2.1.42)

の恒等式を用いて、(2.1.41) 式から (2.1.40) 式への式 変形を行っていた¹²。すなわち、離散系で書くと以下 のような変形になる。

$$PGF = -\gamma R_{d}\Pi \left\{ \left(\frac{1}{J} \xi_{x} \left[(\rho \theta_{m})' \right]_{i-\frac{1}{2}}^{i+\frac{1}{2}} + \frac{1}{J} \eta_{x} \left[(\rho \theta_{m})' \right]_{j-\frac{1}{2}}^{j+\frac{1}{2}} + \frac{1}{J} \zeta_{x} \left[(\rho \theta_{m})' \right]_{k-\frac{1}{2}}^{k+\frac{1}{2}} \right) + \left(\frac{\left[\frac{1}{J} \xi_{x} \right]_{i-\frac{1}{2}}^{i+\frac{1}{2}} + \left[\frac{1}{J} \eta_{x} \right]_{j-\frac{1}{2}}^{j+\frac{1}{2}} + \left[\frac{1}{J} \zeta_{x} \right]_{k-\frac{1}{2}}^{k+\frac{1}{2}} \right) (\rho \theta_{m})' \right\}$$

$$(2.1.43)$$

¹⁰ (a), (b), (c), (f) の変更は、MSM への asuca 導入と同時 期に、LFM へも反映されている。

¹¹ LFM の鉛直層数は今後増強する計画。

¹² この式変形は、フラックスの発散の形で表される、いわゆ るフラックス形式への変形を意識したもの。ただし、(2.1.40) 式においても Π が空間微分の外に出ているので PGF 項全体 としてはフラックス形式にはなっていない。

この式の右辺の下線部は (2.1.42) 式を離散化したも ので、この項をゼロと見做して (2.1.41) 式に追加し、 (2.1.40) 式への変換につなげていた。しかし、MSM へ の導入に向けた開発の中で(LFM に比べて)水平格子 間隔が大きくなったことで、この項の離散化誤差が顕 在化して無視できないものとなり、高度場の予測に大 きな系統誤差として現れるようになった。この高度場 予測の悪化を防ぐため、(2.1.41) 式を変形せずに用い ることとした。

(2.1.42) 式の離散化誤差自体を小さくすることは課 題として残っており、第 2.1.7 項で触れる。

(2) 質量保存の式、運動量保存の式における「落下速 度を持つ水物質の鉛直移流」項の扱いの変更 変更の内容

河野ほか (2014) では、質量保存の式、運動量保存の 式における鉛直移流項について、「大気速度による鉛 直移流」項と「落下速度による鉛直移流」項に分けて 扱っていた。これを、「落下速度を持たない成分の鉛直 移流」項と「落下速度を持つ成分の鉛直移流」項に分 けて扱うように変更した。すなわち、質量保存の式の 鉛直移流項を ADVW として、

$$ADVW = -\frac{\partial}{\partial\zeta} \left(\frac{1}{J}\rho W\right) - \sum_{\alpha} \frac{\partial}{\partial\zeta} \left(\frac{1}{J}\rho q_{\alpha} W_{t\alpha}\right) \quad (2.1.44)$$

から

$$ADVW = -\frac{\partial}{\partial\zeta} \left(\frac{1}{J}\rho_b W\right) - \sum_{\alpha = \text{sed}} \frac{\partial}{\partial\zeta} \left(\frac{1}{J}\rho q_\alpha \left(W + W_{t\alpha}\right)\right)$$
(2.1.45)

へと変更している。

変更の背景

計算不安定対策として変更した。第2.1.4項(4)で述 べたように、落下速度を持つ水物質は、鉛直方向には 大気の鉛直速度と落下速度を足し合わせた速度で鉛直 移流する((2.1.14)式の右辺第3項)ように扱う。「大 気速度による鉛直移流」項と「落下速度による鉛直移 流」項を別々に評価する場合には計算不安定の要因と なりうるためである¹³。水物質の式については、大気速 度と落下速度を足し合わせた速度で扱っていたが、質 量保存の式、運動量保存の式では、「大気速度による鉛 直移流」項と「落下速度による鉛直移流」項に分けて 評価する形になっていた。MSM への導入に向けた開発 において、LFM に比べて積分時間間隔が長くなり、層 間隔が小さくなることから、この問題が顕在化し、上 記の問題に起因して計算不安定となる事例が見られた。 そのため、水物質の式と同様に、大気速度と落下速度 を足し合わせで扱う (2.1.45) 式のように変更した。

(3) 鉛直移流の時間分割の導入

変更の内容

第2.1.4項(3)で方法を説明した「鉛直移流の時間分割」を新たに導入した。

変更の背景

計算不安定対策として導入した。asuca では、 ξ , η , ζ 方向の移流項をそれぞれ独立に評価しており、計算安 定条件は (2.1.23) 式である。MSM, LFM の運用では、 その計算実行前に予め境界値から予報時間内の水平風 速の最大を見積もり、必要に応じて水平方向の計算安 定条件を満たすように積分時間間隔 Δt を基本設定¹⁴ より短くする仕組みがある。上層風のような水平方向 のスケールの大きな流れは、境界値から見積もった値 と MSM, LFM で予測した値が大きくかけ離れないと 期待され、実際にこの仕組みは機能している¹⁵。

一方、数値予報モデルの方程式系や水平格子間隔に よって大きく表現が異なりうる、局所的な鉛直流や発 達した低気圧に伴う局所的な水平風については予め境 界値から見積もることは難しい。MSM への導入に向け た課題として、下層の水平風速が強いうえに上昇流も 強い、台風の壁雲付近で計算不安定となる事例があっ た。そこで、計算効率の低下を抑えつつ、このような 計算不安定を防ぐ方法として鉛直移流の時間分割を導 入した。

(4) 時間積分構造における MSM の凝結計算の組み込 み方

変更の内容

MSM の凝結計算は RK3 ループ中で評価するように 組み込んだ。LFM の雲物理過程は RK3 ループの後に 組み込んでおり、この点が異なる(図 2.1.1 を参照)。

変更の背景

MSM での物理過程の組み込みに際しての検討の結 果、凝結計算について LFM とは異なる組み込みをし た¹⁶。これは、凝結と上昇流の正のフィードバックの 関係をより小さな時間間隔で評価することにより、強 い上昇流の表現を緩和することを狙っている。MSM へ の導入に向けた開発の中で、これにより、小スケール の低気圧を発達させすぎる傾向を緩和した事例があっ

¹³例として、あるセルに雨が存在し、大気速度 10m/s、落下 速度 -10m/s によって静止する場合を考えてみる。足し合 わせた速度で考えれば、そのセルの雨は変化しない。別々に 評価すると、そのセルから大気速度 10m/s で流出する時間 変化と落下速度 -10m/s で流出する時間変化が加わり、そ のセルの雨は計算上は減少してしまう。なお、「大気速度に よる鉛直移流」項でいったん雨を移流させた後、その分布に ついて「落下速度による鉛直移流」項を評価するような扱い (いったん上昇して、落下して戻る)であれば、この問題は 生じない。

¹⁴ MSM は 100/3 [s], LFM は 50/3 [s]。

¹⁵ 実績としては、LFM において冬季に数日間程度、基本設 定より短くなることがある。

¹⁶ 第 60 号からの変更とは言えないかもしれないが、LFM と は異なるという観点でこの項に述べる。

た。また、LFM では1ステップの最後で過飽和状態 を解消することも RK3 ループの後に凝結計算を組み 込んだ理由の一つであったが、MSM の雲物理過程は LFM のそれとは異なり、格子平均の氷過飽和を許容す る(第2.3節を参照)点も考慮した。

物理過程の組み込みには、改善の可能性がまだ多く 残っていると考えており、第 2.1.7 項で今後の課題とし て述べる。

(5) レイリーダンピングのかけかたの変更 変更の内容

河野・荒波 (2014) では、予報変数ではなく u, v, w, θ_m に対してレイリーダンピングをかけていたが、予報変数 $\rho', \rho u, \rho v, \rho w, (\rho \theta_m)', \rho q_\alpha$ にかけるように変更した。

変更の背景

河野・荒波 (2014) で、予報変数ではなく u, v, w, θ_m に対してレイリーダンピングをかけていた背景には、 密度 ρ にレイリーダンピングをかけない方針があった ことによる。しかし、既に河野・荒波 (2014) でも言及 していたが、LFM への導入に向けた開発の中で、初期 場から発生した音波が側面境界で反射する様子が見ら れ、この問題への対応として、側面境界で密度 ρ にレ イリーダンピングをかけることにより、音波の側面境 界での反射を防ぐこととした。そうすると、予報変数 そのものにレイリーダンピングをかける方法が、変数 変換も不要となって計算効率もよい。なお、上部境界 では ρ にレイリーダンピングをかけない。上部の層で のみ外側モデルの質量に近づけようとすると、地上気 圧場が外側モデルと離れてしまったためである。

2.1.7 まとめと今後の課題

この節では、第 60 号に述べられた asuca の力学過 程の説明に基づき現状の MSM, LFM の設定の概要を まとめるとともに、第 60 号からの変更点を説明した。 asuca は、その開発の狙いとした保存性、計算安定性、 計算効率の向上等を達成しながら、物理過程の改良も含 めて当初開発の主目標であった LFM への導入、MSM への導入がなされた。

一方、直面する課題改善を最優先としたため、短期 的な方法と認識しつつ対応した課題もある。また、現 業運用の中で明らかになっている課題がある。以下、こ れらの課題のうち、この節に関連するものを述べる。

(1) 数値予報課報告・別冊第 60 号以降の変更点に関 する課題

第2.1.6項(1)の気圧傾度力の扱いの変更により、気 圧傾度力に関して(2.1.42)式の離散化誤差の影響を回 避したことを述べた。しかし、移流項にもこの関係が 含まれているため、(2.1.42)式の離散化誤差を小さく する必要性は残っている¹⁷。MSM, LFMでは、水平方 向の座標として地図投影法による直交曲線座標を用い ていることを述べた。メトリックの計算も地図投影法 を利用して解析的に求めており、(2.1.43)式の下線部 の第1項の ξ_x については m_1 に基づいて評価し、第2 項の η_x は直交性によりゼロとしている。これは、離散 化したセルを考えると、セルを挟む両側の ξ 面境界の 面積の違いを考慮する一方、 η 面は ξ 面に直交すると 見做していることになる。この $\eta_x = 0$ と見做すこと をやめるには、メトリックを地図投影法を用いて解析 的に求める方法ではなく、離散化格子の座標に基づき 数値的に求める方法に変更していくことが方向性と考 えられる。今後、計算領域を広げていく場合に問題が 顕在化する可能性があるため、引き続き検討を行って いく。

第2.1.6項(3)で「鉛直移流の時間分割」の新たな導入について説明した。現状は、第2.1.4項(3)で方法を述べた「鉛直移流の時間分割」と、第2.1.4項(4)の「落下速度を持つ水物質の鉛直移流の時間分割」が別の 仕組みになっている。今後、両者を統一的に扱うこと も、特にコードの整理(開発の効率化)の観点で検討 が必要と考えている。

第2.1.6項(4)では、MSMの凝結計算をRK3の中 に組み込んだことを説明した。これは、格子スケール の強い上昇流と小低気圧の過発達の緩和を狙ったもの であるが、これらの課題は、次に述べるようにMSM, LFMの課題として依然として見られているため、引き 続き改善に取り組む。また、このような「物理過程の 組み込み」の方法の違いによって、予測精度や計算安 定性の向上につながる可能性はある。このことについ ては、この後に「物理過程の組み込みの課題」でも言 及する。

(2) MSM, LFM の予測で見られている課題

対流の表現に関する課題の一つとして、格子スケー ルの強い上昇流と小低気圧の過発達の問題がある。こ の問題は、JMA-NHMを用いていた MSM, LFM にお いても計算不安定の要因となり、様々な対処がなされ てきた(斉藤・石田 2008; 石田 2008b)。この問題の 原因の一つとして積乱雲と周辺大気との水平混合の表 現不足が指摘されており、物理過程のパラメタリゼー ションとしての水平拡散について第 2.2.5 項で述べら れている。また、上昇流と凝結の正のフィードバック について第 2.3.4 項で述べるように、雲物理過程と力 学過程との結合手法について調査する必要がある。

別の課題として、冬季の日本海上などにおいて格子 スケールの直線的な雲が、数値予報モデルのx軸(ま たはy軸)に沿って表現されることがある。これは以 下のように解釈されている。「x軸(またはy軸)に平 行な風向場」が継続する場合に、ある格子で雲が形成 されx軸(またはy軸)方向に移流していく。asucaの 移流スキームは風上差分で構成しており、風速(クー

¹⁷ たとえば藤井 (1994) に一様流保存の問題として解説があ る。

ラン数)に依存した拡散性が内在している。そのため、 x軸(または y軸)方向には移流スキームの拡散性によ り元の形状が引き伸ばされる。一方、他に数値拡散は 加えていないため、移流方向以外には形状を保つ。本 来の現象を考えると、小さいスケールの雲が形成され て風下に流されていく場合、移流方向以外にも混合が 起こるはずである。このような水平方向の混合につい て、たとえば水平方向の乱流による輸送の効果を加え ることなど、何らかの方法で数値予報モデルに取り込 んでいく必要がある。また、別のアプローチとしては、 asuca の移流の扱いには設定したx軸(またはy軸)に 応じた方向により表現に依存性があると捉え、この方 向依存性を軽減することも選択肢の一つである。小さ いスケールの雲の生成と下流への移流は、線状降水帯 の形成メカニズムに関わる表現と考えられ、その観点 でも調査を進める予定である。

(3) 物理過程の組み込みの課題

この節で「物理過程の組み込み」と言及してきた、ど のように物理過程を組み込むかの問題は、「力学過程と 物理過程とのカップリング」(数値予報モデル内におけ る計算順序、座標系の異なる過程間でのエネルギーの 交換等)として、近年、その重要性の認識が高まり、た とえばカップリング手法によって降水や対流の振る舞 いが変わることなどが指摘されるようになった (Gross et al. 2018)。力学過程、各物理過程が精緻でなかった 時代は、それぞれの高度化が予測精度向上に寄与して きた。一方、これらの過程が成熟化するにつれて、力 学過程と物理過程のカップリング手法が予測精度に与 える影響が相対的に高くなっている。

asuca においても、荒波・石田 (2014)、石田ほか (2014)による、数値予報モデル内における各過程の計 算順序、力学過程と物理過程で用いる変数の違い、組 み込み方法の計算効率、といった点についての説明、第 2.1.6 項 (4) で述べた MSM での凝結計算の組み込みの 検討例がある。また、力学過程と物理過程の整合性の 向上という観点で、定積を仮定した力学過程と定圧を 仮定した物理過程の結合方法について議論がなされて おり、より整合的な結合方法による試験では、音波の 伝播が抑制されること、一方で、結合方法の影響が懸 念されていた強い上昇流表現の変化は大きくないこと を示唆する結果が得られている (Kawano 2018)。

メソモデルに期待される豪雨予測につながる積雲対 流の数値予報モデルでの表現として、力学過程と物理 過程の役割分担を検討し、その相互作用を改善してい くことは重要な課題と考えている(第2.2.5項、第2.3.4 項も参照)。今後も予測精度、計算安定性、対流の振る 舞い等の観点から、力学過程、物理過程の結合方法の 見直しを継続していく。

付録 2.1.A 鉛直層設定

asuca の鉛直層配置(図 2.1.3)と MSM, LFM にお ける設定を説明する。

(1) asuca の鉛直層の配置

標高が0mである場合のモデルの鉛直座標を ζ とする。まずモデルトップ ζ_{N_z} を設定し、地表面とモデルトップの間を N_z 層の格子(セル)に分けることを考える。このセルの境界をハーフレベル¹⁸と呼び、asucaでは上下セル間の出入りを決めるwを配置する。図2.1.3では、このハーフレベルの座標値を $\zeta_{k+1/2}(k = 0, \dots, N_z)$ としている。 $\zeta_{0+1/2}$ は地表面、 $\zeta_{Nz+1/2}$ がモデルトップである。ハーフレベル(k - 1 + 1/2)とハーフレベル(k + 1/2)を境界に持つ層を第k層と数え、その層間隔を $\Delta \zeta_k$ とする。すなわち、

$$\Delta \zeta_k = \zeta_{k+1/2} - \zeta_{k-1/2} \tag{2.1.46}$$

であり、

$$\zeta_{k+1/2} = \sum_{l=1}^{k} \Delta \zeta_l \tag{2.1.47}$$

である。asuca ではハーフレベルを指定することで層 配置を設定する。

また、スカラー量を定義するレベルをフルレベルと 呼び、その座標値を ζ_k ($k = 1, \dots, N_z$)とする。フル レベルは便宜上、第k層の中央に設定する。

$$\zeta_k = \frac{1}{2} \left(\zeta_{k-1+1/2} + \zeta_{k+1/2} \right) \tag{2.1.48}$$

フルレベルに定義するスカラー量は、第 k 層のセル内 のスカラー量の体積平均である。

(2) MSM の鉛直層設定

MSM では層間隔を以下のように考える。

$$\Delta \zeta_k = a(k-1)^2 + b(k-1) + c \tag{2.1.49}$$

ハーフレベルは以下のようになる。

$$\zeta_{k+1/2} = \sum_{l=1}^{k} \Delta \zeta_l$$

= $\frac{a}{6}(k-1)k(2k-1) + \frac{b}{2}(k-1)k + ck$
(2.1.50)

この a, b, c を MSM の層設定に関する以下の考え方 (条件)から決めると、 $a \simeq 0.0521, b \simeq 4.4918, c = 20.0$ となる。

18 $\overline{}$ $\overline{}$ \overline{} $\overline{}$ \overline{} $\overline{}$ \overline{} $\overline{}$ $\overline{}$ \overline{} \overline{} $\overline{}$

図 2.1.3 asuca の鉛直層配置の模式図。実線でスカラー量 のセルを示し、その境界をハーフレベルと呼ぶ。左端に示 した層のインデックスが「整数」+1/2 であることによる。 フルレベル(点線)はハーフレベルの中央に設定する。

- モデルトップ ζ_{Nz+1/2} は 21801 m、鉛直層数 N_z は 76 層
- 3000 m までに 30 層を配置 (ζ_{30+1/2} = 3000 m)
- 最下層の層間隔 Δζ1 は 20 m

(3) LFM の鉛直層設定

LFM ではハーフレベルを以下のように与えている。

$$\zeta_{k+1/2} = \frac{b}{2}(k-1)^2 + ck \tag{2.1.51}$$

ここで、b = 11, c = 40 である。モデルトップ $\zeta_{Nz+1/2}$ は20189.5 m、鉛直層数 N_z は58 層である。

LFM の設定は、LFM への asuca の導入以前に、 JMA-NHM で運用されていた LFM のハーフレベルの 設定に合わせている。この層の決め方は (原 2008) に 解説がある¹⁹。なお、LFM には鉛直層数を 76 層にす る計画があり (本田 2018)、その際は MSM の層設定に 合わせる予定である。

付録 2.1.B Wicker and Skamarock (2002) による 3 段階ルンゲクッタ法 (RK3) と流束制 限関数を用いた場合の計算安定条件

Wicker and Skamarock (2002) が示すように、時間 積分スキームに RK3 を、移流スキームに 3 次精度風上 差分を用いた場合の移流の計算安定条件はクーラン数 C_1 について $|C_1| \le 1.88$ である。asuca の移流スキー ムは 3 次精度風上差分を基本として、単調性を保つた めに流束制限関数を用いており、分布が滑らかではな い場では 1 次精度風上差分に切り替わる。時間積分ス キームに RK3 を、移流スキームに 1 次精度風上差分

図 2.1.4 時間積分スキームに RK3 を、移流スキームに 1 次精 度風上差分を用いた場合の計算安定領域。横軸に $k\Delta x$ 、縦軸 にクーラン数をとり、 $|f^{n+1}/f^n|$ をプロット。 $|f^{n+1}/f^n| >$ 1 の計算不安定領域を濃い灰色で示す。

を用いた場合の移流の計算安定条件は、以下で示すように $|C_1| \le 1.25$ となり、これが asuca における移流の計算安定条件となる。

以下の常微分方程式を考える(λ は複素数)。

$$\frac{df}{dt} = \lambda f \tag{2.1.52}$$

この厳密解は $f(t) = f_0 e^{\lambda t}$ である。 $z = \lambda \Delta t$ とする と、タイムレベルを n として、 $f^{n+1} = e^z f^n$ と表され る。 $|f^{n+1}/f^n| \le 1$ を計算安定の条件とすると、 λ の実 数部 $\operatorname{Re}(\lambda) \le 0$ なら安定である。

一方、RK3 を用いた数値解では、 $f^{n+1} = (1 + z + z^2/2 + z^3/6)f^n$ であるので²⁰、その計算安定条件は、

$$|f^{n+1}/f^n| = |1+z+z^2/2+z^3/6| \le 1 \quad (2.1.53)$$

である²¹。

次に以下の1次元移流方程式を考える。

$$\frac{\partial \tilde{f}}{\partial t} = -u \frac{\partial \tilde{f}}{\partial x} \tag{2.1.54}$$

ここで、u は空間一様の定数でu > 0とする。 $\tilde{f}(x,t) = f(t)e^{ikx}$ の解を仮定し、1 次精度風上差分 を適用すると、(2.1.54) 式の右辺の空間微分は、

$$\frac{\partial \tilde{f}}{\partial x}\bigg|_{j} \simeq \frac{\tilde{f}_{j} - \tilde{f}_{j-1}}{\Delta x} = \frac{1 - e^{i\theta}}{\Delta x}\tilde{f}_{j}$$
(2.1.55)

²⁰ 松林ほか (2014b) の付録 2.2.B を参照されたい。

¹⁹ JMA-NHM では、ハーフレベルをフルレベル間の中央に とる、境界条件のための層が上下に1層ずつ配置される、と いった点に asuca の層配置との違いがある。

²¹ z が純虚数の場合は、松林ほか (2014b) の付録 2.2.B で示したように $|z| \leq \sqrt{3}$ が計算安定条件。
と書ける。ここで、 $\theta = -k\Delta x$ とし、jは離散化された空間での位置を表す。したがって、(2.1.54)式は以下のように書ける。

$$\frac{df_j}{dt} = \frac{u}{\Delta x} (e^{i\theta} - 1) f_j \tag{2.1.56}$$

ここで、 $C_1 = u\Delta t/\Delta x$ で定義するクーラン数を用 いて、 $z = C_1(e^{i\theta} - 1)$ とおく。全ての θ についてzが (2.1.53) 式を満たすことが、計算安定条件となる。 横軸に $k\Delta x$ 、縦軸にクーラン数をとった計算安定領域 ($|f^{n+1}/f^n| \leq 1$ の領域)を図 2.1.4 に示す。 $k\Delta x = \pi$ 、 すなわち波長 $2\Delta x$ の解に対して、 $|f^{n+1}/f^n| \leq 1$ を満 たす $|C_1| \leq 1.25$ 程度が計算安定条件となる。

参考文献

- Arakawa, A. and C. S. Konor, 1996: Vertical Differencing of the Primitive Equations Based on the Charney - Phillips Grid in Hybrid σ-p Vertical Coordinates. *Mon. Wea. Rev.*, **124**, 511–528.
- Arakawa, A. and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. *Methods in Computational Physics*, Academic Press, Vol. 17, 173– 265.
- 荒波恒平,石田純一,2014: asuca における物理過程の 組み込みの考え方.数値予報課報告・別冊第60号,気 象庁予報部,104–105.
- Durran, R., 2010: Numerical Methods for Fluid Dynamics. Springer, 516 pp.
- 藤井孝藏, 1994: 流体力学の数値計算法. 東京大学出版 会, 234 pp.
- Gross, M., H. Wan, P. J. Rasch, P. M. Caldwell,
 D. L. Williamson, D. Klocke, C. Jablonowski, D. R.
 Thatcher, N. Wood, M. Cullen, B. Beare, M. Willett, F. Lemarié, E. Blayo, S. Malardel, P. Termonia, A. Gassmann, P. H. Lauritzen, H. Johansen,
 C. M. Zarzycki, K. Sakaguchi, and R. Leung, 2018:
 Physics–Dynamics Coupling in Weather, Climate,
 and Earth System Models: Challenges and Recent
 Progress. Mon. Wea. Rev., 146, 3505–3544.
- 原旅人, 2008: 現業メソ数値予報モデルの概要. 数値予 報課報告・別冊第54号, 気象庁予報部, 18-26.
- 本田有機, 2018: NAPS10 における改良計画. 平成 30 年度数値予報研修テキスト, 気象庁予報部, 2-5.
- 石田純一,2008a: 気象庁非静力学モデルの支配方程式 系と地形に沿う鉛直ハイブリッド座標の導入. 数値 予報課報告・別冊第54号,気象庁予報部,27-43.
- 石田純一,2008b: 数値拡散の強さの変更. 数値予報課 報告・別冊第54号,気象庁予報部,54–54.
- 石田純一, 原旅人, 荒波恒平, 2014: asuca における物理

過程の実装の例.数値予報課報告・別冊第 60 号,気 象庁予報部, 106–108.

- 石田純一,藤田匡, 2014: asuca の開発理念. 数値予報 課報告・別冊第 60 号, 気象庁予報部, 19-28.
- 河野耕平, 荒波恒平, 2014: 側面・上部境界条件. 数値 予報課報告・別冊第 60 号, 気象庁予報部, 57-61.
- 河野耕平,松林健吾,石田純一,室井ちあし,2014: 定 式化.数値予報課報告・別冊第60号,気象庁予報部, 29-39.
- Kawano, K., 2018: Coupling isobaric physics with isochoric dynamics. Extended Abstracts of the 5th International Workshop on Nonhydrostatic Numerical Models, 64–64.
- 気象庁予報部, 2003: 気象庁非静力学モデル. 数値予報 課報告・別冊第 49 号, 気象庁予報部, 194pp.
- 気象庁予報部, 2014:次世代非静力学モデル asuca. 数 値予報課報告・別冊第 60 号,気象庁予報部, 151pp.
- Klemp, J. B., W. C. Skamarock, and J. Dudhia, 2007: Conservative split-explicit time integration methods for the compressible nonhydrostatic equations. *Mon. Wea. Rev.*, **135**, 2897–2913.
- Koren, B., 1993: A Robust Upwind Discretization Method For Advection, Diffusion And Source Terms. CWI Technical Report NM-R 9308, 1 -22, URL http://oai.cwi.nl/oai/asset/5293/ 05293D.pdf.
- Lorenz, E. N., 1960: Energy and Numerical Weather Prediction. *Tellus*, **12**, 364–373.
- 松林健吾, 河野耕平, 石田純一, 室井ちあし, 2014a: 移 流スキーム. 数値予報課報告・別冊第 60 号, 気象庁 予報部, 53–56.
- 松林健吾, 河野耕平, 石田純一, 室井ちあし, 2014b: 空 間離散化. 数値予報課報告・別冊第 60 号, 気象庁予 報部, 40-42.
- 松林健吾, 河野耕平, 石田純一, 室井ちあし, 2014c: 時 間離散化. 数値予報課報告・別冊第 60 号, 気象庁予 報部, 43-52.
- Saito, K., T. Fujita, Y. Yamada, J. Ishida, Y. Kumagai, K. Aranami, S. Ohmori, R. Nagasawa, S. Kumagai, C. Muroi, T. Kato, H. Eito, and Y. Yamazaki, 2006: The operational JMA Nonhydrostatic Mesoscale Model. *Mon. Wea. Rev.*, **134**, 1266–1298.
- 斉藤和夫,石田純一,2008: 適応水蒸気拡散の導入.数 値予報課報告・別冊第54号,気象庁予報部,52–53.
- Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X. Y. Huang, W. Wang, and J. G. Powers, 2008: A Description of the Advanced Research WRF Version 3. NCAR TECHNICAL NOTE, 113 pp.

- Tatsumi, Y, 1986: A Spectral Limited-area Model with Time-dependent Lateral Boundary Conditions and Its Application to a Multi-level Primitive Equation Model. J. Meteor. Soc. Japan, 64, 637– 664.
- 巽保夫, 1986: 局地スペクトルモデル. 数値予報課報告・ 別冊第 32 号, 気象庁予報部, 48-70.
- Wicker, L. J. and W. C. Skamarock, 2002: Time-Splitting Methods for Elastic Models Using Forward Time Schemes. *Mon. Wea. Rev.*, **130**, 2088– 2097.

2.2.1 はじめに

日本に豪雨や豪雪をもたらす降水システムは、積乱 雲(数 km)、積乱雲群(数 10 km)、メソ対流系(数 10 km~100 km)の階層的な構造を持っていることが 知られている(瀬古 2010; 吉崎・加藤 2007 など)。メ ソスケールモデルは水平格子間隔が数 km 程度であり、 積乱雲ひとつひとつのスケールと同程度であることか ら、積乱雲を十分には解像することはできない。その ため、力学過程・雲微物理過程で積雲対流の一部を解像 することに加え、積雲対流パラメタリゼーションで対 流の表現を補うことが必要となる。積雲対流パラメタ リゼーションを用いずに、水平格子間隔数 km 程度の モデルで降水事例をシミュレーションする場合、対流 の発生が遅れやすくなること、強い降水の集中が発生 しやすいことが経験的に知られている(永戸ほか 2012; Vosper 2015 など)。

積雲対流パラメタリゼーションは、数値予報モデル の格子サイズよりも小さいスケールの積雲対流に伴う 水の相変化や熱・水・運動量輸送の統計的な効果を表 現する。積雲対流パラメタリゼーションでは、格子内 の対流の振る舞いを何らかの仮定を基にモデル化(こ のモデルを「雲モデル」と呼ぶ)し、雲モデルから格 子スケールの物理量の時間変化率を計算する。積雲対 流パラメタリゼーションの性能は、雲モデルの精緻さ や、雲モデルで用いられる仮定と水平格子間隔等との 整合性、他の物理過程との相互作用、経験的に求めら れたパラメータによって決まる。

気象庁のメソモデル (MSM) において、水平格子間 隔 10 km の静力学モデルが採用されていた 2004 年以 前は、気象庁領域モデル (RSM) と同様、湿潤対流調 節及び Arakawa and Schubert (1974) に基づく積雲対 流パラメタリゼーションが大規模凝結過程とともに利 用されていた (萬納寺 2000)。メソモデルが気象庁非静 力学モデル (JMA-NHM; Saito et al. 2006; Saito et al. 2007) に更新された際は、Kain and Fritsch (1990) に 基づく積雲対流パラメタリゼーションが雲微物理過程 とともに利用されるようになった(藤田 2004)。その後、 MSM の水平格子間隔が5 km に高解像度化された際 は、強い降水の集中の問題を回避するため、積雲対流 パラメタリゼーションにおけるいくつかのパラメータ が調整された (石田 2005)。この当時の JMA-NHM に おける積雲対流パラメタリゼーションについては、山 田 (2003)、成田 (2008) で解説がなされている。その 後、MSM の積雲対流パラメタリゼーションには数度 の改良が適用され(荒波・原 2006;成田・森安 2010)、 降水をはじめとした予測精度向上に貢献した。また、 JMA-NHM に実装されていた積雲対流パラメタリゼー ションは、物理過程を3次元の大気モデルから独立させ たライブラリである「物理過程ライブラリ」(原 2012) に移植され、新しい非静力学モデル asuca(気象庁予報 部 2014)の物理過程として利用されるようになった。 MSM の予報モデルが JMA-NHM から asuca に更新さ れた際には、積雲対流パラメタリゼーションに大規模 な変更が加えられた (原 2017)。MSM より高解像度で 水平格子間隔が 2 km の局地モデル (LFM)では、対 流の一部を直接解像することを狙い、運用開始当初は 積雲対流パラメタリゼーションを使用していなかった (永戸ほか 2012)。その後、対流発生の遅れの改善等を 目的に、対流の立ち上がりの表現としての積雲対流パ ラメタリゼーションが利用されるようになった (河野・ 原 2014)。

本節では、本稿執筆時点(2019年12月)での MSM, LFM における積雲対流パラメタリゼーションについて、 その概要及び MSM, LFM それぞれの設定を解説した 後、今後の課題について述べる。第2.2.2 項では、MSM, LFM で用いられているマスフラックス型の積雲対流ス キームの一種である Kain and Fritsch (1990)をもとに した積雲対流パラメタリゼーションの定式化について 解説する。第2.2.3 項では、MSM における積雲対流パ ラメタリゼーションの設定について、MSM の予報モ デルの asuca への更新に合わせて変更された部分を中 心に解説する。第2.2.4 項では、LFM における積雲対 流パラメタリゼーションの設定について、LFM の予報 モデルの asuca への更新にあわせて変更された部分を 中心に解説する。第2.2.5 項では、現在の積雲対流パラ メタリゼーションの課題や今後の展望について述べる。

2.2.2 MSM, LFM における積雲対流パラメタリゼー ションの概要

物理量 ϕ の格子平均値、格子平均値からの偏差をそ れぞれ $\overline{\phi}$, ϕ' とする。サブグリッドスケールの対流に よる、 $\overline{\phi}$ の時間変化率は以下で表される。

$$\rho \left(\frac{\partial \overline{\phi}}{\partial t}\right)_{\text{convection}} = -\frac{\partial \rho \overline{\phi' w'}}{\partial z} + S_{\phi} \qquad (2.2.1)$$

ここで、 t, z, ρ, w は時間 [s]、高度 [m]、大気の密度 [kg m⁻³]、鉛直流 [m/s]、 $\overline{\phi'w'}$ と S_{ϕ} はそれぞれ サブグリッドスケールの輸送フラックスとソース項を 表す。

この輸送フラックスとソース項を表現するため、 MSM, LFM では、マスフラックス型の積雲対流パラ メタリゼーションの一種である Kain-Fritsch スキーム (Kain and Fritsch 1990; Kain 2004; 以下、KF スキー ム)を採用している。マスフラックススキームでは格 子内を対流性上昇流、対流性下降流、環境場の3つの 領域に分割し、それぞれの領域での質量の鉛直フラッ クス(以下、マスフラックス)を計算する。また、そ れぞれの領域内では、物理量の水平分布は一様である ことを仮定する。

KF スキームでは対流に伴う熱、水の輸送を考慮し、

¹ 氏家 将志

運動量の輸送は考慮せず、 $\overline{\phi}$ としては温位 $\overline{\theta}$ [K] および 水蒸気混合比 \overline{q}_v [kg kg⁻¹] を扱う。KF スキーム内で は、静力学平衡を仮定し、鉛直座標として気圧座標を 用いている。気圧座標の場合、(2.2.1) 式はp, g をそれ ぞれ気圧 [Pa], 重力加速度 [m s⁻²] として、以下のよ うに書き換えられる。

$$\rho \left(\frac{\partial \overline{\phi}}{\partial t}\right)_{\text{convection}} = \rho g \frac{\partial \rho \overline{\phi' w'}}{\partial p} + S_{\phi} \qquad (2.2.2)$$

以下では KF スキームで用いられる格子内の対流性 上昇流、対流性下降流の振る舞いを記述する雲モデル、 格子平均場の時間変化率の定式化、対流の強さを決め るクロージャー、積雲対流パラメタリゼーションの発動 の有無を決めるトリガーについて解説する。なお、雲モ デルの定式化の考え方、格子平均場への時間変化率の 式の導出については GSM で採用されている積雲対流 パラメタリゼーション(Arakawa and Schubert 1974; 隈 1996;氏家・下河邉 2019)と多くの共通点を含んで いる²。適宜、氏家・下河邉 (2019)の第 3.1.3 項も参照 されたい。

(1) 雲モデル、格子平均場の時間変化率の定式化 対流域の満たす方程式系

KF スキームでは、対流性上昇流域、対流性下降流 域の雲モデルとして、対流の側面から対流域への質量 の取り込み(エントレインメント)、対流域から環境場 への質量の放出(デトレインメント)を考慮した、鉛 直一次元の雲モデルを考える。このモデルでは、対流 性上昇流域、対流性下降流域は定常状態にあり、質量 の鉛直輸送が側面の質量のエントレインメント、デト レインメントとバランスしていることを仮定する。こ の場合、対流性上昇流、下降流域の質量保存則は以下 のように表される。

$$0 = \rho g \frac{\partial M^u}{\partial p} + E^u - D^u \tag{2.2.3}$$

$$0 = -\rho g \frac{\partial M^d}{\partial p} + E^d - D^d \tag{2.2.4}$$

ここで、*M*, *E*, *D* はそれぞれサブグリッドの対流のマ スフラックス [kg m⁻² s⁻¹]³、 対流域の側面からのエ

³ Kain and Fritsch (1990) 及び MSM, LFM で使用されて いる KF スキームのソースコード上では、 Δx [m] を格子間 隔として、M, E, D に格子の面積 Δx^2 を乗じたものをマス フラックス、エントレインメント、デトレインメントとして いるが、本節では、他のマスフラックス型スキームの解説と 記述を合わせることを目的に、 Δx^2 を乗じない形で表記す る。 ントレインメント [kg m⁻³ s⁻¹]、環境場へのデトレイ ンメント [kg m⁻³ s⁻¹] を表す。 上付き文字 u, d はそ れぞれ、対流性上昇流域、対流性下降流域における値 であることを示す。また、 M^u は上向きを、 M^d は下 向きを正に取っている。

対流性上昇流域、対流性下降流域の面積の格子内の それに対する比を、それぞれ σ^u (0–1), σ^d (0–1) とす ると、 M^u , M^d は以下のように定義される。

$$M^u = \rho \sigma^u w^u \tag{2.2.5}$$

$$M^d = -\rho \sigma^d w^d \tag{2.2.6}$$

質量と同様に、対流性上昇流域、対流性下降流域の 物理量 ϕ の満たす方程式も定常状態にあることを仮定 すると、以下のように表される。

$$0 = \rho g \frac{\partial M^u \phi^u}{\partial p} + E^u \overline{\phi} - D^u \phi^u + S^u_{\phi} \qquad (2.2.7)$$

$$0 = -\rho g \frac{\partial M^d \phi^d}{\partial p} + E^d \overline{\phi} - D^d \phi^d + S^d_{\phi} \qquad (2.2.8)$$

ここで、 $S_{\phi}^{u}, S_{\phi}^{d}$ はそれぞれ、対流性上昇流、対流性下降流域での ϕ のソース項で、 $S_{\phi} = S_{\phi}^{u} + S_{\phi}^{d}$ とする。具体的には、 S_{ϕ}^{u} としては水の相変化やそれに伴う潜熱、雲から降水への変換などが、 S_{ϕ}^{d} としては落下する降水の蒸発や融解などが考慮される。

格子平均場の時間変化率の定式化

環境場における上昇流を w^e とすると、輸送フラック スは以下のように表せる。

$$\rho \overline{\phi' w'} = \rho \sigma^{u} \left(\phi^{u} - \overline{\phi} \right) \left(w^{u} - \overline{w} \right) + \rho \sigma^{d} \left(\phi^{d} - \overline{\phi} \right) \left(w^{d} - \overline{w} \right) + \rho \left(1 - \sigma^{u} - \sigma^{d} \right) \left(\phi^{e} - \overline{\phi} \right) \left(w^{e} - \overline{w} \right)$$
(2.2.9)

KF スキームでは、多くのマスフラックス型のスキー ムと同様、格子内の対流性上昇流域、対流性下降流 域の面積は格子全体のそれに比べて十分小さいこと (σ^u , $\sigma^d \ll 1$)を仮定し、環境場の物理量は格子平均場 のそれで近似する ($\phi_e \sim \overline{\phi}$)。また、環境場の鉛直速度 が 0 とみなせる ($w_e \sim \overline{w} \sim 0$) ことを仮定する。これ らの仮定のもとでは、 ϕ の輸送フラックス $\overline{\phi'w'}$ は以下 のように近似できる。

$$o\overline{\phi'w'} = M^u \left(\phi^u - \overline{\phi}\right) - M^d \left(\phi^d - \overline{\phi}\right) \qquad (2.2.10)$$

(2.2.3) 式、(2.2.4) 式 (2.2.7) 式、(2.2.8) 式及び (2.2.10) 式を (2.2.2) 式に代入することで、サブグリッ ドスケールの対流に伴う → の時間変化率は、デトレイ ンメントと補償下降流(格子内の質量保存則から現れ る対流性上昇流と対流性下降流を補う下降流)の和の 形で以下のように書き換えることができる。

² GSM の積雲対流パラメタリゼーションでは格子内に異な る雲頂を持つ複数の積雲を考える(スペクトル型)が、KF スキームではさまざまな積雲の振る舞いを1本の積雲で代表 させる(バルク型)という違いがある。しかし、格子内を対 流性上昇流域・対流性下降流域・環境場に分けること、対流 域の面積は環境場のそれに比べて十分小さいこと、1種類ご との雲モデルの定式化における仮定や、その格子平均場の定 式化に関する基本的な考え方はほぼ同じである。

$$\rho\left(\frac{\partial\phi}{\partial t}\right)_{\text{convection}} = D^{u}\left(\phi^{u} - \overline{\phi}\right) + D^{d}\left(\phi^{d} - \overline{\phi}\right)$$
$$-\rho g\left(M^{u} - M^{d}\right)\frac{\partial\overline{\phi}}{\partial p}$$
$$(2.2.11)$$

ここで、右辺第 1, 2 項がデトレインメント、第 3 項が 補償下降流による項である。(2.2.11) 式を具体的に計 算するには、 M^u , D^u , ϕ^u , M^d , D^d , ϕ^d のような、対 流性上流域、対流性下降域内の物理量の鉛直プロファ イルを得る必要がある。

対流性上昇流域内の物理量のプロファイル

対流性上昇流域内の鉛直プロファイルを得るために、 (2.2.3) 式 や (2.2.7) 式を持ち上げ凝結高度 (LCL: Lifting Condensation Level) から鉛直積分する。鉛直積分 では、エントレインメント、デトレインメントを表す E^u , D^u を対流性上昇流域と環境場の空気の混合を考 慮して計算する。KF スキームにおける E^u , D^u の計 算方法は、他のマスフラックス型の積雲対流パラメタ リゼーションで採用されている手法に比べ複雑であり、 最も特徴的な部分である。

MSM, LFM で使用されている KF スキームでは、 *E^u*, *D^u* を Kain and Fritsch (1990) に準じて計算す る。KF スキームでは、対流性上昇流域の周辺で乱流混 合が起きているとし、混合が起きている領域の大気は 多くの微小な気塊から構成されていると考える。環境 場の空気から入ってきた気塊の比率(以下、混合率)⁴ の頻度分布がガウス分布に従うことを仮定する。

KF スキームにおける E^u , D^u の計算では、まず混 合空気における環境場、対流性上昇流域それぞれから 取り込まれた質量を計算する。ここで、単位面積・単 位時間あたりに、環境場からエントレインされた質量 を δm_e [kg m⁻² s⁻¹]、混合された対流性上昇流域の 質量を δm_u [kg m⁻² s⁻¹]、混合されたすべての質量を δm_t [kg m⁻² s⁻¹] とする。x を混合率、f(x) をx の確 率密度分布とすると、 $\delta m_e, \delta m_u, \delta m_t$ の関係は以下の ように表される。

$$\delta m_u + \delta m_e = \delta m_t = \delta m_t \int_0^1 f(x) dx \qquad (2.2.12)$$

$$\delta m_e = \delta m_t \int_0^1 x f(x) dx \qquad (2.2.13)$$

$$\delta m_u = \delta m_t \int_0^1 (1-x)f(x)dx$$
 (2.2.14)

f(x)は以下のように表される。

$$f(x) = F_0 \left[e^{-\frac{(x-0.5)^2}{2\sigma^2}} - e^{-4.5} \right]$$
(2.2.15)

ここで、 $\sigma = 1/6$ 、係数 F_0 は $\int_0^1 f(x) dx = 1$ を満たす ように決められる。

KFスキームでは、エントレインされた質量 δm_e は対 流性上昇流の半径 Rの逆数に比例することとし、Simpson (1983) の実験式をもとに、以下のような関係を仮 定する。

$$\delta m_e = M_{u0} \frac{a\Delta p}{R} \tag{2.2.16}$$

ここで Δp は気圧座標で見た場合のモデル各層の厚 さ [Pa]、*a* は経験的に決める定数で、KF スキームでは 0.03 m Pa⁻¹ としている。 M_{u0} は雲底におけるマスフ ラックスの大きさ [kg m⁻² s⁻¹] である。 M_{u0} の大き さは、後述のクロージャーで最終的に決定する。対流 性上昇流域の半径 *R* はエントレインメント、デトレイ ンメントの計算のみに使われる変数であり、雲モデル においては前述の通り、対流性上昇流域は格子全体の 面積に対して十分小さいことを仮定している。*R* の設 定には任意性があり、MSM, LFM で異なる。

混合大気が正の浮力を持てば、混合された環境場の 空気は対流性上昇流域にエントレインされ、負の浮力 を持てば混合された対流性上昇流域の空気は環境場に デトレインされるとみなす。したがって、*x_n*を浮力が 0になるときの対流性上昇流域と環境場の混合率とす ると、環境場からのエントレインメント *E^u* と環境場 へのデトレインメント *D^u* は *δm_t*, *x*, *f*(*x*) を用いて以 下のように計算される。

$$E^u \delta p = \rho g \delta m_t \int_0^{x_n} x f(x) dx \qquad (2.2.17)$$

$$D^{u}\delta p = \rho g \delta m_{t} \int_{x_{n}}^{1} (1-x)f(x)dx \qquad (2.2.18)$$

 δm_t は (2.2.16) 式から δm_e を計算したのち (2.2.13) 式を用いて計算される。 x_n は、混合空気の仮温度を xの関数 $T_v^{\text{mix}}(x)$ として、混合空気の浮力の大きさに 比例する関数 $g(x) = (T_v^{\text{mix}}(x) - \overline{T}_v) / (T_v^u - \overline{T}_v)$ を 定義し、x = 0, 0.1, 0.95における g から、g = 0に なるときの xを線形内挿または外挿から計算する (図 2.2.1)。

対流が停止する高度

KF スキームでは、対流性上昇流 w^u [m/s] の大きさ が 0 になるか、マスフラックスが 0 になった高度を雲 頂高度 z_{ctop} としている。w^u が満たす式は、鉛直方向 の運動方程式について、鉛直移流、浮力、環境場との 混合により定常状態にあることを仮定して、以下のよ うに表す。

$$0 = -\frac{\partial}{\partial z} \left(\frac{1}{2} (w^u)^2\right) + \frac{g}{1+\gamma} \frac{T_v^u - \overline{T}_v}{\overline{T}_v} -\frac{1}{2} \frac{g}{1+\gamma} \left(q_c^u + q_i^u\right) - \frac{E^u}{\rho} (w^u)^2 \qquad (2.2.19)$$

ここで q_c^u [kg kg⁻¹], q_i^u [kg kg⁻¹] はそれぞれ、対流性 上昇流域による雲水量、雲氷量である。 γ は気圧の揺

⁴ 例えば、比率が0.5の場合、対流性上昇流と環境場の空気の質量が等しく混合されていることを表す。

図 2.2.1 浮力が 0 になるときの混合率 x_n の計算方法 の模式図。青い印 × は、KF スキーム内で実際に計 算される x = 0, 0.1, 0.95, 1 における、g(x) = $(T_v^{\min}(x) - \overline{T}_v) / (T_v^u - \overline{T}_v)$ を示している。赤い実線は、 x = 0, 0.1 における g から g を線形外挿したものを示す。 赤実線が x 軸と交わるときの x が x_n となる。この図では、 x_n の計算は外挿となっているが、g(0.1) < 0 であれば内挿 となる。また、実際には $0 \le x_n \le 1$ となるように制限し ており、g(0) < 0 であれば $x_n = 0$, $|g(1) - g(0.1)| < 10^{-3}$ または g(0.95) > 0 であれば $x_n = 1$ としている。

らぎによる効果を表すためのパラメータであり、KFス キームでは $\gamma = 0.5$ としている。右辺第1項から第4 項はそれぞれ鉛直流自身による移流、浮力による加速、 水物質の重みによる減速、混合による希釈を表してい る。(2.2.19) 式を雲底から鉛直積分することで、 $(w^u)^2$ の鉛直プロファイルを得る。

KF スキームでは、LCL と対流の止まる高度の差で 定義される積雲の深さによって、浅い対流と深い対流 に分けられる。積雲の深さが LCL における気温の関 数で定義されたある下限値を下回る場合は浅い対流と みなされ、上回る場合は深い対流とみなされる。後述 のように、深い対流と浅い対流ではクロージャーが異 なる。

降水の扱い

KF スキームでは雨や雪を予報変数としては扱ってい ないため、雨や雪に対して、(2.2.7) 式、(2.2.11) 式の ような方程式は適用されない。その代わり、雨や雪を 雲水から変換されるものとして取り扱う。雲水量 *q_c* に ついて、(2.2.7) 式を適用すると以下のように表される。

$$0 = \rho g \frac{\partial M^u q_c^u}{\partial p} + E^u \overline{q_c} - D^u q_c^u + c_c^u - P_c \quad (2.2.20)$$

ここで c_c^u [kg m⁻³s⁻¹], P_c [kg m⁻³s⁻¹] は雲の凝結量 または凍結量、降水生成量である。対流性上昇流域の 気温が 0 ℃を超えるかどうかで、凝結と凍結に振り分 けている。

MSM, LFM で用いられている KF スキームでは、降 水生成量は Kessler (1969) のオートコンバージョンの 形で計算される (成田 2008)。

$$P_c = A \max\left(q_c^u - q_{c0}, 0\right) \tag{2.2.21}$$

$$A = \rho g M^u / \Delta p \tag{2.2.22}$$

 q_{c0} [kg kg⁻¹] は降水への変換が始まる雲水量の閾値で、 MSM, LFM で使用されている KF スキームでは 2.0 × 10^{-3} kg kg⁻¹ に設定されている。A [kg m⁻³s⁻¹] は降水への変換効率を表したもので、(2.2.21) 式、(2.2.22) 式は、モデルの各鉛直層において、 q_{c0} を超えた分の雲水がただちに降水に変換され、対流性上昇流域から放出されることに相当する。

対流性下降流域内の物理量のプロファイル

対流性下降流域内の鉛直プロファイルは、(2.2.4) 式 や (2.2.8) 式を LCL より 150 hPa 上層を開始高度とし て、上層から下層に向かって鉛直積分することで得ら れる。対流性下降流は、正の浮力を持つ高度(仮温度を T_v として、 $T_v^d > \overline{T}_v$ となる高度)で停止する。 $E^d=0$ とし、 D^d は、対流性下降流開始高度から停止高度ま で、層の厚さ Δp に比例して M^d が減少するように決 められる。

(2) クロージャー

マスフラックス型の積雲対流パラメタリゼーション では、対流の強さはマスフラックスの大きさの形で表 される。このマスフラックスの大きさを最終的に決め るプロセスをクロージャーと呼ぶ。MSM で使用され ている KF スキームでは、深い対流と浅い対流の違い はクロージャーの違いに帰着される。

深い対流

深い対流について、マスフラックスの大きさは、対流により成層が安定化された後の対流有効位置エネルギー (CAPE: Convective Available Potential Energy) の大きさが初期の状態の 15% ⁵以下になるように決められる。ここでの CAPE $[m^2 s^{-2}]$ は、対流性上昇流の仮温度 T_v を用いて、以下のように定義する。

$$CAPE = \int_{z_{LCL}}^{z_{ctop}} g\left(\frac{T_v^u - \overline{T}_v}{\overline{T}_v}\right) dz \qquad (2.2.23)$$

 T_v^u は (2.2.3) 式及び (2.2.7) 式を LCL の高度 z_{LCL} から鉛直積分することで計算する⁶。

CAPE が元の 15% 以下になるようなマスフラック スは繰り返し計算によって求められる。LCL における

⁵ MSM, LFM で使用されている KF スキームのデフォルト 値であり、モデルの設定により変更は可能。

⁶ CAPE は通常、乾燥断熱・湿潤断熱減率で持ち上げる気塊に 対して定義される(AMS Glossary など)。ここでの CAPE はエントレインメント、デトレインメントにより混合された (希釈された)気塊を扱うため、"dilute CAPE" とも呼ばれ る。

マスフラックス *M*_{u0} [kg m⁻²s⁻¹] の第一推定値は以下 の式で与えられる。

$$M_{u0} = 0.01 \rho_{u\rm LCL} w_{\rm one} \tag{2.2.24}$$

ここで ρ_{uLCL} は LCL における密度である。 w_{one} は LCL における対流性上昇流の速度で 1 m/s とする。 0.01 は対流性上昇流が格子全体の面積の 1%を占める という仮定に由来する。 M_{u0} と (2.2.3) 式、(2.2.7) 式 から、LCL でのマスフラックスが M_{u0} の場合の対流性 上昇流域の物理量のプロファイルが計算される。成層 が安定化された後の ϕ の格子平均値 $\overline{\phi}_{stabilized}$ は、時刻 t_0 における ϕ の格子平均値を $\overline{\phi}_{initial}$ として、(2.2.11) 式を CAPE を消費する時間 $\tau_{lifetime}$ [s] の間、時間積分 することで求められる。

 $\overline{\phi}_{\text{stabilized}} = \overline{\phi}_{\text{initial}}$ + $\int_{t_0}^{t_0 + \tau_{\text{lifetime}}} \frac{1}{\rho} ((2.2.11) \text{ の右辺}) dt$ (2.2.25)

もし、成層安定化後の CAPE が元の CAPE の 15%を 上回っていたら、LCL におけるマスフラックスを増加 させ、再度 (2.2.3) 式、(2.2.7) 式 の鉛直積分と (2.2.11) 式の時間積分を行う。このような繰り返し計算を経て、 最終的な M_{u0} が決まる。KF スキームでは τ_{lifetime} は 任意のパラメータであり、 τ_{lifetime} が小さいほどより短 時間で CAPE を元の値の 15%まで減少させることに なる。つまり、 τ_{lifetime} が小さいほど M_{u0} が大きくな り、積雲対流パラメタリゼーションによる成層安定化 の効果が大きくなる。

対流性下降流のクロージャーについて、対流性下降 流が開始する高度のマスフラックスの大きさは、対流 性上昇流の雲底におけるマスフラックスに係数を掛け たもので計算される。係数は対流性下降流が発生する 環境場の相対湿度の鉛直平均の関数で示され、環境場 が湿っているほど対流性下降流のマスフラックスは小 さくなる。

浅い対流

浅い対流について、LCL におけるマスフラックスは 以下のように計算される (Kain 2004)。

$$M_{\rm u0, shallow} = \frac{\rm TKE_{max}}{k_0} \frac{\Delta p_{\rm parcel}}{g\tau_{\rm lifetime}}$$
(2.2.26)

ここで TKE_{max}, k_0 は 乱流エネルギーの次元 [m² s⁻²] を持つ任意のパラメータである⁷。 Δp_{parcel} [Pa] は LCL から 50 hPa 以内にある、最上のハーフレベルまでの 層の厚さである。 (3) トリガー

トリガー過程では、積雲対流パラメタリゼーション が発動するかどうかの判別を成層の安定度に基づき、 各鉛直カラムについて行う。KF スキームでは、トリ ガー過程は2ステップに分けて行われる。

まず、LCL まで持ち上げられた気塊が浮力を持つか どうかを判別する。浮力の判別に使う気塊の気温 T_{diag} は LCL まで持ち上げられた気塊の気温 T_{LCL} に正の摂 動 $\Delta T'$ を加えたもので表される。

$$T_{\rm diag} = T_{\rm LCL} + \Delta T' \tag{2.2.27}$$

 $\Delta T'$ の計算方法は、鉛直流・LCLの関数と相対湿度の 関数の和 (成田 2008) で表したもの、地表面の乱流フ ラックスの関数で表したもの(第 2.2.3 項 (3))と複数 のオプションがあり、LFM が前者、MSM が後者を採 用している。気塊の持ち上げを開始する高度は、地表 から 300 hPa の層の範囲で探索を行う。まず、モデル 最下層から 50 hPa の厚さで混合された大気を LCL ま で断熱的に持ち上げ、 $T_{\rm LCL}$ を計算する。 $T_{\rm diag} > T$ を 満たさない場合は、さらに上の層に移り、混合大気の 持ち上げをやり直す。これらを $T_{\rm diag} > T$ を満たす層 が見つかるまで繰り返す。条件を満たす層が見つから ない場合は、そのカラムでは積雲対流パラメタリゼー ションは発動しないと判別する。

 $T_{\text{diag}} > \overline{T}$ が満たされたら次のステップとして、 (2.2.3) 式、(2.2.7) 式を LCL から鉛直積分し、対流上 昇流域の物理量を計算し、それらをもとに CAPE を計 算する。CAPE が正の値を持てば、そのカラムでは積 雲対流パラメタリゼーションが発動すると判別する。

2.2.3 MSM における積雲対流パラメタリゼーションの設定

2017 年 2 月に MSM の予報モデルを asuca に更新 した際(以下、MSM1702)は、物理過程に多くの改良 が加えられた。積雲対流パラメタリゼーションについ ても大規模な変更がなされた。ここでは MSM1702 に おける変更点を中心に、MSM における積雲対流パラ メタリゼーションの設定について解説する。MSM1702 における改善の狙いは降水予測の問題の解決、特に強 い降水の予測頻度過剰や海上における対流性の降水が 少ない問題の軽減、環境場のバイアス減少などである。 MSM1702における積雲対流パラメタリゼーションの変 更の基本的な方針は、積雲対流パラメタリゼーションの 効果を大きくし成層の安定化を図ることとした。また、 鉛直1次元モデルによる基礎実験で判明した不自然な 挙動等もあわせて修正した。なお、以下では MSM1702 より1世代前の積雲対流パラメタリゼーションの設定 (2010年11月更新)をMSM1011と呼ぶ。第2.2.2項 の解説の順に沿い、雲モデル、クロージャー、トリガー における設定について述べる。

⁷ Kain (2004) では、TKE_{max} は雲底以下の乱流エネルギー の最大値としているが、asuca に実装された KF スキームで は定数としている。

(1) 雲モデル

エントレインメント率の見直し

エントレインメントが起こると、マスフラックスと しては大きくなるが、対流性上昇流域に対して冷たく て乾燥した空気を取り込むことになるため、対流性上 昇流域での浮力は小さくなる。このことからエントレ インメントの強さは、対流の深さや強さのプロファイ ルに大きく影響する。KFスキームでは、エントレイン メントの強さは (2.2.16) 式の中にある対流域の半径 *R* の大小に敏感である。一般には*R*が大きく(小さく) なると、エントレインメント率は小さく(大きく)な り、その結果対流は深く(浅く)なり、KFスキームに よる成層の安定化が働きやすく(働きにくく)なるこ とで、降水量が増加する(減少する)傾向がある。ま た、*R*の計算は、降水予測の上で問題となる振る舞い の軽減のために調整される変数としての側面もあった。

MSM1702 では、衛星観測プロダクトから得られる 対流雲の雲頂高度との整合性から R を拘束することや、 定式化のシンプル化を図り、R を 750 m と一定値にす る変更を行った (Matsubayashi et al. 2016)。MSM で は、暖候期に南西から湿った空気が流れ込む際に地上 で KF スキームが過剰に降水を生成してしまうことが ある。MSM1702 より前は、この問題の対策として R を LCL の高さや格子スケールの鉛直流に依存させる こと等によるエントレインメント率のコントロールが 行われてきた (成田 2008; 成田・森安 2010)。 R を通 じたエントレインメント率のコントロールにより、KF スキームの深い対流による降水が発生しにくくなる一 方で、Rの診断式が複雑化され、その物理的な解釈が 困難になった。MSM1702 では、陸上での過剰な降水 の制御はトリガーの改良で対応したことから Rの複雑 な定式化を廃止し、定数として扱うこととした。

KF スキームが生成した水物質の扱い

KF スキーム内で生成された水物質は、気温に応じて 液相と固相に、凝結物の量に応じてその一部を降水に 変換している。MSM1702 より前では、深い対流につ いては、生成された降水はその積分時間間隔で地上に 落下するものとし、降水フラックスの生成の形で表し ていた。MSM1702 では、MSM の物理過程での積分時 間間隔 (100/3 s) で降水が全て地上に落下するのは非 現実的と考え、KF スキームが生成した降水(雨、雪、 あられ)は生成された層の格子平均値に反映させるよ うに変更された。また、KF スキームが生成した水物 質のうち、雲水と雪が共存している場合は、その雪は あられとして格子平均場に反映させるようにした。さ らに、雲微物理過程内で雲氷から変換された雪が、移 流にともない下流に広がり過ぎることを防ぐため、KF スキームからデトレインされた雲氷は雪として格子平 均値に反映させるようにした。

対流性下降流の扱い

KF スキームが生成した降水の扱いの変更に合わせ て、対流性下降流の扱いも変更した。オリジナル及び MSM1702 より前の MSM での KF スキームでは、サ ブグリッドスケールの対流の振る舞いを、1 組の対流 性上昇流、対流性下降流で代表させており、降水の再 蒸発や融解は対流性下降流で計算している。前述のよ うに、MSM1702では、KFスキームが生成した降水は 格子スケールの値に引き渡されるようになった。この ことで、積雲対流パラメタリゼーションが生成した水 物質による引きずり下ろしの効果や、降水の再蒸発や 融解を雲微物理過程で計算するようになった。これら の計算の重複を避けるため、MSM1702 では対流性下 降流を考慮しないように変更された。この変更は KF スキームにおける対流性下降流で計算していたものの 一部を力学過程・雲微物理過程に担わせることにあた る。また、対流性下降流を停止すると $M^d = 0$ となる ため、(2.2.11) 式における補償下降流の項が大きくな る。結果として、KF スキームの効果を強めることに も相当する。

(2) クロージャー

MSM1011 以前の KF スキームの設定では、CAPE を消費する時間 Tlifetime は気塊が対流圏中層における風 で格子を横切る時間で定義するようになっていた。し かし、実際は中緯度では下限値である 900 s を取る場 合が多かった。また、積雲対流パラメタリゼーション による成層不安定の解消が効果的に働くことが期待さ れる低緯度において、風速が弱いことで Tlifetime が中 緯度より長くなる。成層不安定な低緯度で KF スキー ムの効果が弱くなるという、本来対流パラメタリゼー ションに期待される挙動とは逆の振る舞いになってい た。MSM1702では、コードの複雑さの回避と低緯度 での振る舞いの改善、降水スコアの改善を意図して、 深い対流、浅い対流ともに 600 s と一定値を取るよう に修正した。また、浅い対流のクロージャーにおける TKE_{max}を $5 \text{ m}^2 \text{s}^{-2}$ から $1 \text{ m}^2 \text{s}^{-2}$ に変更した。これ は、浅い対流の雲底マスフラックスが大き過ぎる問題 を修正するもので、この修正により補償下降流による 下層の乾燥が軽減される他、深い対流と浅い対流の境 目での雲底マスフラックスの不連続が軽減される。

(3) トリガー

気温摂動

MSM1011以前は、海上での積雲対流パラメタリゼー ションの効果が小さく、陸上で効果が大きくなってい た。その原因の一つとして、鉛直流の大きさに依存し た気温摂動が挙げられる。Kain (2004)及び MSM1011 での KF スキームでは、LCL における格子スケールの 鉛直流が大きいほど、気温摂動が大きくなる定式化に なっている。この定式化は格子スケールの風速場が対 流の発生に与える作用が弱いという問題を補うために KFスキームに導入されたものであるが、暖候期に南西 の海上から暖湿流が日本に入り込むときに、鉛直流の 小さい海上では KF スキームが発動しにくく、陸上で 地形による強制に伴う上昇流により過剰に KF スキー ムが発動するという副作用も含まれていた。

MSM1702 では (2.2.27) 式における気温摂動 $\Delta T'$ を 以下に示す地表面の乱流に伴う浮力フラックスの関数 で表す。

$$\Delta T' = \max \left[A_{\text{plume}}, \min \left[B_{\text{plume}} \sigma_{T_v}, G_{\max} z_h \right] \right] \Pi$$
(2.2.28)

$$\sigma_{T_v} = 1.93 \overline{w'\theta'_{vs}} / w_m \tag{2.2.29}$$

$$w_m^3 = u_*^3 + 0.25z_h \overline{w'b'_s} \tag{2.2.30}$$

ここで П, z_h [m], u_* [m/s], $\overline{w'b'_s}$ [m² s⁻³] はそれぞれエ クスナー関数、境界層の高さ、摩擦速度、地表面にお ける浮力フラックスである。 A_{plume} , B_{plume} , G_{max} は経験的なパラメータでそれぞれ $A_{\text{plume}} = 0.2$ [K], $B_{\text{plume}} = 3.26$, $G_{\text{max}} = 10^{-3}$ [K m⁻¹] としている。

これらの変更により、海上で積雲対流パラメタリゼー ションの発動頻度が増加するとともに、陸上の沿岸で の積雲対流パラメタリゼーションの発動に伴う過剰な 降水が軽減される効果を狙う。MSM1702より前では、 海上での格子スケールの降水の集中の軽減を目的に、 相対湿度に依存した気温摂動が考慮されていたが、浮 力フラックスに依存した摂動でも格子スケールの降水 の集中の軽減が達成できるため、MSM1702では相対 湿度依存の気温摂動は廃止された。

また、MSM1702より前では、積雲対流パラメタリ ゼーションの計算は5分ごとに行っており、毎ステッ プにおける積雲対流パラメタリゼーションに伴う熱 と水の時間変化率も5分間は一定値を使用していた。 MSM1702では、環境場の変化に積雲対流パラメタリ ゼーションが早く応答することを狙い、これを毎ステッ プ診断し直すように変更した。

MSM1702 における対流パラメタリゼーション変更の インパクト1:前線に伴う降水の例

MSM1702における変更の効果が降水予測や加熱率に 表れている事例を図2.2.2に示す。以下では、MSM1702 から積雲対流パラメタリゼーションの設定をMSM1011 相当のものに戻した場合の予測結果をMSM1011Cuと 呼ぶ。この事例では、前線や低気圧に向かって暖かく 湿った空気が流入し、西日本を中心に北日本にかけて大 雨となった。また、佐賀県、福岡県、長崎県では大雨特 別警報が発表された。MSM1011Cuでは、東シナ海から 九州北部にかけて、細く伸びる強い降水(100 mm/3h を超える)が予測されており、解析雨量に比べて降水 の面積は狭くピークは過大となっている。MSM1702 で は、降水のピークは MSM1011Cu よりも弱く、また、

1 mm/3h 以上の降水が海上にも広がっている。結果と して、降水分布が MSM1011Cu よりも平滑化されたよ うな形になる。これは、海上でも積雲対流パラメタリ ゼーションの効果が大きく働くようになったことに由 来する。MSM1702での変更は降水予測だけでなく、大 気の熱収支にも大きな影響を与える。図 2.2.3 は、図 2.2.2 の事例における、九州の西の海上での各過程に よる温位の時間変化率のプロファイルを示している⁸。 MSM1702 では、積雲対流パラメタリゼーションによ る加熱率が MSM1011Cu のそれよりも大きく、高度に よっては倍以上になっている。これは海上での積雲対 流パラメタリゼーションの発動増加や、補償下降流に よる加熱率が増加したことに起因している。また、積 雲対流パラメタリゼーションの特性の変化は、雲微物 理過程にも影響を及ぼす。MSM1011Cuでは、雲微物 理過程による加熱率が対流圏全体で正だったものが、 MSM1702の設定では 5000 m 付近を境にそれより下 層では冷却、上層では加熱となっている。対流圏上層 においても雲微物理過程による加熱率は MSM1702 の 方が MSM1011Cu より小さい。これは、積雲対流パラ メタリゼーションから雲微物理過程に降水が渡される ようになったため、雲微物理過程側での蒸発量が増え たことに起因すると考えられる。

MSM1702 における対流パラメタリゼーション変更の インパクト2:台風の例

MSM1702 での積雲対流パラメタリゼーションの変 更の効果は、低緯度でより顕著に表れる。図 2.2.4 は、 上層寒冷渦により大気が不安定化し、沖縄・奄美で猛烈 な雨が観測された事例を対象とする MSM の降水予測 について、積雲対流パラメタリゼーションの設定によ る違いを示したものである。MSM1011Cu では局所的 な降水の集中や1 mm/3hの降水のまばらな分布が見 られるのに対し、MSM1702では沖縄・奄美や九州の南 海上で MSM1011Cu よりも降水分布が平滑化されてい る様子が顕著である。一方、予測された降水量は解析 雨量に対して過小評価となる。九州の南の海上の加熱 率のプロファイル(図 2.2.5)においても、MSM1702 では図 2.2.3 で見られたような、積雲対流パラメタリ ゼーションによる加熱率の増加、雲微物理過程による 冷却率の増加が顕著である。また、トータルの加熱率 としても、MSM1702 では下層での加熱が小さく、対 流圏上層の加熱が大きくなっており、KF スキームによ り成層を安定化させている効果が顕著に表れている。

2.2.4 LFM における積雲対流パラメタリゼーションの設定

LFM で採用されている積雲対流パラメタリゼーションは、MSM1011 での設定を基に、対流の立ち上がりの

⁸ 観測もなく、パラメタリゼーションの仮定や考え方にも依 存するため、どちらのプロファイルが正しいかはここでは議 論の対象としない。

図 2.2.2 2019 年 8 月 28 日 09JST を対象とした前 3 時間雨量 [mm/3h]。(左)MSM、(中)MSM、ただし積雲対流パラメタ リゼーションの設定は MSM1011、(右)解析雨量。MSM の初期値は 2019 年 8 月 27 日 12UTC。図中の赤枠は、 図 2.2.3 において、鉛直プロファイルを計算する領域を示す。

図 2.2.3 2019 年 8 月 27 日 12UTC 初期値 MSM における、
図 2.2.2 の赤枠 (30°N- 35°N, 125°E - 130°E) 内で平均した FT=0-24 の積算加熱率のプロファイル [K day⁻¹]。
(左) MSM、(右) MSM、ただし積雲対流パラメタリゼーションの設定は MSM1011。赤:短波放射 (SW)、青:長波放射 (LW)、緑:積雲 (CV)、黄土:力学過程内の部分雲過程 (CN)、水:雲微物理 (CL)、マゼンタ:力学 (DYN)、茶:境界層 (BL) 及び、黒:トータル (TOT) の加熱率を示す。図の見やすさのため、トータルの加熱率は実際の値を5倍して表示している。

パラメタリゼーションとしての効果を狙って、クロー ジャーとトリガーを以下のように設定している。この ことで、積雲対流パラメタリゼーションを用いない場 合に比べ、予報初期の降水の表現が向上する。

(1) クロージャー

積雲対流パラメタリゼーションによる加熱により、その後の格子スケールの鉛直流を発生させることで、降水を生成させる。ただし、積雲対流スキームの効果が 過度に発動し、早期に成層が安定化されるのを防ぐため、CAPEを消費する時間を浅い対流、深い対流とも に 3600 s と、MSM のそれよりも 6 倍長く設定する。 これにより、パラメタリゼーションによる時間変化率 を小さくし、その効果を弱く作用させる。

(2) トリガー

環境場の変化に積雲対流パラメタリゼーションが早 く応答することを狙い、MSM1702 同様、積雲対流パ ラメタリゼーション発動の判別、時間変化率の計算を 毎ステップ診断する。

LFM における積雲対流パラメタリゼーションの効果 を示す例として、2019 年 8 月 1 日午後の不安定降水の 事例を図 2.2.6 に示す。この事例では、実況では四国や 近畿地方、中部地方の山沿いを中心に不安定降水が観 測されており、LFM は降水の発生と広がりを予報初期 (FT=1)から捉えている。一方、積雲対流パラメタリ ゼーションを用いない場合は、FT=1 では、四国の山 沿いや、愛知県から静岡県にかけての山沿いの弱い降 水の広がりが予測されておらず、降水発生の遅れが見 られる。FT=2 になると、積雲対流パラメタリゼーショ ンを用いない場合でも降水が予測されるようになるが、 降水域の広がりは解析雨量や LFM に比べて狭い。

2.2.5 まとめ及び今後の課題

MSMの予報モデルのJMA-NHMへの更新以降、KF スキームを基にした積雲対流パラメタリゼーションが雲 微物理過程とあわせて使用されるようになった。MSM の高解像度化や、予報モデルの asuca への更新ととも に、積雲対流パラメタリゼーションも継続的に改良が 施され、降水をはじめとする予測精度向上に貢献して いる。MSMよりもさらに高解像度で、対流に伴う現 象の一部を解像しているLFMにおいても、対流の立 ち上がり効果を狙った積雲対流パラメタリゼーション が利用されている。

MSM, LFM の降水予測精度は継続的に向上してい

図 2.2.4 図 2.2.2 と同じ。ただし、対象時刻は 2019 年 8 月 2 日 12JST、MSM の初期値は 2019 年 8 月 1 日 03UTC。

図 2.2.5 図 2.2.3 と同じ。ただし、平均領域は (25°N-30°N, 130°E – 135°E)、MSM の初期値は 2019 年 8 月 1 日 03UTC。

るものの、豪雨等顕著現象について、場所や時刻を精 度良く予測することは難しい。また、水平格子間隔が 数 km 程度の高解像度の領域モデルにおいても、依然 として積雲対流パラメタリゼーションの予測精度への 影響は大きい。さらに、水平格子間隔 1 km でも積雲 対流は十分には解像できないと言われており (Bryan et al. 2003)、今後も積雲対流パラメタリゼーションの 研究開発は必要となる。以下では、主に顕著現象予測 の観点での、MSM, LFM、さらに将来の高解像度モデ ルにおける積雲対流パラメタリゼーションの課題につ いて述べる。

(1) 顕著事例における降水の表現

第1.2節でも言及した通り、気象庁における高解像度 領域モデルにおいては、線状降水帯等のメソβスケー ルのメソ対流系に伴う顕著現象の予測精度向上が重要 な課題となっている。MSM では対流セルの風下への 移流に伴う線状の降水系の表現が困難である。LFM は

線状の降水がある程度表現されるものの、降水量を過 大評価する傾向がある他、強い降水の発生する位置の 絞り込み、持続時間の予測は難しい。積雲対流パラメ タリゼーション開発の文脈でこの課題について述べる と、MSM の場合は積雲対流パラメタリゼーションが成 層状態に応じて鉛直一次元的に過剰に応答している可 能性を、LFM の場合は格子スケールの対流と対流の立 ち上がりのパラメタリゼーションの併用では、対流の 発生や発達の過程、対流に伴う成層の安定化を十分実 現できていない可能性を示しているとも言える。MSM の問題については、顕著事例の表現の観点からの KF スキームの発動のさせ方やその強さの再検討を行う必 要があり、現在調査を進めているところである。また、 今後、Randall and Pan (1993), Willett and Whiteall (2017), McTaggart-Cowan et al. (2019) のような積雲 対流パラメタリゼーションに関連する変数の予報変数 化や移流の効果の導入等も検討の余地がある。LFM の 問題については、後述の高解像度化に伴う対応と合わ せて、解決策を模索する必要がある。

(2) 環境場の系統誤差

水蒸気の分布や成層、循環場といった環境場は対流 の発生やその位置、強さに影響を与える。一方で、積 雲対流パラメタリゼーションもまた、熱・水の鉛直輸 送、雲放射過程との相互作用を通じて環境場の形成に 大きな影響を与える(Saunders et al. 2019 など)。エ ントレインメント・デトレインメントの強さは、格子 平均の加熱率・加湿率の鉛直プロファイルを通じ、モデ ルの成層状態の表現やその系統誤差に大きな影響を与 える。また、雲から降水への変換等の積雲対流パラメ タリゼーション内の雲微物理過程も加熱率・加湿率の 鉛直プロファイルの変化、雲放射過程を通じ環境場の 系統誤差に大きな影響を与える(氏家・下河邉 2019)。 これらの課題は、積雲対流パラメタリゼーション単体 で解決できる問題ではないため、他の過程とのバラン スを取りながら系統誤差軽減に向けた開発を進めてい

図 2.2.6 2019 年 8 月 1 日 16JST(上段)、 17JST(下段)を対象とした前 1 時間雨量 [mm/h]。LFM の初期値は 2019 年 8 月 1 日 06UTC。(左) LFM、ただし積雲対流パラメタリゼーションなし(中) LFM、(右) 解析雨量。

く必要がある。

(3) 高解像度化への対応

対流の一部を解像する高解像度モデルにおける問題 として知られている、降水量の過大評価の問題(強い 降水域の集中など)や、対流の発生の遅れの問題への 対処としての積雲対流に関わる過程のパラメタリゼー ションが必要となる。

KFスキームは中緯度のメソ対流系のシミュレーショ ンを念頭に開発された(山田 2003; 成田 2008)が、ス キームの概念や雲モデルは全球モデルで採用されてい るマスフラックス型の積雲対流パラメタリゼーション と同様、格子内に占める対流域の面積の割合は十分小 さいことを仮定している⁹。一方、このような仮定は水 平格子間隔 5 km 以下のモデルではすでに成り立たな くなっている。また、この仮定においては、対流性上 昇流に伴う補償下降流は格子内で閉じるが、実際は格 子サイズが小さくなるほど、補償下降流は格子内で閉 じなくなる。

このことは対流における「grey zone 問題」とも関連 している。grey zone とは、熱・水・運動量の輸送の一部 をモデルが直接解像し、パラメタリゼーションでも一

部表現されるような状況を指す。grey zone 問題とは、 grey zone において、モデルが解像する輸送とパラメタ ライズする輸送を水平格子間隔に応じてどのように適 切に振り分けるか(「scale-adaptive であるか」とも呼 ばれる)という問題を指す。(Tomassini et al. 2017)。 grey zone は対流、境界層、地形等の各過程に存在し、 水平格子間隔が1 km ~ 10 km のオーダーは対流に おける grey zone と言われる (Arakawa and Wu 2013; Lancz et al. 2018 など)。現在の主なマスフラックス型 の積雲対流パラメタリゼーションは、grey zone にある 水平格子間隔において水平格子間隔の変化に対する振 る舞いの変化が小さく、scale-adaptive でないことが指 摘されている (Tomassini et al. 2017)。MSM, LFM を 含む多くの領域数値予報モデルは対流の grey zone の 真っただ中にあり、grey zone に対応した積雲対流パラ メタリゼーションのあり方が世界的に見ても大きな課 題となっている。

積雲パラメタリゼーションの仮定の高解像度モデル における破綻や grey zone 問題への対処として、対流域 の面積を考慮する手法 (Arakawa and Wu 2013; Park 2014)、補償下降流を力学過程で扱う形の積雲対流パラ メタリゼーションが提案されており、すでに現実大気を シミュレートするような数値予報モデルでのテスト結 果も報告されている (Kuell et al. 2007; Malardel and Bechtold 2019)。LFM で見られるような、強い降水の 集中の問題の解決策としては未知数だが、将来の選択 肢のひとつとして考えられる。

⁹ ECMWF の全球モデル IFS(Tiedtke 1993)、英国気象局 の全球領域統一モデル UM(Gregory and Rowntree 1990)、 NCAR のコミュニティモデル CAM(Zhang and McFarlane 1995; Neale et al. 2010) 等、主要な全球モデルではこの仮 定に基づくマスフラックス型の積雲対流パラメタリゼーショ ンを採用している。

また、別のアプローチとして、エントレインメント・ デトレインメントのような水平混合過程をパラメタリ ゼーションとして扱う方向性もある。乱流に伴うエン トレインメント・デトレインメントは対流域と環境場の 混合により浮力を減少させることで、上昇流を抑制す る役割がある。一方、乱流に伴うエントレインメント・ デトレインメントは1km以下の水平格子間隔であって も解像することはできない。高解像度モデルにおいて、 格子スケールの対流を表現するためには、何らかの形 での水平混合を表すことが必要であると考えられる。 Hanley et al. (2019) は、サブグリッドスケールの混合 の考慮により、降水予測の過大評価が軽減されること を報告している。また、JMA-NHM 及び asuca の開発 においても水平拡散が降水予測に与える影響が大きい ということを経験している (河野ほか 2014)。asuca で は、人為的な数値拡散は可能な限り導入しない方針を とっているが、物理過程のパラメタリゼーションとし ての水平拡散については検討の価値はある。今後、テ スト用に水平拡散スキームを実装し、その影響につい て調査を進める予定である。

高解像度モデルにおける積雲対流パラメタリゼーショ ンについては、KF スキームを含むこれまでのマスフ ラックス型の積雲対流パラメタリゼーションとは異な るアプローチを取らなければならない。これらは研究 としても最先端であるため、最新の動向¹⁰をフォロー すること、有望な手法と思われるものについては早期 にテストできるよう、研究開発環境・体制を整えてい くことが今後必要となる。

参考文献

- Arakawa, A. and W. H. Schubert, 1974: Interaction of a Cumulus Cloud Ensemble with the Large-Scale Environment, Part I. Journal of the Atmospheric Sciences, 31, 674–701.
- Arakawa, A. and C-M. Wu, 2013: A Unified Representation of Deep Moist Convection in Numerical Modeling of the Atmosphere. Part I. J. Atmos. Sci., 70, 1977–1992.
- 荒波恒平, 原旅人, 2006: モデルの変更点. 平成 18 年度 数値予報研修テキスト, 気象庁予報部, 55-58.
- Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution Requirements for the Simulation of Deep Moist Convection. *Mon. Wea. Rev.*, **131**, 2394–2416.

永戸久喜,藤田匡,原旅人,2012:局地モデルの本運用.

平成 24 年度数値予報研修テキスト,気象庁予報部, 72-86.

- 藤田司,2004: 非静力学メソ数値予報モデルの概要. 平 成16年度数値予報研修テキスト,気象庁予報部,1-9.
- Gregory, D. and P. R. Rowntree, 1990: A Mass Flux Convection Scheme with Representation of Cloud Ensemble Characteristics and Stability-Dependent Closure. Mon. Wea. Rev., 118, 1483–1506.
- Hanley, K., M. Whitall, A. Stirling, and P. Clark, 2019: Modifications to the representation of subgrid mixing in kilometre-scale versions of the Unified Model. *Quart. J. Roy. Meteor. Soc.*
- 原旅人, 2012: 物理過程ライブラリの開発. 数値予報課 報告・別冊第 58 号, 気象庁予報部, 205–208.
- 原旅人,2017:メソ数値予報システムの改良の概要.平成 29年度数値予報研修テキスト,気象庁予報部,42-47.
- 石田純一, 2005: 新モデルの特徴. 平成 17 年度数値予 報研修テキスト, 気象庁予報部, 14-17.
- Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181.
- Kain, J. S. and J. M. Fritsch, 1990: A onedimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 2784–2802.
- 河野耕平, 原旅人, 2014: LFM としての asuca の特性. 平成 26 年度数値予報研修テキスト, 気象庁予報部, 108–117.
- 河野耕平, 松林健吾, 倉橋永, 2014: 局地モデルとして の現状. 数値予報課報告・別冊第 60 号, 気象庁予報 部, 113–120.
- Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. *Meteorol. Monogr.*, **10(32)**, 1–84.
- 気象庁予報部, 2014:次世代非静力学モデル asuca.数 値予報課報告・別冊第60号,気象庁予報部, 151pp.
- Kuell, V., A. Gassmann, and A. Bott, 2007: Towards a new hybrid cumulus parametrization scheme for use in non-hydrostatic weather prediction models. *Quart. J. Roy. Meteor. Soc.*, **133**, 479–490.
- 隈健一, 1996: 積雲対流のパラメタリゼーション. 数値 予報課報告・別冊第 42 号, 気象庁予報部, 30-47.
- Lancz, Dávid, Balázs Szintai, and Rachel Honnert, 2018: Modification of a Parametrization of Shallow Convection in the Grey Zone Using a Mesoscale Model. *Bound.-Layer Meteor.*, **169**, 483–503.
- Malardel, S. and P. Bechtold, 2019: The coupling of deep convection with the resolved flow via the divergence of mass flux in the IFS. Quart. J. Roy. Meteor. Soc., 145, 1832–1845.

¹⁰ 例えば、Grey Zone Project(https://www.metoffice. gov.uk/research/approach/collaboration/

grey-zone-project) と呼ばれる grey zone 問題の解 決を目的とした特別観測や各種モデル相互比較の国際プロ ジェクトが進行している。気象庁もモデル相互比較に参加 している。

- 萬納寺信崇, 2000: 領域モデル (RSM, MSM, TYM). 平成 12 年度数値予報研修テキスト, 気象庁予報部, 23-27.
- Matsubayashi, K., K. Aranami T. Hara, and K. Kawano, 2016: An update of convection scheme in 5km resolution operational system. *Extended Ab*stracts of the 4th International Workshop on Nonhydrostatic Numerical Models, 20–21.
- McTaggart-Cowan, R., P. A. Vaillancourt, A. Zadra, L. Separovic, S. Corvec, and D. Kirshbaum, 2019: A Lagrangian Perspective on Parameterizing Deep Convection. *Mon. Wea. Rev.*, 147, 4127–4149.
- 成田正巳, 2008: Kain-Fritsch スキームの改良とパラ メータの調整. 数値予報課報告・別冊第 54 号, 気象 庁予報部, 103–111.
- 成田正巳, 森安聡嗣, 2010: メソモデルの対流スキーム の変更. 平成 22 年度数値予報研修テキスト, 気象庁 予報部, 53-61.
- Neale, R. B., J. H. Richter, A. J. Conley, S. Park, P. H. Lauritzen, A. Gettelman, D. L. Williamson, P. J. Rasch, S. J. Vavrus, M. A. Taylor, W. D. Collins, M. Zhang, and S-J Lin, 2010: Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Note 485, 212pp.
- Park, S., 2014: A Unified Convection Scheme (UNI-CON). Part I: Formulation. J. Atmos. Sci., 71, 3902–3930.
- Randall, D. and D.-M. Pan, 1993: Implementation of the Arakawa-Schubert cumulus parameterization with a prognostic closure. *The representation of cumulus convection in numerical models, AMS Meteorological Monograph Series*, 46, 137–144.
- Saito, K., J. Ishida, K. Aranami, T. Hara, T. Segawa, M. Narita, and Y. Honda, 2007: Nonhydrostatic Atmospheric Models and Operational Development at JMA. J. Meteor. Soc. Japan, 85B, 271–304.
- Saito, K., T. Fujita, Y. Yamada, J. Ishida, Y. Kumagai, K. Aranami, S. Ohmori, R. Nagasawa, S. Kumagai, C. Muroi, T. Kato, H. Eito, and Y. Yamazaki, 2006: The Operational JMA Nonhydrostatic Mesoscale Model. *Mon. Wea. Rev.*, **134**, 1266–1298.
- Saunders, P., Y. Yu, and Z. Pu, 2019: Sensitivity of Numerical Simulations of Hurricane Joaquin (2015) to Cumulus Parameterization Schemes: Implications for Processes Controlling a Hairpin Turn in the Track. J. Meteor. Soc. Japan, 97, 577–595.
- 瀬古弘, 2010: 中緯度のメソβスケール線状降水系の 形態と維持機構に関する研究. 気象庁研究時報, **62**, 1–74.

- Simpson, J., 1983: Cumulus clouds: Interactions between laboratory experiments and observations as foundations for models. *Mesoscale Meteorology*, 399–412.
- Tiedtke, M., 1993: Representation of Clouds in Large-Scale Models. Mon. Wea. Rev., 121, 3040– 3061.
- Tomassini, L., P. R. Field, R. Honnert, S. Malardel, R. McTaggart-Cowan, K. Saitou, A. T. Noda, and A. Seifert, 2017: The "Grey Zone" cold air outbreak global model intercomparison: A cross evaluation using large-eddy simulations. J. Adv. Model. Earth Syst., 9, 39–64.
- 氏家将志,下河邊明,2019:積雲対流.数値予報課報告・ 別冊第65号,気象庁予報部,39-53.
- Vosper, S., 2015: UK models, resolution and physical parametrizations. MOSAC paper 20.18, 1–9.
- Willett, M. R. and M. A. Whiteall, 2017: A Simple Prognostic based Convective Entrainment Rate for the Unified Model: Description and Tests. Forecasting Research Technical Report, 617, 1–52.
- 山田芳則, 2003: Kain-Fritsch 対流パラメタリゼーショ ンの簡単な紹介. 数値予報課報告・別冊第 49 号, 気 象庁予報部, 84–89.
- 吉崎正憲, 加藤輝之, 2007: 豪雨・豪雪の気象学. 朝倉 書店, 187 pp.
- Zhang, G. J. and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. *Atmosphere-Ocean*, 33, 407–446.

2.3.1 はじめに

大気中の水はさまざまな相(固相、液相、気相)を 取り、さらに、固相及び液相においては粒子の大きさ や形状等で特徴付けられるさまざまな形態で存在して いる。大気中の水が相変化したり、水の粒子の成長や 落下、種別の異なる粒子が併合されることによって、 大気中の雲の分布や、地上に落下する降水量が決まる。 また、水の相変化に伴う潜熱の放出は浮力を発生させ、 対流の成長や衰退に大きな影響を与える。

数値予報モデルにおいて、水の各相の格子内の質量 や粒子の数の変化を計算する過程は雲微物理過程と呼 ばれる。雲微物理過程は対流を伴う顕著現象の予測に とって重要な役割を果たす。メソスケールの現象をシ ミュレートする数値予報モデルにおける雲微物理過程 では、水の形態を雲水、雲氷、雨、雪、あられといった カテゴリーに分割し、格子平均でのそれぞれのカテゴ リー間の量(質量や粒子数)の変化を計算する、バル ク法と呼ばれる手法が主に使用される。バルク法の雲 微物理過程では、粒径(粒子の直径)ごとの雲の粒子数 が、カテゴリーごとに異なる分布関数(粒径分布)に従 うことを仮定する。また、ある過程による質量等の時 間変化率を粒径の関数で定式化し、それを粒径分布関 数で重み付けして平均することで、格子平均での時間 変化率が計算される。バルク法のうち、特に予報変数 として質量(混合比)を予測するものを1モーメント (Lin et al. 1983; Rutledge and Hobbs 1984 など)、質 量と数濃度を予測するものを2モーメント(Murakami 1990; Ferrier 1994 など)のスキームと呼ぶ。

また、相変化の表現に加えて、雲の格子内の不均一 性を取り扱う必要がある。凝結等の雲水・雲氷の生成過 程について、モデルの格子ごとの値は、格子内の平均 値であるため、格子平均の水蒸気が飽和していなくて も、実際には格子内の一部では凝結が始まっていると 考えられる。特に低解像度の数値予報モデルでは、水 蒸気が雲水・雲氷に凝結・昇華する過程について、格 子内の不均一性を考慮する必要がある。以下、このよ うな過程を部分雲過程と呼ぶ。

以下、本稿では便宜的に「雲微物理過程」と「部分 雲過程」をまとめて「雲過程」と呼ぶ。

気象庁のメソモデル (MSM) においては、水平格子 間隔 10 km 静力学 MSM では、領域モデル (RSM) と同 様、大規模凝結過程が降水過程として使われていた (萬 納寺 2000)。MSM の予報モデルが気象庁非静力学モデ ル (JMA-NHM; Saito et al. 2006; Saito et al. 2007) に更新された際は、雲過程として1モーメントのバル ク法に基づく雲微物理過程と、部分雲を考慮しない凝 結過程である飽和調節が使われるようになった (藤田 本節では、本稿執筆時点(2019年12月)での MSM, LFM における雲過程のうち、特に MSM1702 で採用さ れている設定について解説する²。第 2.3.2 項ではバル ク法雲微物理過程、第 2.3.3 項では部分雲過程につい て、それぞれ解説したのち、第 2.3.4 項でまとめと今後 の課題について述べる。

2.3.2 バルク法雲微物理過程

(1) 概要

MSM, LFM では、Lin et al. (1983) に基づく1モー メントのバルク法雲微物理過程を採用している。この 過程では、水蒸気の混合比と液相、固相の水として雲 水、雲氷、雨、雪、あられの混合比を予報変数に持つ。 以下では、水の混合比を q_x と表現する。下付き文字 のxは水のカテゴリーを表しx = v, c, r, i, s, g はそ れぞれ、水蒸気、雲水、雨、雲氷、雪、あられを表す。 MSM で採用されている雲微物理過程では図 2.3.1 のよ うに、30 以上の過程(以下、素過程と呼ぶ)により、 カテゴリー間の水の変化や、相変化に伴う非断熱加熱 を計算する。図 2.3.1 で使用されている表記のリスト については、表 2.3.1 を参照されたい。

バルク法の雲微物理過程では、一部の素過程(氷晶 核の形成や雲から降水への変換等)は経験的な関数で パラメタライズされているものの、多くの素過程の定 式化は、雲の粒径がわかると直接計算できるものとなっ ている。これらをカテゴリーごとに仮定した粒径の分 布関数と合わせることで、各素過程による格子平均の 水物質の混合比や数濃度の時間変化率が計算される。

例えば、粒径がD [m] であるカテゴリーxの水の粒子 の質量 $m_x(D)$ について、ある素過程による $m_x(D)$ の時 間変化率が $\frac{dm_x(D)}{dt}$ で表されるとする。また、粒径の分 布関数 $n_x(D)$ [m⁻⁴] を設定し、粒径がDからD+dDの

^{2004)。}この当時の気象庁非静力学モデルにおける雲微 物理過程は、山田 (2003)、成田 (2008) で詳しい解説 がなされている。MSM については、2009 年に雲氷に ついて2モーメント化がなされた (成田 2009)。また、 JMA-NHM に実装されていた雲微物理過程は、物理過 程を3次元の大気モデルから独立させたライブラリで ある「物理過程ライブラリ」(原 2012) に移植され、新 しい非静力学モデル asuca(気象庁予報部 2014)の物理 過程として利用されるようになった。さらに、2017 年 2月に MSM の予報モデルが JMA-NHM から asuca に 更新された(以下、MSM1702 と呼ぶ)際には、必要 な複雑さの範囲でスキームをシンプル化する観点から 再び1モーメントの雲微物理過程が採用された。また、 粒径分布や素過程に多数の変更が加えられた他、部分 雲過程を考慮するようになった(原 2017)。

² LFM の雲過程の設定は、2008 年時点での MSM の設定に 概ね準拠している。山田 (2003) 及び成田 (2008) に解説があ るため、紙面の都合から LFM の雲過程の設定については本 節では割愛する。

¹ 氏家 将志

範囲にある単位体積あたりの粒子数が $n_x(D)dD$ で表せるとする。この場合、格子平均での混合比 q_x [kg kg⁻¹] 及びその時間変化率は、それぞれ $m_x(D)$ 及び $\frac{dm_x(D)}{dt}$ に分布関数をかけて積分した量に比例する形で表される。

$$q_x = \frac{1}{\rho_a} \int_0^\infty m_x(D) n_x(D) dD \qquad (2.3.1)$$

$$\frac{dq_x}{dt} = \frac{1}{\rho_a} \int_0^\infty \frac{dm_x(D)}{dt} n_x(D) \ dD \tag{2.3.2}$$

ここで、 ρ_a は、大気の密度 [kg m⁻³] である。

また、数濃度 N_x $[m^{-3}]$ は、 $n_x(D)$ の積分で定義される。

$$N_x = \int_0^\infty n_x(D) \ dD \tag{2.3.3}$$

このため、雲微物理過程の精度は、素過程の精緻さ に加え、仮定する粒径分布関数の妥当性にも依存する。 また、後述するような、各物理量(質量、落下速度等) と粒径の関係の妥当性にも依存する。

MSM1702 における雲微物理過程の変更では、特に 以下の点について変更が加えられている。

- 1. 雨、雪、氷の粒径分布関数
- 2. 質量--粒径関係
- 3. 落下速度-粒径関係、落下過程の計算
- 4. 数值計算手法

1.から3.は主に雲の表現の向上を狙ったもの、3.の落 下過程の計算と4.は計算安定性向上を狙ったものであ る。以下では、これらの変更後の概要について解説す る。なお、各水物質における粒径分布関数や、質量-粒 径、落下速度-粒径関係に関連するパラメータについて は、表 2.3.2 にまとめて示す。

(2) 質量--粒径 関係

質量-粒径関係はカテゴリー x の粒子の質量 m_x [kg] を粒径 D の関数で表したもので、格子平均の混合比の 計算や、質量重み付け平均した格子平均値の計算で用 いられる。雲水、雨、あられに対しては、粒子が球で あることを仮定する。また、粒子の密度が一定 (ρ_x) で あることを仮定すると、これらの粒子に対する質量-粒 径関係は以下のように与えられる。

$$m_x(D) = \frac{\pi}{6} \rho_x D^3 \tag{2.3.4}$$

雲氷、雪については、粒子が球形であることを仮定 せず、質量を粒径のべき乗で表す。

 $m_x(D) = a_x D^{b_x}$ (2.3.5)

ここで a_x , b_x はそれぞれ、雪、氷ともに 0.0185 [kg m^{-1.9}], 1.9 である (Brown and Francis 1995)。

図 2.3.1 MSM1702 の 雲微物理過程で考慮している素過程 の模式図。図中の表記については表 2.3.1 を参照。

表 2.3.1 図 2.3.1 における各素過程の表記方法

表記	記					
生成項						
p_appp_b	appp_b 過程 ppp によって、カテゴリー a					
	がカテゴリーbに変換される項					
p_appp_a_b	過程 ppp によって、カテゴリー a					
	がカテゴリー b を併合して成長す					
	る項					
p_appp_b_c	過程 ppp によって、カテゴリー b					
	がカテゴリーcを併合して、カテ					
	ゴリ- a が生成される項					
水のカテゴリーの表記						
V	水蒸気					
с	雲水					
r	雨					
i	雲氷					
s	雪					
g	あられ					
過程 (ppp)						
evp	蒸発 (Evaporation)					
cnd	cnd 凝結 (Condensation)					
aut, cn	変換 (Conversion)					
ac	衝突併合 (Accretion)					
mlt	融解 (Melting)					
nud	核形成 (Nucleation)					
dep	拡散成長 (Deposition)					
sub	昇華 (Sublimation)					
frz	凍結 (Freezing)					

(3) 粒径分布関数

雲氷, あられ

雲氷、あられに対する粒径分布関数は指数関数を仮 定する。

$$n_x(D) = N_{0x} \exp(-\lambda_x D) \tag{2.3.6}$$

ここで N_{0x} [m⁻⁴], λ_x [m⁻¹] はそれぞれ切片パラメー タ、スロープパラメータと呼ばれるもので、粒径分布 関数を特徴付ける。雲氷とあられの p次のモーメント $M_x(p)$ ($D^p n_x(D)$ を積分したもの)は、以下のように ガンマ関数³ Γ を用いて表される。

$$M_x(p) = \int_0^\infty D^p n_x(D) \, dD$$
$$= N_{0x} \frac{\Gamma(1+p)}{\lambda_x^{1+p}}$$
(2.3.7)

数濃度 N_x は 0 次のモーメントであるため

$$N_x = \int_0^\infty n_x(D) \, dD$$
$$= M_x(0) = \frac{N_{0x}}{\lambda_x}$$
(2.3.8)

となる。

(2.3.5) 式より、*qi* は以下のように表せる。

$$q_{i} = \frac{1}{\rho_{a}} \int_{0}^{\infty} m_{i}(D) n_{i}(D) \, dD$$

= $\frac{a_{i}}{\rho_{a}} M_{i}(1+b_{i}) = \frac{a_{i}}{\rho_{a}} N_{0i} \frac{\Gamma(1+b_{i})}{\lambda_{i}^{1+b_{i}}}$ (2.3.9)

あられについては球形の粒子を仮定しており、*q_g* は 3 次のモーメントとなるため

$$q_{g} = \frac{1}{\rho_{a}} \int_{0}^{\infty} m_{g}(D) n_{g}(D) \, dD$$
$$= \frac{\rho_{g}}{\rho_{a}} \frac{\pi}{6} M_{g}(3) = \frac{\rho_{g}}{\rho_{a}} \frac{\pi}{6} N_{0g} \frac{\Gamma(4)}{\lambda_{g}^{4}}$$
(2.3.10)

となる。

切片パラメータは、雲氷については気温の関数、あら れについては定数で与える。

 $N_{0i} = N_{0i,c} \ e^{-0.12 \max(T - T_0, -40)}$ (2.3.11)

$$N_{0a} = \text{const.} \tag{2.3.12}$$

ここで、 $N_{0i,c}$ [m⁻⁴] は定数で、表 2.3.2 に記載された値 を取る。また、 T_0 は 融解点における気温 (= 273.15 K) である。

スロープパラメータ λ_i, λ_g は (2.3.9) 式、(2.3.10) 式から混合比を用いて診断される。

$$\lambda_i = \left(\frac{a_i \Gamma(b_i + 1) N_{0i}}{\rho_a q_i}\right)^{\frac{1}{b_i + 1}}$$
$$\lambda_g = \left(\frac{\pi \rho_g N_{0g}}{\rho_a q_g}\right)^{\frac{1}{4}}$$
(2.3.13)

³ 特殊関数のひとつで、 $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$ で定義され る。特に、正の整数 *n* に対しては $\Gamma(n) = (n-1)!$ となる。

雪

MSM1702 では、雪の粒径分布関数は Field et al. (2007) に基づいた手法を採用する。この手法では、粒径分布関数そのものは直接使用しないが、p次のモーメントを以下のようにパラメタライズして計算する。

$$M_{s}(p) = \int_{0}^{\infty} D^{p} n_{s}(D) dD$$

= $A(p) \exp [B(p) (T - T_{0})] M_{s}^{c(p)}(2)$
(2.3.14)

$$A(p) = \exp\left[13.6 - 7.76p + 0.479p^2\right] \qquad (2.3.15)$$

$$B(p) = -0.0361 + 0.0151p + 0.00149p^2 \quad (2.3.16)$$

$$C(p) = 0.807 + 0.00581p + 0.0457p^2 \qquad (2.3.17)$$

このパラメタリゼーションでは、2 次のモーメント $M_s(2)$ をあらかじめ計算する必要がある。 $M_s(2)$ は q_s を用いることで以下のように計算される。

$$M_{s}(2) = \left[\frac{\rho_{a}q_{s}}{a_{s}} \frac{1}{A(b_{s})\exp\left[B(b_{s})(T-T_{0})\right]}\right]^{\frac{1}{c(b_{s})}}$$
(2.3.18)

 $n_s(D_s)$ の0次のモーメントである雪の数濃度 N_s [m⁻³] は以下のように計算される。

$$N_{s} = M_{s}(0)$$

= $A(0) \exp \left[B(0)(T - T_{0})\right] M_{s}^{c(0)}(2)$
(2.3.19)

(2.3.5) 式の関係を用いると、混合比 q_s は以下のように 表される。

$$q_{s} = \frac{1}{\rho_{a}} \int_{0}^{\infty} m_{s}(D_{s}) n_{s}(D_{s}) dD_{s} = \frac{1}{\rho_{a}} a_{s} M_{s}(b_{s})$$
$$= \frac{1}{\rho_{a}} a_{s} A(b_{s}) \exp\left[B(b_{s})(T - T_{0})\right] M_{s}^{c(b_{s})}(2)$$
(2.3.20)

	-		
E	ы	2	L
1	٦I	2	

雨の粒径分布関数は Abel and Boutle (2012) に基 づく。この手法は基本的には粒径分布関数は指数関数 だが、切片パラメータがスロープパラメータの関数に なっている点が特徴である⁴。

$$n_r(D) = N_{0r} \exp(-\lambda_r D)$$
$$N_{0r} = N_{00r} \lambda_r^{\beta_r}$$
(2.3.21)

ここで、 N_{00r} , β_r は表 2.3.2 に記載された値を用いる。 N_r , q_r , λ_r は以下のように計算される。

$$N_r = \int_0^\infty n_r(D_r) \ dD_r$$

⁴ 粒径が小さい粒子数が多いという熱帯等での航空機観測結 果に基づいている。

$$= M_r(0) = N_{00r} \lambda_r^{\beta_r - 1} \tag{2.3.22}$$

$$q_{r} = \frac{1}{\rho_{a}} \int_{0}^{\infty} m_{r}(D_{r}) n_{r}(D_{r}) \ dD_{r}$$
$$= \frac{\rho_{r}}{\rho_{a}} \frac{\pi}{6} M_{r}(3) = \frac{\rho_{r}}{\rho_{a}} \frac{\pi}{6} N_{00r} \frac{\Gamma(4)}{\lambda_{r}^{4-\beta_{r}}} \qquad (2.3.23)$$

$$\lambda_r = \left(\frac{\pi \rho_r N_{00r}}{\rho_a q_r}\right)^{\frac{1}{4-\beta_r}} \tag{2.3.24}$$

雲水

雲水については、粒径の分布は単分散を仮定する。こ の場合、粒径分布関数はデルタ関数を用いて表される。

$$n_c(D_c) = N_c \delta(D_c - \overline{D_c}) \tag{2.3.25}$$

ここで $\delta(x)$ はデルタ関数で、関数f(x)に対して

$$\int_{-\infty}^{\infty} \delta(x-a)f(x) \, dx = f(a) \tag{2.3.26}$$

を満たす。また、 $\overline{D_c}$ は単分散を仮定した場合の雲水の 平均粒径である。

したがって、p次のモーメント $M_c(p)$ は以下のように表される。

$$M_c(p) = N_c \overline{D_c}^p \tag{2.3.27}$$

数濃度 N_c $[m^{-3}]$ は定数を仮定し、MSM では $1.0 \times 10^8 m^{-3}$ としている。

混合比は、

$$q_{c} = \frac{\rho_{c}}{\rho_{a}} \frac{\pi}{6} M_{c}(3) = \frac{\rho_{c}}{\rho_{a}} \frac{\pi}{6} N_{c} \overline{D_{c}}^{3}$$
(2.3.28)

となるため、平均粒径 D_c は以下のように診断される。

$$\overline{D_c} = \left(\frac{6\rho_a q_c}{\pi\rho_c N_c}\right)^{\frac{1}{3}} \tag{2.3.29}$$

粒径分布の違いによって、雲や雪の表現が変化する 一例を示す。図 2.3.2 は、日本海の筋状雲の事例にお ける、GCOM-W 衛星に搭載されたマイクロ波放射計 AMSR2 で観測された、89 GHz 垂直偏波輝度温度と、 モデル予測から Joint-Simulator⁵で得られた対応する 計算輝度温度を示している。MSM1702より前では、雪 の粒径分布として、以下のような指数関数を仮定して いた。

$$n_s(D) = N_{0s} \exp(-\lambda_s D)$$
 (2.3.30)

$$N_{0s} = 1.8 \times 10^6 m^{-4} \tag{2.3.31}$$

 図 2.3.2 (a)GCOM-W 衛星に搭載されたマイクロ波放射計 AMSR2 で観測された、89 GHz 垂直偏波輝度温度 [K] と、 モデル予測から Joint-Simulator で得られた対応する計算 輝度温度、(b) 指数関数型の雪の粒径分布・1 モーメント、 (c) 指数関数型の雪の粒径分布・2 モーメント、(d)Field et al. (2007) による雪の粒径分布・1 モーメント

この指数関数型の粒径分布を用いた場合、シミュレートされた輝度温度は観測に比べ低温になる傾向がある (図 2.3.2(b))。この傾向は2モーメントのバルク法雲微 物理過程に変更しても同様であった (図 2.3.2(c))。これ は、モデルで仮定している指数型の粒径分布では、粒 径の大きい雪の頻度が高く、その結果、数濃度が小さ く、有効半径が大きいことに起因する。MSM1702で採 用されている Field et al. (2007)による雪の粒径分布 は、指数関数型の粒径分布に比べ、粒径の小さい粒子 (特に 1000 µm より小さい粒子)の頻度が高い (図略)。 この結果、有効半径が小さくなり、計算輝度温度は高 くなり、観測とより整合するようになる (図 2.3.2(d))。

(4) 落下速度-粒径関係、力学過程に渡す落下速度 雲氷、雪、あられ

雲氷、雪、あられの落下速度-粒径関係について は、べき乗の関係を仮定し粒径 Dの粒子の落下速度 $U_x(D)$ [m s⁻¹] は以下のように与えられる。

$$U_x(D) = \alpha_{ux} D^{\beta_{ux}} \left(\frac{\rho_0}{\rho_a}\right)^{\gamma_{ux}}$$
(2.3.32)

ここで、 ρ_0 [kg m⁻³] は参照大気の密度⁶で、 α_{ux} , β_{ux} , γ_{ux} は各カテゴリーごとに与える定数である(表 2.3.2)。

雨については Abel and Shipway (2007) に倣い、 落 下速度-粒径関係は以下のように表す。

$$U_r(D) = \left(\frac{\rho_0}{\rho_a}\right)^{\frac{1}{2}} \sum_{k=1}^{2} c_k D^{d_k} e^{-f_k D}$$
(2.3.33)

⁶ MSM ではモデル面最下層での大気の密度を与える。

⁵ Joint-Simulator は、宇宙航空研究開発機構より提供を受けた。

ここで、 c_k, d_k, f_k は表 2.3.2 に示した定数を用いる。

asuca では水物質の落下による混合比の移流は力学 過程において大気の鉛直移流と同時に扱う(第2.1.4項 (4))。雲微物理過程では格子平均の水物質の落下速度 を計算し、それらを力学過程に渡す。格子平均の落下 速度としては、以下で定義される質量平均した落下速 度 W_{tx} を用いる。

$$W_{tx} = \frac{\int_0^\infty U_x(D)m_x(D)n_x(D) \, dD}{\int_0^\infty m_x(D)n_x(D) \, dD}.$$
 (2.3.34)

JMA-NHM では、水物質の落下に伴う移流は雲微物理 過程で独立した項として取り扱っていた。asuca では、 力学過程と同時に扱うことで計算安定性の向上がなさ れた(第 2.1.6 項 (2))。

(5) 数値計算手法

MSM, LFM の予報モデルである asuca では、物理 過程における計算安定性にも注意を払っている (荒波 ほか 2014)。MSM1702 の雲微物理過程は、計算安定性 向上のため、多くの素過程に時間積分法として、イン プリシットスキームを採用している。例えば、水物質 の混合比について q_x から q_y に変換される素過程があ る場合、その過程はカテゴリー x に対してはシンク、yに対してはソースとなる。雲微物理過程では、多くの 素過程はシンクに対する減衰方程式

$$\frac{\partial q_x}{\partial t} = -\frac{1}{\tau} q_x \tag{2.3.35}$$

の形に帰着される。ここで τ は減衰の時定数を表す。 減衰方程式を時間方向に前方差分、エクスプリシット スキームで解く場合、安定な数値積分のための積分時 間間隔 Δt には上限がある。具体的には、 $\Delta t > \tau$ で振 動が始まり、 $\Delta t > 2\tau$ で計算不安定を起こす。一方、 インプリシットスキームを用いる、すなわち、右辺の q_x を未来値から計算することで大きな Δt で安定な数 値積分が可能になる (荒波ほか 2012)⁷。

雲氷の拡散成長は、水蒸気のシンクとみなした場合、 減衰方程式で定式化される素過程の一例である。拡散 成長による粒径 D の粒子の質量の時間変化率 $\frac{dm_{dep}}{dt}$ は 以下のように定式化される。

$$\frac{dm_{\rm dep}}{dt} = 4\pi C \left(\frac{q_v}{q_{s,i}} - 1\right) f(D) G(T,p) \quad (2.3.36)$$

ここで、 $q_{s,i}$ [kg kg⁻¹] は氷に対する飽和混合比、C [m] はキャパシタンスと呼ばれるもので、粒子の形状に依 存する係数である⁸。f(D)は通風係数で、雲微物理過 程では粒径の関数に帰着する。G [kg m⁻¹ s⁻¹] は気温 と気圧の関数で、以下の式で表される。

$$G(T,p) = \left[\frac{L_s^2}{KR_vT^2} + \frac{1}{\rho_a\Psi q_{s,i}}\right]^{-1}$$
(2.3.37)

ここで R_v は水蒸気の気体定数 $[J \text{ kg}^{-1} \text{ K}^{-1}]$ 、K は 大気の熱伝導率 $[W \text{ m}^{-1} \text{ K}^{-1}]$ 、 Ψ は水蒸気の拡散係 数 $[\text{m}^2 \text{ s}^{-1}]$ 、 $L_s [J \text{ kg}^{-1}]$ は昇華熱である。 $\frac{dm_{\text{dep}}}{dt}$ を粒 径分布関数で重み付けして積分すると、 q_v の時間変化 率 $(=-q_i \text{ 0})$ 時間変化率)が以下のように得られる。

$$\frac{\partial q_v}{\partial t} = -\frac{\partial q_i}{\partial t} = -\frac{1}{\rho_a} \int \frac{dm_{dep}}{dt} n_i(D) dD$$

$$= -\frac{4\pi}{\rho_a} G(T, p) \frac{(q_v - q_{s,i})}{q_{s,i}} \int Cf(D) D n_i(D) dD$$
(2.3.38)

(2.3.38) 式で示されるように、拡散成長による q_v の時 間変化率は、 q_v に対する減衰方程式($q_{s,i}$ に緩和する 方程式)となる。右辺の q_v について、未来値を用いて 時間離散化することで、計算安定性が向上する。

以下では、雲微物理過程のインプリシットスキー ム化による計算安定性向上の例を示す。図 2.3.3 は MSM1702の開発時に見られた数値振動の事例である。 日本の南海上の対流に伴う降水が発生している箇所の 上空で、 q_i, q_v の積分時間間隔 Δt [s] ごとの変化を見 ると、周期 2 Δt の振動が見られる(図 2.3.3 の白、緑 実線)。これは、主に拡散成長による雲氷量の変化の計 算時に発生した数値的な振動である。拡散成長に伴う 計算をインプリシットスキームにすることで、振動が 小さくなる(図 2.3.3 の赤、黄色実線)。さらに、雲微 物理過程全体で、減衰項のインプリシットスキーム化 を行うことで振動はほぼなくなる(図 2.3.3 の紫、マゼ ンタ実線)。

また、各素過程の時間変化率の足しこみ方も計算安 定性の高い手法を採用している。各素過程からの時間 変化率を独立に計算し最後に足し合わせる(パラレル スプリッティング)よりも、各素過程の時間変化率を 足しこんだ結果を次の素過程計算に用いる(シーケン シャルスプリッティング)ことで、計算安定性を向上 させる(例えば Beljaars et al. 2018 など)とともに、 雲水量等の非負の物理量が数値計算上、負の値になり にくいようになっている。素過程の計算順序には任意 性があるが、雲水や固体降水の形成等、上層で主に起 こる過程から、雲水や雨に関わる過程等、下層で主に 起こる過程の順に計算している。

⁷ q_x の現在値、未来値をそれぞれ q_x^n , q_x^{n+1} とすると $q_x^{n+1} = \frac{q_x^n}{1+\Delta \tau}$ となる。時間変化率の形で表すと、 $\frac{q_x^{n+1}-q_x^n}{\Delta t} = -\frac{1}{\tau} \frac{q_x^n}{1+\Delta t}$ となり、時間変化率の大きさがエクスプリシット スキームのそれの $\frac{1}{1+\Delta t}$ 倍となることがわかる。

⁸ C は雲氷を球形と仮定すると $C = \frac{D}{2}$ となる。MSM1702 では、気温が -30° C 以下では $C = \frac{D}{2}$, -15° C 以上では C = 0.3D として、その間の C は気温の 1 次関数で表され る。

表 2.3.2 各水物質のカテゴリーにおける、粒径分布、質量、落下速度の計算に用いられるパラメータ							
変数	雨 a_r [kg kg ⁻¹]	雪 a.[kg kg ⁻¹]	あられ $q_a[\mathrm{kg} \mathrm{kg}^{-1}]$	雲氷 a _i [kg kg ⁻¹]	雲水 a _c [kg kg ⁻¹]		
質量 [kg] 粒径 [m] 関係	$m_r = \frac{\pi}{6}\rho_r D_r^3$	$m_s = 0.0185 D_s^{1.9}$	$m_g = \frac{\pi}{6} \rho_g D_g^3$	$m_i = 0.0185D_i^{1.9}$	$m_c = \frac{\pi}{6} \rho_c D_c^3$		
密度 [kg m ⁻³]	$\rho_r = 1.0 \times 10^3$	直接使用しない	$\rho_g = 3.0 \times 10^2$	直接使用しない	$\rho_c = 1.0 \times 10^3$		
粒径分布 [m ⁻⁴]	$n_r(D_r) = N_{00r} \lambda_r^{\beta_r} \exp(-\lambda_r D_r)$ $N_{00r} = 0.22$ $\beta_r = 2.2$	直接使用しな い	$n_g(D_g) = N_{0g} \exp(-\lambda_g D_g)$ $N_{0g} = 1.1 \times 10^6$	$n_{i}(D_{i}) =$ $N_{0i} \exp(-\lambda_{i}D_{i})$ $N_{0i} = N_{0i,c}f(T)$ $f(T) =$ $e^{-0.12 \max(T-T_{0}, -40)}$ $N_{0i,c} = 4.0 \times 10^{7}$	単分散, $\overline{D_c} = \left[\frac{6q_c\rho_a}{\pi N_c\rho_c}\right]^{\frac{1}{3}}$ $N_c = 1.0 \times 10^8$		
落下 速度 [m s ⁻¹]	$U_r(D_r) = \left(\frac{\rho_0}{\rho_a}\right)^{\frac{1}{2}} \sum_{k=1}^2 c_k D_r^{d_k} e^{-f_k D_r}$		$U_x(D_x) = \alpha_{ux}$	$D_x^{\beta_{ux}} \left(\frac{\rho_0}{\rho_a}\right)^{\gamma_{ux}}$			
	$c_{1} = 4854.1$ $d_{1} = 1.0$ $f_{1} = 195.0$ $c_{2} = -446.009$ $d_{2} = 0.782127$ $f_{2} = 4085.35$	$\begin{aligned} \alpha_{us} &= 17\\ \beta_{us} &= 0.5\\ \gamma_{us} &= 0.5 \end{aligned}$	$\begin{aligned} \alpha_{ug} &= 124 \\ \beta_{ug} &= 0.64 \\ \gamma_{ug} &= 0.5 \end{aligned}$	$\begin{aligned} \alpha_{ui} &= 124 \\ \beta_{ui} &= 0.6635 \\ \gamma_{ui} &= 0.5 \end{aligned}$	考慮しない		

2.3.3 部分雲過程

(1) 概要

部分雲過程では、格子内の雲の分布の非均一性を考 慮して、雲水量、雲氷量、雲量の計算を行う。MSM の 雲過程では Smith (1990) に基づく部分雲スキームを採 用している。この過程では、格子内の水蒸気と雲水量 の状態変化は、ある確率密度関数に従う平衡状態にあ ると仮定して、格子平均の雲水量・雲量を診断する。

雲水量を q_c [kg kg⁻¹] とすると、 q_c は全水量(水 蒸気混合比と雲水量の和) q_t [kg kg⁻¹]、飽和混合比 q_s [kg kg⁻¹] を用いて

$$q_c = q_t - q_s(T, p) \tag{2.3.39}$$

と表される。また、液水温度 $T_l = T - \frac{L_v}{C_p}q_c$ (L_v [J kg⁻¹], C_p [J kg⁻¹ K⁻¹] はそれぞれ水の潜熱、 大気の定圧比熱)とすると、 $q_c \ge q_s$ の1次の項までテ イラー展開することで

$$q_c \sim a_L \left(q_t - q_s(T_l, p) \right)$$
 (2.3.40)

$$a_L = \left(1 + \frac{L_v}{C_p} \frac{\partial q_s}{\partial T}\right)^{-1} \tag{2.3.41}$$

と近似できる。さらに、変数 *a* について、格子平均値 と格子平均値からの偏差をそれぞれ *ā*, *a*' で表した場 合、*q*_c は格子平均値の寄与と偏差の寄与に分割でき、 それぞれ Q_c, s とすると、

$$q_c = Q_c + s \tag{2.3.42}$$

$$Q_c = a_L \left(\overline{q}_t - q_s(T_l, \overline{p}) \right) \tag{2.3.43}$$

$$s = a_L \left(q'_t - \frac{L_v}{C_p} \frac{\partial q_s}{\partial T} T'_l - \frac{\partial q_s}{\partial p} p' \right)$$
(2.3.44)

となる。ただし、部分雲過程では p' の効果は無視している。

格子内の s が確率密度関数 G(s) に従うと仮定する と、格子平均の q_c 、雲量 C_c は以下のように表される。

$$\overline{q}_c = \int_{-Q_c}^{\infty} \left(Q_c + s\right) G(s) ds \qquad (2.3.45)$$

$$C_c = \int_{-Q_c}^{\infty} G(s)ds, \qquad (2.3.46)$$

MSM の雲過程では次の項で示すように、s の確率密 度関数として Smith (1990) に基づく G(s) を用いるが、 放射過程・境界層過程における雲量診断においては雲 過程とは異なる G(s) を用いる。放射過程・境界層過程 での雲量診断については、第 2.4 節で解説する。

図 2.3.3 (上) 2015 年 5 月 28 日 03 UTC 初期値の MSM (MSM1702 の開発段階のもの) FT=1 における海面更正 気圧(等値線) [hPa] と 1 時間降水量 [mm](カラー)。 (下)(上)の赤丸で示された点の高度約 9000 m における $q_v \ge q_i$ の FT=0-1 までの 1 ステップごとの時系列。白: q_i 、エクスプリシットスキームの雲微物理過程、緑: q_v 、 エクスプリシットスキームの雲微物理過程、黄: q_i 、拡散 成長をインプリシットスキーム化、赤: q_v 、拡散成長をイ ンプリシットスキーム化、マゼンタ: q_i 、減衰項の素過程 をインプリシットスキーム化、紫: q_v 、減衰項の素過程を インプリシットスキーム化。

(2) 水雲の計算

MSM の雲過程では、Smith (1990) に倣い、G(s) としてs = 0 に頂点を持つ二等辺三角形の分布を与える。

$$G(s) = \begin{cases} 0 & s < -b_s \\ \frac{b_s + s}{b_s^2} & -b_s \le s < 0 \\ \frac{b_s - s}{b_s^2} & 0 \le s \le b_s \\ 0 & s > b_s \end{cases}$$
(2.3.47)

ここで、 b_s は分布の幅を表す量で、 $\int_{-b_s}^{b_s} G(s) ds = 1$ を満たすように決められる。(2.3.47)式を用いると、 \bar{q}_c, C_c は以下のように表される。

$$\overline{q}_{c} = \begin{cases} 0 & Q_{N} < -1 \\ \frac{b_{s}}{6} (1 + Q_{N})^{3} & -1 \leq Q_{N} < 0 \\ Q_{N} + \frac{b_{s}}{6} (1 - Q_{N})^{3} & 0 \leq Q_{N} \leq 1 \\ Q_{N} & Q_{N} > 1 \end{cases}$$

$$(2.3.48)$$

$$C_{c} = \begin{cases} 0 & Q_{N} < -1 \\ \frac{1}{2} (1+Q_{N})^{2} & -1 \leq Q_{N} < 0 \\ 1 - \frac{1}{2} (1-Q_{N})^{2} & 0 \leq Q_{N} \leq 1 \\ 1 & Q_{N} > 1 \end{cases}$$

$$(2.3.49)$$

ここで、Q_Nは以下のように表される。

$$Q_N = \frac{Q_c}{b_s} = \frac{a_L \left(\overline{q}_t - q_s(\overline{T}_l, \overline{p})\right)}{a_L \left(1 - \operatorname{RH}_{\operatorname{crit}}\right) q_s(\overline{T}_l, \overline{p})} \qquad (2.3.50)$$

RH_{crit} は凝結が始まる相対湿度であり、「臨界相対湿度」 とも呼ばれる。MSM では、RH_{crit} として鉛直一次元の プロファイルを与える。地上では 0.99 とし、850 hPa まで 2 次関数的に減少させ、850 hPa より上層では 0.95 としている。また、境界層過程に由来する揺らぎを考 慮した臨界相対湿度である RH_{crit,pbl} も計算し、RH_{crit} と比較し、小さい方の値を実際の雲水量、雲量の計算 に使用する。

また、(2.3.48) 式、(2.3.49) 式から Q_N を消去するこ とで、 C_c を以下のように \bar{q}_c の関数で表すこともでき る (Wilson and Ballard 1999)。

$$C_{c} = \begin{cases} \frac{1}{2} \left(6\frac{\overline{q}_{c}}{b_{s}} \right)^{\frac{2}{3}} & 0 \leq \frac{\overline{q}_{c}}{b_{s}} \leq \frac{1}{6} \\ 1 - 4\cos^{2}\phi & \frac{1}{6} \leq \frac{\overline{q}_{c}}{b_{s}} \leq 1 \\ 1 & \frac{\overline{q}_{c}}{b_{s}} > 1 \end{cases}$$

$$\phi = \frac{1}{3} \left\{ \cos^{-1} \left[\frac{3}{2\sqrt{2}} \left(1 - \frac{\overline{q}_{c}}{b_{s}} \right) \right] + 4\pi \right\}$$
(2.3.52)

(3) 氷雲の計算

気温が-36°C以下の条件では、氷に対する過飽和を 許容しつつ以下の式で雲氷を形成させる。

$$\overline{q}_i = \overline{q}_v - \mathrm{RH}_{\mathrm{th}} q_{si} \tag{2.3.53}$$

$$\mathrm{RH}_{\mathrm{th}} = \mathrm{RH}_{\mathrm{crit}} \min \left(\mathrm{RH}_{\mathrm{homo}}, q_s/q_{si} \right) \quad (2.3.54)$$

$$\mathrm{RH}_{\mathrm{homo}} = 2.583 - \frac{T}{207.8} \tag{2.3.55}$$

ここで、 q_{si} は氷に対する飽和混合比である。氷に対す る相対湿度が RH_{th} を超えた分が雲氷として形成され る。 RH_{th} の計算方法は ECMWF (2018) を基にしてい る。 RH_{homo} は Kärcher and Lohmann (2002) に基づ き、気温の関数となっており、気温が低いほど RH_{homo} が大きくなる。

雲氷の雲量 C_i については、格子平均の雪量を \bar{q}_s として、(2.3.51) 式について、 \bar{q}_c を $\bar{q}_i + \bar{q}_s$ に置き換えた式で計算する。

 $C_i \geq C_c$ が共存する場合、マキシマム・オーバラップを仮定する。この場合、全雲量 C_t は

$$C_t = C_c + C_i - \min(C_c, C_i)$$
(2.3.56)

となる。

氷過飽和を許容することによる効果をいくつかの図 で示す。図2.3.4 は冬における気温(横軸)、氷に対する 相対湿度(縦軸)で分けた頻度分布図を示している。ラ ジオゾンデ観測では、特に240 K 以下で氷に対する相 対湿度が120%を超える場合も見られるが、MSM1702 より前の雲微物理過程では高い氷過飽和は表現されな い。一方、MSM1702 では、観測で見られるような過 飽和の大気が再現されるようになっている。

また、氷過飽和の許容は、対流圏上層の雲氷の収支に おける各素過程の寄与に変化をもたらす。図 2.3.5 は、 鉛直 1 次元モデルによる雲微物理過程の評価パッケー ジである KiD(Shipway and Hill 2012)を用いた理想実 験による雲氷生成の収支を表している。氷過飽和を許 容しない場合は主に部分雲過程で対流圏上層の雲氷が 形成されているが、氷過飽和を許容することで拡散成 長による氷晶の成長が対流圏上層の雲氷の主なソース となる。

2.3.4 まとめと今後の課題

MSM の非静力学モデル化以降、降水予測精度向上等 を目的に、大規模凝結に代わり、多数の素過程を考慮 する雲微物理過程が飽和調節(または部分雲過程)と ともに用いられるようになった。また、MSM1702 で は、雲微物理過程の変更や部分雲過程の導入に加え、 計算安定性の向上もなされた。

第1.2節でも解説したように、豪雨等顕著現象の予 測精度向上のためには、今後も雲微物理過程、部分雲 過程の継続的な改良は欠かせない。また、顕著現象を もたらす対流の発生・維持、その正確な位置の予測に は、他過程との相互作用の改善も重要となる。以下で は、これらの観点から雲過程に関する今後の課題につ いて述べる。

(1) 雲微物理過程

粒径分布

第2.3.2 項(3) で示したように、雲や降水粒子の粒 径分布は予測特性に大きな影響を与えるため、今後も 継続的な見直し・改良が必要である。また、粒径分布 については、そのパラメタリゼーションの基となる観 測結果の対象や地域依存性等と、シミュレーション対 象との整合性に注意して導入を検討する必要がある。 例えば、 Abel and Boutle (2012) による雨の粒径分 布は、東部太平洋やイギリスでの層積雲の航空機観測 で得られた結果を基にしており、当時の英国気象局の 全球モデル (Walters et al. 2011) において、太平洋東 部の霧雨や弱い雨の頻度過大の解消に貢献した。一方 で、アジア域の梅雨や台風の高解像度シミュレーショ ンには必ずしも適していないことを示唆する報告もあ る (Johnson et al. 2018)。このような点に注意しなが ら、粒径分布に限らず、粒径に関連する量の定式化(質 量–粒径関係、落下速度–粒径関係等)の見直しを、事

例・統計検証や、衛星シミュレーションとの比較等か ら継続して進めているところである。

雲・降水粒子間の変換過程

asuca に実装されている雲微物理過程では、雲水か ら雨、雲氷から雪への変換過程はバルク法に基づいて おらず、簡素なオートコンバージョン⁹で定式化されて いる。この手法は簡便であるものの、予測特性の定式 化やパラメータ(変換の始まる雲水・雲氷量の閾値) への感度が高く、予測される雲水量のオーダーが、雨 への変換の始まる雲水量の閾値に大きく影響される。 MSM, LFM においては、降水の予測頻度や、環境場 のバイアス調整のため、これらの閾値が調整されてき た¹⁰。一方で、一時的なパラメータ調整の繰り返しは その後の compensation errors¹¹のリスクを高めること になる。MSM1702では、雨への変換が始まる雲水量 の閾値が 10⁻³ kg kg⁻¹ から 10⁻⁵ kg kg⁻¹ に変更さ れた結果、大気下層の雲水量の予測値も、この閾値の オーダー近くまで減少した。MSM1702 での閾値は粒 径としては 6-7 μm 程度に相当し、雲粒としてはかな り小さい。雲水量が現在より物理的に妥当と思われる 範囲のオーダーになるよう、閾値を見直しているとこ ろである。また、この小さい閾値は、夏季の北日本にお ける下層雲の減少や地表面下向き短波放射の正バイア スに影響しているものの、場所によっては気温のバイ アスを補償している形にもなっている。このため、他 の過程の修正と合わせながら見直しを進めているとこ ろである。さらに、Kessler (1969) 以外の定式化の検 討 (例えば Manton and Cotton (1977) や、数濃度も 考慮して定式化する Kogan (2013) など)も視野に入 れる必要がある。

(2) 他過程との相互作用

雲量を通じた、放射過程との整合性

第2.3.3 項及び図2.3.4 で示したように、MSM1702 では部分雲を考慮し、氷過飽和を許容するようになっ た。この結果、対流圏上層のRH_iの頻度分布が観測と 整合するようになった。一方で、雲量の面では、放射過 程¹²、境界層過程で計算される雲量との不整合が生じ るようになった。放射過程、境界層過程側では氷過飽 和を許容していないため、部分雲過程側で氷過飽和を 許容した場を放射過程や境界層過程に入力すると、上

消される現象 (Martin et al. 2010; Weverberg et al. 2018 など)。compensation errors が積み重なると、誤差の解き ほぐしが困難になる。

⁹ 雲水から雨への変換は Kessler (1969) を、雲氷から雪への 変換は、Lin et al. (1983) と雲氷・雪の割合を混合比の関数 で表現する手法を併用している。

 ¹⁰ 例えば、雲水から雨へのオートコンバージョンの始まる q_c の 閾値は、MSM のバージョンによって、10⁻³ kg kg⁻¹, 10⁻⁴ kg kg⁻¹, 10⁻⁵ kg kg⁻¹ とオーダーの異なる値を取っている。
 ¹¹ ある過程に起因する誤差が、別の過程の誤差によって打ち

¹² 放射過程で計算される雲量はプロダクトとしての雲量にも 使用される。

図 2.3.4 横軸に気温 [K]、縦軸に氷飽和に対する相対湿度を取った頻度分布。(左)氷過飽和を許容しない場合、(中)氷過飽 和を許容する場合、(右) ラジオゾンデ観測。

図 2.3.5 KiD の deep case1 (氷を伴う深い対流のケース) の最初の 100 ステップ平均での雲氷の素過程の時間変化 率 [kg kg⁻¹ s⁻¹]。(左) 氷過飽和を許容する場合、(右) 氷過飽和を許容しない (RH_{crit} = 0.95) 場合。色は各素過 程による雲氷の時間変化率、赤:部分雲過程、緑:拡散成 長、青:雲氷から雪へのオートコンバージョン、水:雲氷 と雪の併合、橙:赤+緑+青+水、黒:雲微物理過程におけ る雲氷の変化率。橙と黒の線はほぼ重なっている。

層雲を過大評価する。これらは、雲のオーバーラップ や放射フラックスの変化を通じて、地表面の熱収支や 大気の成層状態に悪影響を及ぼし、降水予測にも影響 している¹³。この問題は、雲過程で閉じる問題ではな く、過程間の整合性や相互作用の向上を通じて解決で きるよう、開発を進めているところである。

雲量の問題については、第2.4節で再度議論する。

小低気圧の過発達への対処

MSM では、現実には見られない、小スケールで気圧 傾度の大きい低気圧が予測される場合があることが知 られている (原 2015)。MSM1702 では、力学過程にお ける人為的な数値拡散がなくなったことで小低気圧の 発達がより顕著に現れる場合がある(原 2017)。また、 この特性は予報時間を問わず現れることが知られてい る (荒巻・氏家 2018)。MSM における小スケールの低 気圧の発達には、上昇流と凝結の正のフィードバック (上昇流によって水蒸気の凝結が発生し、その潜熱の放 出によって上昇流を生み出す浮力が強化される)が強 く働いていることが指摘されているものの、フィード バックが起こる根本的な原因の特定やその解決方法は 確立されていない。凝結過程や、雲水と降水粒子の併 合に伴う潜熱解放による浮力生成の影響について調査 する他、雲過程と力学過程との結合手法等さまざまな 観点から原因を調べていく必要がある。また、積雲対 流パラメタリゼーションの特性や成層の安定化の強さ、 雲過程との変数のやり取りが格子スケールの降水の発 達の有無に大きく影響することが経験的に知られてい る (成田 2008:氏家・下河邉 2019 など)。このことか ら、積雲対流パラメタリゼーションの特性や雲過程と 相互作用の関連からもこの問題を調査する必要がある。

このように、顕著現象の予測精度向上に向けて、雲 過程において対処していくべき課題が複数ある。今後 は雲過程における重要なプロセスの高度化、及び他過 程との整合性の向上を両輪として開発を進める方針で ある。

参考文献

Abel, S. J. and I. A. Boutle, 2012: An improved representation of the raindrop size distribution for single-moment microphysics schemes. *Quart. J. Roy. Meteor. Soc.*, **138**, 2151–2162.

¹³ 実際、これらの不整合を緩和させると熱雷等の不安定降水 の表現が改善される事例を確認している。

- Abel, S. J. and B. J. Shipway, 2007: A comparison of cloud-resolving model simulations of trade wind cumulus with aircraft observations taken during RICO. *Quart. J. Roy. Meteor. Soc.*, 133, 781– 794.
- 荒巻健智,氏家将志,2018:メソ・局地モデルの予報時 間延長.平成30年度数値予報研修テキスト,気象庁 予報部,7-8.
- 荒波恒平,氏家将志,原旅人,2012:物理過程の数値
 計算.数値予報課報告・別冊第58号,気象庁予報部, 111–119.
- 荒波恒平,石田純一,原旅人,河野耕平,2014:物理過程の実装.数値予報課報告・別冊第60号,気象庁予報部,104–112.
- Beljaars, A., G. Balsamo, P. Bechtold, A. Bozzo,
 R. Forbes, R. J. Hogan, M. Köhler, J.-J. Morcrette,
 A. M. Tompkins, P. Viterbo, and N. Wedi, 2018:
 The Numerics of Physical Parametrization in the
 ECMWF Model. Frontiers in Earth Science, 6.
- Brown, P. R. and P. N. Francis, 1995: Improved Measurements of the Ice Water Content in Cirrus Using a Total-Water Probe. J. Atmos. and Oceanic Technol., 12, 410–414.
- ECMWF, 2018: Part IV: Physical Processes, Chapter 7 Clouds and large-scale precipitation. IFS Documentation—Cy45r1, 97–125.
- Ferrier, B. S., 1994: A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part I: Description. J. Atmos. Sci., 51, 249–280.
- Field, P. R., A. J. Heymsfield, and A. Bansemer, 2007: Snow Size Distribution Parameterization for Midlatitude and Tropical Ice Clouds. J. Atmos. Sci., 64, 4346–4365.
- 藤田司,2004: 非静力学メソ数値予報モデルの概要. 平 成16年度数値予報研修テキスト,気象庁予報部,1-9.
- 原旅人, 2012: 物理過程ライブラリの開発. 数値予報課 報告・別冊第58号, 気象庁予報部, 205-208.
- 原旅人, 2015: 事例検討. 平成 27 年度数値予報研修テ キスト, 気象庁予報部, 82-99.
- 原旅人,2017:メソ数値予報システムの改良の概要.平成 29年度数値予報研修テキスト,気象庁予報部,42-47.
- Johnson, M., Y. Jung, D. Dawson, T. Supinie, M. Xue, J. Park, and Y.-H. Lee, 2018: Evaluation of Unified Model Microphysics in High-resolution NWP Simulations Using Polarimetric Radar Observations. Advances in Atmospheric Sciences, 35, 771–784.
- Kärcher, B. and U. Lohmann, 2002: A parameterization of cirrus cloud formation: Homogeneous freezing of supercooled aerosols. J. Geophys. Res., 107,

AAC 4–1 – AAC 4–10.

- Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. *Meteorol. Monogr.*, **10(32)**, 1–84.
- 気象庁予報部, 2014:次世代非静力学モデル asuca.数 値予報課報告・別冊第60号,気象庁予報部, 151pp.
- Kogan, Y., 2013: A Cumulus Cloud Microphysics Parameterization for Cloud-Resolving Models. J. Atmos. Sci., 70, 1423–1436.
- Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk Parameterization of the Snow Field in a Cloud Model. J. Climate Appl. Meteor., 22, 1065–1092.
- 萬納寺信崇, 2000: 領域モデル (RSM, MSM, TYM). 平成 12 年度数値予報研修テキスト, 気象庁予報部, 23-27.
- Manton, M. J. and W. R. Cotton, 1977: Formulation of approximate equations for modeling moist deep convection on the mesoscale. *Dept. Atmos. Sci., Colorado State Univ., Atmos. Sci. Paper No.* 266, 62pp.
- Martin, G. M., S. F. Milton, C. A. Senior, M. E. Brooks, S. Ineson, T. Reichler, and J. Kim, 2010: Analysis and Reduction of Systematic Errors through a Seamless Approach to Modeling Weather and Climate. J. Climate., 23, 5933–5957.
- Murakami, M., 1990: Numerical Modeling of Dynamical and Microphysical Evolution of an Isolated Convective Cloud. J. Meteor. Soc. Japan, 68, 107– 128.
- 成田正巳,2008: 現業メソ数値予報モデルの湿潤過程の 改良. 数値予報課報告・別冊第54号,気象庁予報部, 75-80.
- 成田正巳,2009: メソ数値予報モデルの湿潤過程の改 良. 平成 21 年度数値予報研修テキスト,気象庁予報 部,72-76.
- Rutledge, S. A. and P. V. Hobbs, 1984: The Mesoscale and Microscale Structure and Organization of Clouds and Precipitation in Midlatitude Cyclones. XII: A Diagnostic Modeling Study of Precipitation Development in Narrow Cold-Frontal Rainbands. J. Atmos. Sci., 41, 2949–2972.
- Saito, K., J. Ishida, K. Aranami, T. Hara, T. Segawa, M. Narita, and Y. Honda, 2007: Nonhydrostatic Atmospheric Models and Operational Development at JMA. J. Meteor. Soc. Japan, 85B, 271–304.
- Saito, K., T. Fujita, Y. Yamada, J. Ishida, Y. Kumagai, K. Aranami, S. Ohmori, R. Nagasawa, S. Kumagai, C. Muroi, T. Kato, H. Eito, and Y. Yamazaki, 2006: The Operational JMA Nonhydrostatic Mesoscale Model. *Mon. Wea. Rev.*, 134,

1266 - 1298.

- Shipway, B. J. and A. A. Hill, 2012: Diagnosis of systematic differences between multiple parametrizations of warm rain microphysics using a kinematic framework. *Quart. J. Roy. Meteor. Soc.*, 138, 2196–2211.
- Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. *Quart. J. Roy. Meteor. Soc.*, **116**, 435– 460.
- 氏家将志,下河邉明,2019:積雲対流.数値予報課報告・ 別冊第65号,気象庁予報部,39-53.
- Walters, D. N., M. J. Best, A. C. Bushell, D. Copsey,
 J. M. Edwards, P. D. Falloon, C. M. Harris, A. P.
 Lock, J. C. Manners, C. J. Morcrette, M. J.
 Roberts, R. A. Stratton, S. Webster, J. M. Wilkinson, M. R. Willett, I. A. Boutle, P. D. Earnshaw, P. G. Hill, C. MacLachlan, G. M. Martin,
 W. Moufouma-Okia, M. D. Palmer, J. C. Petch,
 G. G. Rooney, A. A. Scaife, and K. D. Williams,
 2011: The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1
 configurations. *Geosci. Model Dev.*, 4, 919–941.
- Weverberg, K. V., C. J. Morcrette, J. Petch, S. A. Klein, H.-Y. Ma, C. Zhang, S. Xie, Q. Tang, W. I. Gustafson Jr, Y. Qian, L. K. Berg, Y. Liu, M. Huang, M. Ahlgrimm, R. Forbes, E. Bazile, R. Roehrig, J. Cole, W. Merryfield, W.-S. Lee, F. Cheruy, L. Mellul, Y.-C. Wang, K. Johnson, and M. M. Thieman, 2018: CAUSES: Attribution of Surface Radiation Biases in NWP and Climate Models near the U.S. Southern Great Plains. J. Geophys. Res.: Atmospheres, 123, 3612–3644.
- Wilson, D. R. and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK meteorological office unified model. *Quart. J. Roy. Meteor. Soc.*, **125**, 1607–1636.
- 山田芳則, 2003: 雲の微物理過程. 数値予報課報告・別 冊第 49 号, 気象庁予報部, 52-76.

2.4 雲量¹

2.4.1 はじめに

この節で言う「雲量」は、モデル各格子内をどれだ け雲が覆っているかを割合で表したものである。現実 大気には常にゆらぎが存在しているため、数百 m 程度 かそれ以上の格子間隔のモデルを扱う場合は、格子平 均では水蒸気が飽和していなくても、局所的(部分的) には飽和していて雲が存在する場合があることを考慮 しなければならない (Morcrette 2013 など)。一方で、 格子内の雲量を求めるためには、格子スケールの情報 から格子スケール以下の情報を見積もる、いわゆるパ ラメタリゼーションを行う必要があり、その手法は一 意的でなく、必然的に不確実性を伴う。雲量は雲微物 理過程(第2.3節)や放射過程(第2.5節)など、複数 の物理過程で必要な情報であり、放射計算や水物質の 相変化などによる大気の加熱・冷却に大きなインパク トを与えうる。そのため、適切な雲量の推定が数値予 報モデルに求められる。

MSM・LFM の基盤モデルである asuca では、放射 過程、境界層過程、雲微物理過程²で雲量を使った計算 を行っている。ただし、雲量診断計算は共通化してお らず、放射、境界層、雲微物理それぞれの過程で独自 に計算を行っているのが実情である。放射・境界層過 程の診断方法と雲微物理過程のそれは大きく異なって おり、中でも、氷過飽和の扱い方の違いが放射フラッ クスの誤差の一因であることがわかってきた。

本節では、まず、放射・境界層過程で用いる雲量の 診断方法について概要を説明し、その後で、現在 asuca が抱えている雲量診断に関する課題と今後の開発方針 を述べる。なお、本節では便宜的に、放射・境界層過 程で用いる雲量を「放射・境界層雲量」、雲微物理過 程で用いるそれを「雲微物理雲量」と呼ぶことにする (雲微物理雲量の診断方法は第 2.3.3 項を参照)。

2.4.2 放射・境界層過程の雲量診断

(1) 雲量診断方法の概要

まずは簡単のため、凍結は考慮せず、水雲の雲量に ついて説明する。氷雲診断への拡張は(2)で説明する。 格子内において、水蒸気量のゆらぎによって飽和水蒸 気量を上回った(下回った)場合は、過飽和を考慮しな ければ水蒸気圧を飽和水蒸気圧と等しくするように水 蒸気の凝結(雲水の蒸発)が起こる。また格子内にお ける温度のゆらぎによって飽和水蒸気圧が大きく(小 さく)なった場合には、水蒸気圧を飽和水蒸気圧と等 しくするように雲水の蒸発(水蒸気の凝結)が起こる。

格子内での水蒸気量のゆらぎを表現するために、局 所的な雲水量 q_c を格子平均値の寄与 Q_c と偏差の寄与 s に分けて考える $(q_c = Q_c + s)$ 。 Q_c, s はそれぞれ以下 のとおりである。

$$Q_c = a_L(\overline{q}_t - q_{\text{sat}}(\overline{T}_L)) \tag{2.4.1}$$

$$s = a_L(q'_t - \alpha T'_L) \tag{2.4.2}$$

ここで、 q_t は全水量 (= $q_v + q_c$, q_v は水蒸気混合比)、 T_L は液水温度、 $q_{sat}(T)$ は温度 T における飽和水蒸気混 合比である³。なお、 \overline{X} は X の格子平均値、X' は X の 平均値からの偏差を表す(したがって、 $X = \overline{X} + X'$)。 (2.4.1) 式および (2.4.2) 式の導出については第 2.3.3 項 の (1) を参照していただきたい。 T_L , α および a_L は以 下のとおりである。

$$T_L = T - \frac{L_v}{C_p} q_c \tag{2.4.3}$$

$$\alpha = \frac{\partial q_{\text{sat}}}{\partial T} \tag{2.4.4}$$

$$a_L = \left(1 + \alpha \frac{L_v}{C_p}\right)^{-1} \tag{2.4.5}$$

 L_v は気化熱、 C_p は定圧比熱である。

水蒸気と温度の格子内のゆらぎに対して適当な確率 分布 G(s) を仮定すると、雲量 C_c および格子平均凝結 量 \bar{q}_c を以下のように見積もることができる。

$$C_c = \int_{-Q_c}^{\infty} G(s)ds \tag{2.4.6}$$

$$\overline{q}_c = \int_{-Q_c}^{\infty} (Q_c + s)G(s)ds \qquad (2.4.7)$$

sの標準偏差 σ_s は

$$\sigma_s^2 = \overline{s^2} = a_L^2 \overline{q_t'^2} - 2a_L^2 \alpha \overline{q_t' T_L'} + a_L^2 \alpha^2 \overline{T_L'^2} \quad (2.4.8)$$

である。MSM・LFM では、乱流統計量に境界層過程 (第 2.6 節)の予測値を用いている⁴。

放射・境界層雲量診断は Sommeria and Deardorff (1977)に基づいており、 T'_L , q'_t の分布関数にガウス関 数を採用している。Mellor (1977)に従うと、分布関数 G(s)は以下のようになる。

$$G(s_*) = \frac{1}{\sqrt{2\pi\sigma_*}} \exp\left(-\frac{s_*^2}{2\sigma_*^2}\right)$$
(2.4.9)

ここで、 s_*, σ_* はそれぞれ

$$s_* = \frac{s}{2}, \quad \sigma_* = \frac{\sigma_s}{2}$$
 (2.4.10)

³ ここでは定圧過程を考えており、q_{sat} は温度のみの関数で ある。

$$\sigma_s^2 = a_L^2 \overline{q_t'^2} - 2a_L^2 \alpha \Pi \overline{q_t' \theta_L'} + a_L^2 \alpha^2 \Pi^2 \overline{\theta_L'^2}$$

_____ ¹ 草開 浩

² MSM のみ。LFM の雲微物理過程では格子内非一様性は 考慮せず、格子平均で飽和した場合に凝結が起こる。

⁴ 式中の乱流統計量について、境界層過程では T_L ではなく、 液水温位 θ_L について解かれるため、実装上はExner 関数 Π を用いて以下のようになる。

である。従って、(2.4.6)式は、

$$C_{c} = \int_{-Q_{c}/2}^{\infty} \frac{1}{\sqrt{2\pi}\sigma_{*}} \exp\left(-\frac{s_{*}^{2}}{2\sigma_{*}^{2}}\right) ds_{*}$$
$$= \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{Q_{N}}{\sqrt{2}}\right)\right]$$
(2.4.11)

となる。また、(2.4.7)式より、 \overline{q}_c は

$$\overline{q}_{c} = \int_{-Q_{c}/2}^{\infty} (Q_{c} + 2s_{*})G(s_{*})ds_{*}$$
$$= 2\sigma_{*} \left[C_{c}Q_{N} + \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{Q_{N}^{2}}{2}\right) \right] \quad (2.4.12)$$

となる⁵。ただし、 $Q_N = Q_c/(2\sigma_*)$ である。

(2) 氷雲の扱い

放射過程および境界層過程で利用する雲量について、 固相まで含めた診断方法を以下に説明する。 \bar{q}_t を氷相 まで含めた以下の式で考える。

$$\overline{q}_t = \overline{q}_v + \overline{q}_c + \overline{q}_i \tag{2.4.13}$$

ここで、 q_i は雲氷混合比である。この \bar{q}_t を用いて (2.4.11) 式を計算する。その際に q_{sat} と潜熱 L を決める 必要があるが、これらは水に対する値と氷に対する値 で大きく異なるため、雲水・雲氷が混在する雲 (Mixed phase cloud) の場合は両方の値を考慮する必要がある。 本スキームでは、水に対するもの ($q_{sat,liq}$, L_v) と氷に 対するもの ($q_{sat,ice}$, L_s) を全雲量に対する氷雲量の割 合 r_{ice} で平均した値を用いる。

$$L_{\rm mix} = (1 - r_{\rm ice})L_v + r_{\rm ice}L_s$$
 (2.4.14a)

$$q_{\rm sat,mix} = (1 - r_{\rm ice})q_{\rm sat,liq} + r_{\rm ice}q_{\rm sat,ice} \quad (2.4.14b)$$

 r_{ice} は T_L の関数として以下のように与える。

$$r_{\rm ice} = \begin{cases} 0 & \overline{T}_L \ge T_{\rm tp} \\ 1 - \left(\frac{\overline{T}_L - T_{\rm ice}}{T_{\rm tp} - T_{\rm ice}}\right)^2 & T_{\rm tp} > \overline{T}_L \ge T_{\rm ice} \\ 1 & \overline{T}_L < T_{\rm ice} \end{cases}$$

$$(2.4.15)$$

ここで、 T_{tp} は水の三重点における温度 (273.16 K)、 T_{ice} は凝結した水が全て氷となる温度 (250.15 K) で ある。つまり、気温が 0°C から -23°C の間は Mixed phase cloud となり、-23°C より低い気温では全て氷 雲となることを意味する。

(3) *σ_s*の制限

Gの標準偏差である σ_s の計算 ((2.4.8) 式) には乱流 統計量が必要であり、MSM・LFM では境界層過程の

図 2.4.1 氷に対する相対湿度 [%] (横軸)と雲量(縦軸)の 関係。青線は放射・境界層雲量診断結果、赤線は雲微物理 雲量診断結果。両手法とも、同じ気象条件(気温 220 K、 気圧 200 hPa、臨界相対湿度が 95%)で計算した。

予測値を用いている(境界層過程の詳細は第 2.6 節を 参照)。さらに MSM・LFM では、乱流によるゆらぎ 以外の効果(積雲対流など)によって飽和に達してい なくても雲ができる効果を取り入れるため、以下のよ うに σ_s の取りうる値の範囲を限定している (原・永戸 2008):

$$2c_s f_{\min} a_L q_{\text{sat},\min}(\overline{T}_L) < \sigma_s < 2c_s f_{\max} a_L q_{\text{sat},\min}(\overline{T}_L)$$
(2.4.16)

ここで、 $f_{\text{max}} = 1.0$ 、 f_{min} は水平格子間隔に依存し、 高解像度ではより雲のメリハリがあると考え、MSM で は $f_{\text{min}} = 0.09$ 、LFM では $f_{\text{min}} = 0.05$ と設定してい る (永戸ほか 2012)。 c_s は気圧 p [hPa] を用いて以下の ように表される因子である。

$$c_s = \begin{cases} \frac{p_s - p}{p_s - 850} & p > 850\\ 1 & p \le 850 \end{cases}$$
(2.4.17)

p_s は地上気圧である。つまり、*c_s* は 850 hPa 面より上 層で1、地表面では0でその中間では気圧の関数として 線形に変化する。この因子を導入している理由は、霧 が発生するような状況(ほとんど飽和に近い状態)で はないにも関わらず雲が地表面近くの下層で生成され るのを抑制するためである⁶。

2.4.3 asuca の雲量診断に関する課題と開発方針(1) 雲量診断方法の物理過程間での不整合

今節と第2.3.3 項を比べるとわかるように、放射・境 界層雲量診断と雲微物理雲量診断とで診断方法が大き く異なっている。ある分布関数 G を仮定した格子内凝

 $^{^{5}}$ ここで診断した \overline{q}_{c} は放射過程(第 2.5 節)でのみ用いられ、モデルの予報変数としての \overline{q}_{c} には影響を与えない。

 $^{^6}$ なお、境界層過程で用いる雲量を診断する際には c_s は導入していない。

図 2.4.2 2018 年 8 月 8 日 15 時の MSM 上層雲量(3 時間予報結果)。左図は放射・境界層雲量診断結果、中図は雲微物理雲量 診断結果、右図は氷雲診断方法を変更した放射・境界層雲量診断結果。

図 2.4.3 CNTL 実験の月平均(2016 年 7 月)の上層雲量(左)と、同じく月平均(2016 年 7 月)の大気上端上向き短波放射(中)および長波放射(右)についての対 CERES-EBAF 誤差。

図 2.4.4 図 2.4.3 と同じ。ただし、TEST 実験の結果。

結(凍結)を診断するという点では、両者は同じ考え 方である。分布関数の形状は放射・境界層雲量診断 (ガ ウス関数)と雲微物理雲量診断(三角形状)で異なる が、 σ_s (あるいはゆらぎ幅 b_s)と Q_N (格子平均凝結 量に相当)が両者で同じ場合は、診断される雲量にほ とんど差は生じない。したがって、両者の違いは、 Q_N と σ_s の与え方の違いによるものである。

*Q_N*の与え方に着目すると、放射・境界層雲量診断 では飽和水蒸気量と総水量から直接計算しているため、 飽和水蒸気量を超えた水蒸気は凝結(凝固)して雲と なる。一方、雲微物理雲量診断では Q_N を入力とせず、 \bar{q}_c (または \bar{q}_i)を入力として雲量を診断している。こ れらは、過飽和な状態を許容しなければ同じだが、第 2.3.3 項でも述べられているように、MSM の雲微物理 過程では氷過飽和を許容するため、両雲量診断の結果 に大きな違いが生じる。MSM では、対流圏上層で氷に 対する相対湿度が 140%近くにまで達することがあり、 そのような条件下では、放射・境界層雲量診断のほう が雲微物理雲量診断よりも大きな雲量を診断する。図 2.4.1 は、氷に対する相対湿度 RH_{ice} を変化させたとき

図 2.4.5 地上日射量の対地上観測平均誤差(2016 年 7 月 統計)。上図は平均誤差、下図は二乗平均平方根誤差で、 予報対象時刻別(日本時間、横軸)に示している。青線は CNTL実験の結果、赤線は TEST 実験の結果。エラーバー は 95%信頼区間を表す。

の雲量を示したものである。ここでは簡単のため、臨 界相対湿度 RH_{crit} を 0.95 で固定し、ゆらぎ幅 *b_s* と *σ_s* はそこから以下のように計算したものを用いる。

$$b_s = a_L (1 - \mathrm{RH}_{\mathrm{crit}}) q_{\mathrm{sat}}(\overline{T}_L)$$
(2.4.18)

分布関数がガウス関数の場合は $b_s = 3\sigma_s$ 、三角形状の 場合は $b_s = \sqrt{6}\sigma_s$ であるので、それぞれのスキームに 対して σ_s が求められる。放射・境界層雲量診断(図 2.4.1 の青線)では RH_{ice}が 100%付近で雲を形成して いるのに対し、雲微物理雲量診断(図 2.4.1 の赤線)で は 150%付近で雲を形成していることがわかる。

診断方法の違いと雲量の差を実事例でも確認する。 図 2.4.2 は 2018 年 8 月 8 日 15 時の MSM 上層雲量を 描いたものであり、左図は放射・境界層雲量、中図は 雲微物理雲量である。これらを比較すると、放射・境 界層雲量は面積が広く雲量が1よりも小さい格子が多 いのに対し、雲微物理雲量は面積が狭く雲量が0か1 の格子が多いことがわかる。放射・境界層雲量に比べ て雲微物理雲量が大きいことについては、 σ_s の制限幅 が両者で異なることによる。 σ_s や RH_{crit}の与え方に 関する課題については次の(2)で説明する。

ここまでの説明から、放射・境界層雲量診断では氷 過飽和を許容しておらず、雲氷量と雲量の関係に齟齬 が生じていることがわかる。その結果、現状の放射・境 界層雲量診断は上層雲を広く見積もる傾向があり、第 2.5.3 項で説明した放射フラックスの誤差傾向を踏まえ ると、放射・境界層雲量診断による上層雲の面積は過 大であると言える。本来、雲量の見積もりはモデル全 体で不整合が生じないように同一理論により計算する べきである。一方で、雲氷の生成・消滅過程は複雑で あり、雲水のように単純に飽和水蒸気量からの差だけ で生成・消滅させる現在の理論は成り立たない。実用 的な観点では、雲微物理雲量診断の手法 (Wilson and Ballard 1999)で統一するほうが、氷過飽和を許容する ことができるため望ましいと考える。

そこで、氷雲の診断方法を統一したときのインパクト を調査した。図 2.4.2 の右図に、放射・境界層雲量診断 における氷雲診断において Wilson and Ballard (1999) の方法を採用した場合の結果を示す。上層雲の面積は 従来の放射・境界層雲量よりも狭くなり、雲微物理雲 量と同程度となった。雲量自体は雲微物理雲量よりも 小さくなっているが、これは放射・境界層雲量診断の ゆらぎ幅が雲微物理雲量診断のそれよりも大きくなり やすい傾向があるためである。

この変更のインパクトを確認するために、2016年7月 の 00UTC および 12UTC について変更前実験 (CNTL) 変更後実験 (TEST) を行った。図 2.4.3 と図 2.4.4 に CNTL と TEST の 1 か月平均上層雲量と放射フラッ クスをそれぞれ示した。放射フラックスは CERES-EBAF(Loeb et al. 2018) プロダクトとの差を示して いる。CNTL の結果は第 2.5 節の図 2.5.4 と同じ傾向 で、本州および太平洋で上層雲量が多く、それと対応し て大気上端上向き短波放射が多くなっている。TEST で は上層雲量が大幅に減少している。これに伴って短波放 射の雲による反射は減少し、対 CERES-EBAF での誤 差は縮小している。大気上端上向き長波放射 (OLR) に ついて、対 CERES-EBAF では CNTL は過小、TEST では過大となっている。このことは、CNTL では上層 雲量は過大であったが、TEST では過小となっている ことを示唆している。図 2.4.5 に地上日射量の対地上 気象観測誤差を示した。TEST では上層雲が減少した ことにより雲による反射が小さくなり、短波の地上到 達量が増えた。これによって、CNTL で見られていた 負バイアスは TEST で大幅に縮小した。二乗平均平方 根誤差でも 35 W m⁻² 程度の減少が確認できることか ら、本変更は日射量予測の改善に大きく貢献すること がわかる。

今後は、この変更に加えて、OLRの誤差縮小のため に、雲微物理過程などの他の過程の改良を合わせて行 う予定である。

(2) σ_s の制限と臨界相対湿度について

第 2.4.2 項 (3) で説明したとおり、放射・境界層雲量 診断では σ_s に上下限値を設けている。この制限値につ いて、(2.4.18) 式および $b_s = 3\sigma_s$ の関係から、臨界相 対湿度の上下限値とも見ることができ、以下のように なる。

$$\mathrm{RH}_{\mathrm{crit}} = 1 - \frac{6\sigma_*}{a_L q_{\mathrm{sat}}(\overline{T}_L)} \tag{2.4.19}$$

 $(1 - 6c_s f_{\text{max}}) \le \text{RH}_{\text{crit}} \le (1 - 6c_s f_{\text{min}})$ (2.4.20)

ここで、850 hPa より上空の雲量について考えると ($c_s = 1$)、MSM における RH_{crit}の上下限値はそれ ぞれ 0.46, -5となる。これは、格子平均の相対湿度が 46%を超えたら格子内で雲が発生することを意味する が、MSM のような数 km の水平格子間隔のモデルにお いて現実的な値とは考えにくい。例えば、Walters et al. (2019)の Figure 3 には航空機観測から求めた5パーセ ンタイル、95 パーセンタイルおよび平均の RH_{crit} に ついての水平格子間隔依存性を示している。この図に よると、RH_{crit}の取りうる範囲として、20 km 解像度 ではおよそ 0.65 ~ 0.98、5 km 解像度の場合はおよそ 0.7 ~ 0.99 である。これを踏まえると 0.46 は制限値と して低すぎると言える。

雲微物理雲量診断では、第2.3.3 項にもあるとおり、 850 hPa より上空では RH_{crit}の上下限値をそれぞれ 0.95, 0.5 とし、乱流統計量の値を用いて計算した臨界 相対湿度 RH_{crit,PBL}を用いている。図 2.4.2 で見たよ うに、雲微物理雲量は0か1の値をとることが多いこ とが経験的にわかっている。RH_{crit}の上限値を0.95 よ り小さくする感度実験を行うと、雲域がわずかに広が るだけでなく、凝結のタイミングが早まり、降水量や対 流圏下層気温の予測精度の向上を確認している。一方 で、感度実験では凝結による大気加熱が大きくなるこ とによって対流活動が組織化されやすくなり、第2.3.4 項に説明されている小低気圧の過発達が起こりやすく なる傾向が確認されている。

今後は、σ_sの適切な与え方を再考するとともに、これについてもモデル内で統一的に扱えるように開発を すすめる方針である。

参考文献

永戸久喜,藤田匡,原旅人,2012:局地モデルの本運用. 平成24年度数値予報研修テキスト,気象庁予報部, 72-86.

- 原旅人,永戸久喜,2008: 乱流過程. 数値予報課報告· 別冊第54号,気象庁予報部,117-148.
- Loeb, N. G., D. R. Doelling, H. Wang, W. Su, C. Nguyen, J. G. Corbett, L. Liang, C. Mitrescu, F. G. Rose, and S. Kato, 2018: Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product. J. Climate, 31, 895–918.
- Mellor, G. L., 1977: The Gaussian Cloud Model Relations. J. Atmos. Sci., 34, 356–358.
- Morcrette, C. J., 2013: Sub-grid cloud parametrization issues in the Met Office Unified Model: A tale of several grey zones. ECMWF workshop on parametrization of clouds and precipitation, Reading, UK 5-8 November 2012, ECMWF, 81–88.
- Sommeria, G. and J. W. Deardorff, 1977: Subgrid-Scale Condensation in Models of Nonprecipitating Clouds. J. Atmos. Sci., 34, 344–355.
- Walters, D., A. J. Baran, I. Boutle, M. Brooks, P. Earnshaw, J. Edwards, K. Furtado, P. Hill, A. Lock, J. Manners, C. Morcrette, J. Mulcahy, C. Sanchez, C. Smith, R. Stratton, W. Tennant, L. Tomassini, K. Van Weverberg, S. Vosper, M. Willett, J. Browse, A. Bushell, K. Carslaw, M. Dalvi, R. Essery, N. Gedney, S. Hardiman, B. Johnson, C. Johnson, A. Jones, C. Jones, G. Mann, S. Milton, H. Rumbold, A. Sellar, M. Ujiie, M. Whitall, K. Williams, and M. Zerroukat, 2019: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. *Geosci. Model Dev.*, **12**, 1909–1963.
- Wilson, D. R. and S. P. Ballard, 1999: A microphysically based precipitation scheme for the UK meteorological office unified model. *Quart. J. Roy. Meteor. Soc.*, **125**, 1607–1636.

2.5 放射¹

2.5.1 はじめに

放射過程は、太陽や地球から射出される電磁波の伝 播と、それの大気によるエネルギーの吸収・放出・散 乱を表現し、最終的に大気の加熱・冷却による気温変 化を見積もるプロセスである (長澤 2012)。

太陽放射(短波放射)は大気や地表面を加熱し、ま た、大気や地表面自体は地球放射(長波放射)を射出 して冷却する。太陽放射は地球外から得られる主要な エネルギー源であり、紫外-可視-近赤外域(波長はお よそ 0.2~4 µm) にそのエネルギーのほとんどが含まれ る。また、地球放射は、中赤外-遠赤外域(波長はおよ そ 3~100 µm) にそのエネルギーのほとんどが含まれ る。これらの収支が地球の大気や海洋の運動を駆動す るエネルギーの重要な源の一つになっている。放射に よる地表面の加熱や冷却は、境界層の発達に影響を及 ぼし、時には対流活動発生の引き金ともなりうる。ま た、放射による雲や大気の加熱・冷却は、大気の成層安 定度や、雲の生成・維持・消散にも影響を与える。した がって、MSM や LFM での放射過程による大気の加熱 率・冷却率の精度向上は、地上気温の日変化や気温鉛 直プロファイルの予測精度向上のためだけでなく、大 雨などの顕著現象の再現性向上のためにも重要である。

本節では、まず MSM・LFM の放射過程の概要を示 し、そのあとで、現在 MSM・LFM が抱えている放射 過程に関連した課題を挙げ、最後に今後の開発方針を 述べる。

2.5.2 MSM・LFM の放射過程

MSM・LFM の放射過程は、GSM の開発成果を 利用している。原稿執筆時点(2019 年 12 月)では GSM1403(米原 2014) までの開発成果を取り入れてお り、今後も最新の成果を順次取り入れていく予定であ る。最新の GSM 放射過程の詳細は関口ほか (2019) や 本田・坂本 (2019) を参照していただきたい。以下では、 MSM・LFM に実装されている放射過程について概略 を説明する。

放射過程では、大気中における放射伝達方程式を解 いて放射フラックス(正味のエネルギーフラックス密 度)Fを求める。気象庁の放射過程では計算コストを 抑えるため、放射強度が方位角によらないと仮定して 角度積分し、上向き F⁺ と下向き F⁻ の二方向に自由 度を落とした二方向近似法を採用している。そして、 求めたフラックスの収支をモデルの各格子で計算する ことにより、気温変化率を以下のように算出する。

$$\left(\frac{\partial T}{\partial t}\right)_{\rm rad} = \frac{g}{C_p} \frac{\partial}{\partial p} \left(F^+ - F^-\right) \tag{2.5.1}$$

ここで、Tは気温、gは重力加速度、 C_p は定圧比熱、p

は気圧である²。短波・長波放射スキームにおける F^{\pm} は単色(単一波数 ν に対する光線)の放射フラックス F_{ν}^{\pm} を短波・長波それぞれの全領域で波数積分するこ とにより求められる。

単色の放射フラックス *F*[±]_ν は放射強度 *I*_ν を天頂角方 向について積分することで求まる。

$$F_{\nu}^{\pm} = 2\pi \int_{0}^{\pm 1} I_{\nu}(\tau_{\nu},\mu)\mu d\mu \qquad (2.5.2)$$

ここで、 μ は天頂角の余弦を表す。 τ_{ν} は大気上端から 測った単色の光学的厚さで

$$\tau_{\nu} = \int_{z}^{\infty} k_{\nu} \rho dz \tag{2.5.3}$$

と表す。なお、 k_{ν} は質量消散係数、zは高度、 ρ は媒質の密度である。

単色光についての放射伝達方程式は以下のとおりである。

$$-\mu \frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + J_{\nu} \tag{2.5.4}$$

右辺第1項は媒質による放射の減衰(吸収・散乱)を 表す。右辺第2項は放射源関数と呼ばれ、媒質からの 射出や他方向からの散乱による放射の増強を表す。

(1) 長波放射スキーム

長波放射スキームでは、大気および地表面からの赤 外放射について吸収・射出を取り扱う。本スキームで は散乱を取り扱わない二方向吸収近似を採用している (Yabu 2013)。この場合、 k_{ν} は質量吸収係数となる。 また、放射源関数はプランク関数 $B_{\nu}(T)$ で表されるの で、(2.5.4) 式は以下のようになる。

$$-\mu \frac{dI_{\nu}^{\pm}}{d\tau_{\nu}} = -I_{\nu}^{\pm}(\tau_{\nu},\mu) + B_{\nu}(T)$$
 (2.5.5)

これに $e^{\tau_{\nu}/\mu}$ を乗じて、両辺をある高度間 ($\tau_{\nu,1}$ から $\tau_{\nu,2}$ まで)で積分して整理すると、上向き・下向きの 放射強度 I_{ν}^{\pm} は以下のように表せる。

$$I_{\nu}^{+}(\tau_{\nu,2},\mu) = I_{\nu}^{+}(\tau_{\nu,1},\mu)\mathcal{T}_{\nu}^{i}(\tau_{\nu,1},\tau_{\nu,2}) + B_{\nu}(T)\left(1 - \mathcal{T}_{\nu}^{i}(\tau_{\nu,1},\tau_{\nu,2})\right) (2.5.6)$$
$$I_{\nu}^{-}(\tau_{\nu,1},\mu) = I_{\nu}^{-}(\tau_{\nu,2},\mu)\mathcal{T}_{\nu}^{i}(\tau_{\nu,1},\tau_{\nu,2}) + B_{\nu}(T)\left(1 - \mathcal{T}_{\nu}^{i}(\tau_{\nu,1},\tau_{\nu,2})\right) (2.5.7)$$

¹ 草開 浩

² 放射過程計算モジュールは GSM で開発されたものを移 植しているため、気圧高度座標系で鉛直差分が計算される。 asuca に実装する際、モデル各鉛直層上下端における静力学 平衡下での気圧を診断し、その差を Δ*p* として鉛直差分を計 算している。

なお、ここでは $\tau_{\nu,1}$ から $\tau_{\nu,2}$ までの気層は均質層であることを仮定している。 \mathcal{T}^i_{ν} は光線透過関数で以下のように表す。

$$\mathcal{T}_{\nu}^{i}(\tau_{\nu,1},\tau_{\nu,2},\mu) = e^{-(\tau_{\nu,1}-\tau_{\nu,2})/\mu}$$
(2.5.8)

求めたい長波放射フラックスは、(2.5.6) 式と (2.5.7) 式 および (2.5.2) 式により得られる。本スキームではスト リーム法 (Li and Fu 2000) を用い、天頂角方向の積分 を以下のようにガウス求積法で近似する。

$$F_{\nu}^{\pm} = 2\pi \int_{0}^{\pm 1} I_{\nu}(\tau_{\nu},\mu)\mu d\mu \approx 2\pi \sum_{i=1}^{n} w_{i}I_{\nu}(\tau_{\nu},\pm\mu_{i})$$
(2.5.9)

 w_i は第*i*積分点の重みである。二方向近似スキームでは、 $n = 1, w_1 = 1/2$ となる。 μ_1 には散光因子 (1.66)を利用している。 \mathcal{T}_{ν}^i を天頂角方向に積分した \mathcal{T}_{ν}^f (フラックス透過関数)は以下のように表す。

$$\mathcal{T}_{\nu}^{f}(\tau_{\nu,1},\tau_{\nu,2}) = e^{-(\tau_{\nu,1}-\tau_{\nu,2})/\mu_{1}}$$
(2.5.10)

大気モデルで長波放射計算をする際は、鉛直方向に 離散化した各層を均質層とみなしてフラックスを計算 する。モデル第 k 層の下部境界における長波放射の上 向き・下向きフラックス $F_{\nu,k}^{\pm}$ は以下のようになる³。

$$F_{\nu,N+1}^{-} = 0 \tag{2.5.11}$$

$$F_{\nu,k}^{-} = F_{\nu,k+1}^{-} \mathcal{T}_{\nu}^{f}(\tau_{\nu,k}, \tau_{\nu,k+1}) + B_{\nu}(T_{k}) \left(1 - \mathcal{T}_{\nu}^{f}(\tau_{\nu,k}, \tau_{\nu,k+1})\right) (k = N, \cdots, 1)$$
(2.5.12)

$$F_{\nu,1}^+ = B_{\nu}(T_s) \tag{2.5.13}$$

$$F_{\nu,k}^{+} = F_{\nu,k-1}^{+} \mathcal{T}_{\nu}^{f}(\tau_{\nu,k-1},\tau_{\nu,k}) + B_{\nu}(T_{k-1}) \left(1 - \mathcal{T}_{\nu}^{f}(\tau_{\nu,k-1},\tau_{\nu,k})\right) (k = 2, \cdots, N+1)$$
(2.5.14)

波数積分について、長波放射スキームでは、長波放 射の波長帯を 11 バンドに分割して、それぞれのバン ドで波数積分した放射フラックスを求める。各バンド の放射フラックスは、k-分布法 (Arking and Grossman 1972)を応用して次式により計算する。

. .

$$F = \sum_{i=1}^{M} F_i \Delta_i \tag{2.5.15}$$

ここで、M は各バンドのサブバンド数、 F_i , Δ_i はそれ ぞれ k-分布法による第i サブバンドの放射フラックス と積分間隔を表す。このように、各バンドを *M* 個のサ ブバンドに分割し、それぞれのサブバンドでの放射を 吸収係数 *k_i* の単色光とみなして放射伝達計算を行い、 それらを足し合わせることで長波放射の波長帯での放 射フラックスを計算する。

(2) 短波放射スキーム

短波放射スキームでは、太陽光の大気および地表面 による吸収・散乱を取り扱う。太陽からの直達光は指 向性が強いため、(2.5.4) 式を直達光と散乱光を分けて 考える。直達光の方程式は以下のようになる。

$$\mu_0 \frac{dI_\nu(\tau_\nu, \mu_0)}{d\tau_\nu} = -I_\nu(\tau_\nu, \mu_0) \tag{2.5.16}$$

ここで、 μ_0 は太陽天頂角の余弦である。直達光の放射 フラックス $F_{\nu,\text{dir}}$ は (2.5.16) 式を解くことにより以下 のようになる。

$$F_{\nu,\text{dir}} = F_0 e^{-\tau_\nu/\mu_0} \tag{2.5.17}$$

 F_0 は μ_0 方向から入射する大気上端での太陽放射フラックス ($F_0 = \mu_0 S_0, S_0$ は太陽定数)である。散乱光の方程式は以下のようになる。

$$\mu \frac{dI_{\nu}(\tau_{\nu},\mu)}{d\tau_{\nu}} = I_{\nu}(\tau_{\nu},\mu)$$
$$-\frac{\omega_{0}}{2} \int_{-1}^{1} P(\mu,\mu') I_{\nu}(\tau_{\nu},\mu') d\mu'$$
$$-\frac{\omega_{0}}{4\pi} P(\mu,\mu_{0}) F_{0} e^{-\tau_{\nu}/\mu_{0}} \qquad (2.5.18)$$

ここで、 ω_0 は単一散乱アルベド(入射光の消散に対 する散乱の割合)、 $P(\mu,\mu')$ は散乱位相関数(散乱の 強さの散乱角依存性を表す)である。散乱光の放射フ ラックスは、二方向近似法の一種である δ -Eddington 法 (Joseph et al. 1976)を用いると、 $I(\tau_{\nu},\mu)$ を μ の一 次関数、Pを低次の球面調和関数展開で近似すること ができ、(2.5.18) 式を天頂角方向に積分することにより 以下のように表すことができる (Meador and Weaver 1980)。

$$\frac{dF_{\nu}^{+}}{d\tau} = \gamma_{1}F_{\nu}^{+} - \gamma_{2}F_{\nu}^{-} - \gamma_{3}\omega_{0}F_{0}e^{-\tau_{\nu}/\mu_{0}}$$
(2.5.19a)
$$\frac{dF_{\nu}^{-}}{d\tau} = \gamma_{2}F_{\nu}^{+} - \gamma_{1}F_{\nu}^{-} + (1 - \gamma_{3})\omega_{0}F_{0}e^{-\tau_{\nu}/\mu_{0}}$$
(2.5.19b)

$$\gamma_{1} = \frac{1}{4} \{7 - \omega_{0}(4 + 3g)\}$$
(2.5.20a)

$$\gamma_2 = -\frac{1}{4} \left\{ 1 - \omega_0 (4 - 3g) \right\}$$
(2.5.20b)

$$\gamma_3 = \frac{1}{4} (2 - 3g\mu_0) \tag{2.5.20c}$$

³ 第 N + 1 層は放射フラックス計算のために便宜的に設け るものであり、大気モデルにおいてこの層は予測対象外であ る。ただし、MSM・LFM のモデル上端は 25 km 未満であ り成層圏オゾン層による短波放射の吸収・散乱をモデル大気 で陽に取り扱えないため、第 N + 1 層にモデル上端より上 空のオゾンについて鉛直積算したものを配置し、短波放射の 吸収・散乱を計算している。

で、gはδ-Eddington法により導入されたパラメータ で、散乱の対称性を表す因子である。連立微分方程式 (2.5.19)を均質層に適用し、適当な境界条件を与えて 解くと、均質層の上下境界における上向き・下向き短 波放射フラックスが得られる。

実際の大気においては、大気分子によるレイリー散 乱、各種気体による吸収、エーロゾルや雲による吸収・ ミー散乱が起こるため、これらの効果を同時に考慮す る必要がある。本スキームでは、これらの効果を考慮 できるように、 τ , ω_0 , g を以下のように計算する。

$$\tau = \tau_R + \tau_g + \tau_a + \tau_c \tag{2.5.21a}$$

$$\omega_0 = \frac{\tau_R + \omega_{0a}\tau_a + \omega_{0c}\tau_c}{\tau_R + \tau_q + \tau_a + \tau_c}$$
(2.5.21b)

$$g = \frac{g_a \omega_{0a} \tau_a + g_c \omega_{0c} \tau_c}{\tau_R + \omega_{0a} \tau_a + \omega_{0c} \tau_c}$$
(2.5.21c)

ここで、添字 *R*, *g*, *a*, *c* はそれぞれ、大気分子による レイリー散乱、気体吸収、エーロゾルと雲によるミー 散乱および吸収を表す。

大気モデルに実装する際は、各鉛直層を均質層と見 なして、各層の上下境界における放射フラックスを計 算する。本スキームでは、(2.5.19)式から求めた均質 層における放射フラックスからモデル各層の直達光お よび散乱光に対する反射率 R・透過率 T を算出し、そ れらを用いて鉛直層間の多重反射を考慮した上向き・ 下向き放射フラックスを計算する。最終的に、モデル 鉛直第 k 層の上部境界における上向き・下向きフラッ クスは以下のように表すことができる。

$$F_{\nu}^{+} = F_0 \left\{ (\mathcal{T}_{\mathrm{dn}}(\mu_0) - e^{-\tau_{\nu}^*/\mu_0}) \frac{\overline{\mathcal{R}}_{\mathrm{up}}}{1 - \overline{\mathcal{R}}_{\mathrm{dn}}\overline{\mathcal{R}}_{\mathrm{up}}} + \frac{\mathcal{R}_{\mathrm{up}}(\mu_0)}{1 - \overline{\mathcal{R}}_{\mathrm{dn}}\overline{\mathcal{R}}_{\mathrm{up}}} e^{-\tau_{\nu}^*/\mu_0} \right\}$$
(2.5.22a)

$$F_{\nu}^{-} = F_0 \left\{ e^{-\tau_{\nu}^{*}/\mu_0} + \frac{\mathcal{T}_{dn}(\mu_0) - e^{-\tau_{\nu}^{*}/\mu_0}}{1 - \overline{\mathcal{R}}_{dn}\overline{\mathcal{R}}_{up}} + \frac{\mathcal{R}_{up}(\mu_0)\overline{\mathcal{R}}_{dn}}{1 - \overline{\mathcal{R}}_{dn}\overline{\mathcal{R}}_{up}} e^{-\tau_{\nu}^{*}/\mu_0} \right\}$$

$$(2.5.22b)$$

ここで、 $\mathcal{R}_{up}(\mu_0)$ は各鉛直層より下の層の、直達光に 対する反射率、 $\mathcal{T}_{dn}(\mu_0)$ は各鉛直層より上の層の、直 達光に対する透過率、 $\overline{\mathcal{R}}_{dn}$, $\overline{\mathcal{R}}_{up}$ は各鉛直層より下・上 の層の、散乱光に対する反射率、 $e^{-\tau_{\nu}^*/\mu_0}$ はモデル大 気上端から第 k 層までの直達光透過率を表す。 τ_{ν}^* はモ デル各鉛直層の光学的厚さをモデル最上層から第 k 層 まで足し合わせたものである。添字 "dn"のつく量はモ デル最上層から、添字 "up"のつく量はモデル最下層か ら順に計算することにより求められる。 波数積分について、短波放射の場合、入射する太陽 のスペクトルは変わらないので、あらかじめいくつか の波長帯ごとに積分した τ を計算しておき、それを用 いて上記の計算を行う。本スキームでは、Freidenreich and Ramaswamy (1999) に基づき、短波放射の波長帯 を 16 バンド (紫外域 10、可視域 5、近赤外域 1 (サブ バンド 7 で ESFT 法⁴)) に分割している。このうち、 近赤外域の水蒸気吸収帯については Briegleb (1992) に 基づく。

(3) 放射吸収気体・エーロゾルの扱い

MSM・LFM の放射過程では、GSM と同様、水蒸気、 オゾン、二酸化炭素、酸素、メタン、一酸化二窒素お よびフロン類(CFC-11, CFC-12, HCFC-22) および エーロゾルによる放射の吸収を考慮する。水蒸気につ いて、対流圏ではモデル予測値を用いている。対流圏 より上層の水蒸気については、衛星観測に基づく2次 元月別気候値 (Randel et al. 1998) を利用している。オ ゾンについては、気象研究所成層圏化学輸送モデルを 用いて作成された3次元月別濃度気候値(村井 2009)を 用いている⁵。エーロゾルの単一散乱アルベド ω_{0a} およ び非対称因子 ga は WMO (1986) が定義するプロファ イルに基づき、CONT-I型(平均的大陸型エーロゾル) とMAR-I型(清浄な海洋型エーロゾル)の2種類を、 それぞれ大陸上、海洋上の典型的なプロファイルと仮 定し、モデルの海陸分布に従って水平分布を決定して 用いている。エーロゾルの光学的厚さ *τ*_a は、衛星観測 (MODIS⁶および TOMS⁷)から作成した鉛直積算光学 的厚さの月別気候値⁸を用いて、WMO (1986) が定義 するプロファイルを補正している。他の気体(二酸化 炭素、酸素、メタン、一酸化二窒素およびフロン類)は 一様な気候値を用いている。

(4) 雲の光学特性

MSM・LFM の放射過程では、雲粒の有効半径から 雲の光学特性をパラメタライズする。長波放射におい ては、水雲の質量吸収係数を Hu and Stamnes (1993)、 氷雲のそれを Ebert and Curry (1992) に基づいて計算 する。短波放射における雲の光学特性パラメータ (τ_c , ω_{0c}, g_c) は、水雲については Slingo (1989)、氷雲につ いては Ebert and Curry (1992) に従い、雲水量、雲氷 量、雲粒有効半径 r_e の関数で表す。

 r_e [µm] は水雲と氷雲の場合で異なり、氷雲における r_e は Ou and Liou (1995) および McFarquhar et al. (2003) に基づき、気温(以下の式での単位は C)の関

⁴ Exponential Sum Fitting of Transmission function 法 (Lacis and Hansen 1974; Wiscombe and Evans 1977)

⁵ GSM1403 で導入された成層圏上部から中間圏にかけての オゾン濃度気候値分布の改良 (関口 2012) は未導入である。

 $^{^{\}rm 6}\,$ MODerate resolution Imaging Spectroradiometer

⁷ Total Ozone Mapping Spectrometer

⁸ 気象庁地球環境・海洋部環境気象管理官により作成された もの

数で与える。

 $r_e = -1.56 + 0.388D_e + 0.00051D_e^2 \quad (2.5.23a)$ $D_e = 326.3 + 12.42T + 0.197T^2 + 0.0012T^3$ (2.5.23b)

ここで、*D_e* [μm] は平均雲粒有効粒径を表す。水雲に ついては 15 μm を与えている。

(5) 雲オーバーラップ

MSM・LFM の放射過程では、鉛直層ごとに格子内 を覆っている雲の割合(雲量)を診断(詳しくは第2.4 節を参照)し、それが鉛直方向にどのように重なって いるかをパラメタライズしている(雲オーバーラップ の仮定)。

長波放射スキームでは Maximum Random Overlap(MRO; Geleyn and Hollingsworth 1979) と呼ばれ る仮定を用いている。これは、鉛直方向に隣接した雲 は最大限に重なり (Maxmimum Overlap; MO)、隣接 していない雲層同士は無相関に重なる (Random Overlap; RO) というものである (Hogan and Illingworth 2000 の Fig.1 などを参照)。

短波放射スキームでは、層間の多重反射を扱ってい るため、より単純に計算できるよう格子内を晴天域と 曇天域に分割して放射伝達を計算する。曇天域の面積 率(格子内全雲量; c_{total})は MRO の仮定を用いて決 定し、曇天域内では、各鉛直層の雲量 c_k を全雲量で規 格化したもの $c_k^* (= c_k/c_{total})$ を用いて、曇天域の反射 率 \mathcal{R}^* と透過率 \mathcal{T}^* を計算する。

$$\mathcal{R}_k^* = c_k^* \mathcal{R}_{k,\text{cloud}} + (1 - c_k^*) \mathcal{R}_{k,\text{clear}} \qquad (2.5.24\text{a})$$

$$\mathcal{T}_k^* = c_k^* \mathcal{T}_{k,\text{cloud}} + (1 - c_k^*) \mathcal{T}_{k,\text{clear}}$$
(2.5.24b)

ここで X_{clear} は晴天域の、 X_{cloud} は雲域の $X(=\mathcal{R},\mathcal{T})$ をそれぞれ表す。

(6) 放射計算のタイムステップ

放射過程は計算量が多いため、高速化を目的として 時間方向に間引いて計算している。短波放射および長 波放射スキームの計算は15分に1回計算を行ってい る。放射計算を実行しないタイムステップでは、地表 面温度や太陽天頂角に応じて放射フラックスや大気加 熱率を補正している。なお、GSMでは水平方向に計算 格子を平滑化(東西格子を4格子から1格子に平滑化) して計算量削減を図っているのに対し、MSM・LFM ではそのような平滑化を行っていない。

2.5.3 予測精度上の課題と今後の開発

MSM および LFM の放射過程に起因した予測誤差に ついて、地上観測および衛星観測と比較しながら説明 する。

図 2.5.1 に 2018 年 7 月および 1 月の 12 時における MSM 対地上日射量誤差を示した。MSM が予測する地 上日射量には、夏季に過小、冬季に過大となるような

MSM Mean Error (Downward SW Radiation at the surface) vs SYNOP obs (12LT [UTC+9])

図 2.5.1 地上日射量の対地上観測平均誤差(12時)。上図は 2018 年 7 月、下図は 2018 年 1 月の 00 UTC, 12 UTC 初 期値予報についての統計結果。

誤差が確認できる。これは LFM についても同じ傾向 である(図省略)。また、北海道南東部を除き、ほぼ日 本全域でこれらの誤差特性が確認できる。なお、GSM では夏季の日本付近は日射量が過多であることが示さ れている (米原 2019)。これらの違いはモデル間で雲の 予測特性や雲オーバーラップの方法が異なることによ ると考えられる⁹。

MSM における地上日射量と雲量の関係を調べるために、放射過程で診断する晴天地上短波放射(雲がないと想定した場合の地上日射量予測値)を用いて予測

⁹ GSM の晴天放射過程には、MSM・LFM のそれにはない 改良(エーロゾル直接効果の改良、水蒸気吸収パラメータの 更新)が含まれているが、いずれも地上日射量を小さくする 方向の変化が期待されるため、晴天放射過程の違いによる影 響とは考えにくい。

図 2.5.2 左図は、晴天地上短波放射(推定)で規格化したモデル値(縦軸)と観測値(横軸)の散布図(点)と、各ビ ンにおけるモデル平均短波放射量(折れ線)で、ともに 2018 年 7 月の統計結果。右図は、規格化した地上短波放射量 の観測値(横軸)について各ビンにおけるモデル平均雲量(縦軸)。赤線は全雲量、水色線は上層雲量、橙線は中層雲 量、灰色線は下層雲量を表す。観測値のビンは 0.1 ごとに区切った。エラーバーの下端、上端はそれぞれ 25, 75 パー センタイル値を表す。統計には 00 UTC, 12 UTC 初期値予報のみ用いた。

図 2.5.3 図 2.5.2 と同じ。ただし 2018 年 1 月の統計結果。

値と観測値を規格化し、散布図で表した (図 2.5.2 左)。 また、上、中、下層雲量¹⁰との対応を見るために、規格 化した観測値を 0.1 単位でビンに分け、各ビンごとで 平均したモデル雲量も示した (図 2.5.2 右)。夏季(2018 年 7 月)について、観測値が1に近いとき(実際に晴 れているとき)に予測値は過小、逆に観測値が0に近 いとき(実際に曇っているとき)に予測値は過大な傾 向があることがわかる。また、観測値が1を超えてい る(モデルが予想した晴天時日射量よりも観測値が大

¹⁰ 上層・中層・下層に含まれる鉛直層での雲量を用い、MO を仮定して算出する。下層と中層の境界となる気圧を地上気 圧×0.85 とし、 中層と上層の境界となる気圧を下層と中層 の境界の気圧×0.8 と 500 hPa の小さい方とする(地上気圧 が 1000 hPa の場合、境界はそれぞれ 850 hPa と 500 hPa となる)。

図 2.5.4 大気上端上向き短波放射(左)および長波放射(中)、地上日射量(右)の月平均(2018年7月)についての対 CERES-EBAF 誤差。単位は W/m²。MSM の予測値の統計には 00 UTC, 12 UTC 初期値の結果のみ用いた。

図 2.5.5 MSM による上層雲量(左)・中層雲量(中)・下層雲量(右)予測値の月平均(2018 年 7 月)。MSM の予測値の統 計には 00 UTC, 12 UTC 初期値の結果のみ用いた。

きい)地点が複数ある。このことは、晴天放射の予測 精度が不十分な場合があることを示唆している。これ と合わせて上・中・下層雲量を見ると、以下のような 特徴がある。

- 観測値が1に近いときは、中・下層雲は2割以下 なのに対して、上層雲は5割以上ある。
- 観測値が0に近いときでも、全雲量は9割程度
 で、特に中層雲は5割程度で、下層雲は5割に満たない。

特に前者について、巻雲が多いときに日射量誤差が大 きくなるという Ohtake et al. (2015) の結果とも合致 する。

冬季(2018年1月)について(図2.5.3)は、観測値 が0に近いときに予測値は過大となっており、冬季の 地上日射量過大は、予測雲量が過小であることが原因 と推測する。秋元・土田(2018)の南岸低事例調査にお いても、予測雲量の不足を指摘している。観測値が1 に近いときは、予測値はわずかに過小傾向となってい るが、夏季ほどの大きな誤差は確認できない。

放射フラックス誤差と予測雲量の関係を面的に確認 するため、MSM の月平均放射フラックスを CERES-EBAF(Loeb et al. 2018) プロダクトと比較した (図 2.5.4)。なお、紙面の都合から、夏季(2018年7月)の 結果のみ紹介する。本州から太平洋にかけて、大気上 端上向き長波放射が過小な領域があり、上層雲量が多 い領域(図2.5.5)と対応している。このことは、MSM が上層雲量を過大に予測していることを意味している。 また、その領域では、大気上端上向き短波放射の予測 も過大となっており、太陽放射が過剰に散乱されてい ることを示している。上層雲量が多い領域と地上日射 量が過小な領域もよく対応しており、大気による短波 放射の反射過多が地上日射量過小の一因と推測できる。

以上から、上層雲量の過大傾向と地上日射量の過小 傾向には相関が見られ、上層雲量の表現を改善するこ とが日射量予測精度向上の鍵と考えられる。一般に上 層雲は光学的に薄いため、直接的な影響(上層雲による 吸収・散乱)は小さいと考えられるが、北川ほか (2005) や Nagasawa (2012)が指摘しているように、上層雲に 覆われているときに、下層雲の反射率を過大に評価し ている可能性がある。

今後は、第2.4節で指摘した雲量診断方法に関する 不整合の解消や、雲物理過程改良による雲水・雲氷予 測の改善などによって、過大な上層雲量の減少と地上 日射量誤差の縮小を目指す予定である。また、放射過
程自体のさらなる精緻化に向けて、GSM の放射過程に 実装されている最新の改良項目を MSM・LFM の放射 過程にも順次取り入れていけるように開発を進める。

参考文献

- 秋元銀河, 土田尚侑, 2018: 事例調査: 南岸低気圧によ る降雪予測. 平成 30 年度数値予報研修テキスト, 気 象庁予報部, 54-60.
- Arking, A. and K. Grossman, 1972: The influence of line shape and band structure on temperatures in planetary atmospheres. J. Atmos. Sci., 29, 937– 949.
- Briegleb, B. P., 1992: Delta-Eddington Approximation for Solar Radiation in the NCAR Community Climate Model. J. Geophys. Res., 97, 7603–7612.
- Ebert, E. E. and J. A. Curry, 1992: A parameterization of ice cloud optical properties for climate models. J. Geophys. Res., 97, 3831–3836.
- Freidenreich, S. M. and V. Ramaswamy, 1999: A new multiple-band solar radiative parameterization for general circulation models. J. Geophys. Res., 104, 31 389–31 409.
- Geleyn, J.-F. and A. Hollingsworth, 1979: An economical analytical method for the computation of the interaction between scattering and line absorption of radiation. *Beitr. Phys. Atmos.*, **52**, 1–16.
- Hogan, R. J. and A. J. Illingworth, 2000: Deriving cloud overlap statistics from radar. *Quart. J. Roy. Meteor. Soc.*, **126**, 2903–2909.
- 本田有機,坂本雅巳,2019: 全球モデル (GSM)の概 要.数値予報課報告・別冊第65号,気象庁予報部, 136-155.
- Hu, Y. X. and K. Stamnes, 1993: An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J. Climate, 6, 728–742.
- Joseph, J. H., W. J. Wiscombe, and J. A. Weinman, 1976: The delta-eddington approximation for radiative flux transfer. J. Atmos. Sci., 33, 2452–2459.
- 北川裕人, 籔将吉, 村井臣哉, 2005: 雲-放射過程. 数値 予報課報告・別冊第51号, 気象庁予報部, 65-66.
- Lacis, A. A. and J. E. Hansen, 1974: A parameterization for the absorption of solar radiation in the earth's atmosphere. *J. Atmos. Sci.*, **31**, 118–133.
- Li, J. and Q. Fu, 2000: Absorption approximation with scattering effect for infrared radiation. J. Atmos. Sci., 57, 2905–2914.
- Loeb, N. G., D. R. Doelling, H. Wang, W. Su, C. Nguyen, J. G. Corbett, L. Liang, C. Mitrescu, F. G. Rose, and S. Kato, 2018: Clouds and the

Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product. J. Climate, **31**, 895–918.

- McFarquhar, G. M., S. Iacobellis, and R. C. J. Somerville, 2003: SCM Simulations of Tropical Ice Clouds Using Observationally Based Parameterizations of Microphysics. J. Climate, 16, 1643–1664.
- Meador, W. E. and W. R. Weaver, 1980: Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a new improvement. J. Atmos. Sci., 37, 630–643.
- 村井臣哉, 2009: 放射. 数値予報課報告・別冊第 55 号, 気象庁予報部, 87-90.
- Nagasawa, R., 2012: The problem of cloud overlap in the radiation process of JMA's global NWP model. CAS/JSC WGNE Res. Activ. Atmos. Oceanic Modell., 42, 0415–0416.
- 長澤亮二, 2012: 放射過程. 数値予報課報告・別冊第58 号, 気象庁予報部, 90-99.
- Ohtake, H., da J. G. Silva Fonseca, T. Takashima, T. Oozeki, K. Shimose, and Y. Yamada, 2015: Regional and seasonal characteristics of global horizontal irradiance forecasts obtained from the Japan Meteorological Agency mesoscale model. *Solar Energy*, **116**, 83–99.
- Ou, S. and K.-N. Liou, 1995: Ice microphysics and climatic temperature feedback. Atmos. Res., 35, 127– 138.
- Randel, W. J., F. Wu, J. M. Russell III, A. Roche, and J. W. Waters, 1998: Seasonal cycles and QBO variations in stratospheric CH₄ and H₂O observed in UARS HALOE data. J. Atmos. Sci., 55, 163– 185.
- 関口亮平, 2012: 鉛直 1 次元モデルによる評価 (5)-放 射過程における加熱率. 数値予報課報告・別冊第 58 号, 気象庁予報部, 175-178.
- 関口亮平,長澤亮二,中川雅之, 藪将吉, 2019: 放射. 数 値予報課報告・別冊第65号,気象庁予報部, 66-80.
- Slingo, A., 1989: A GCM parameterization for the shortwave radiative properties of water clouds. J. Atmos. Sci., 46, 1419–1427.
- Wiscombe, W. J. and J. W. Evans, 1977: Exponential-Sum Fitting of Radiative Transmission Functions. J. Comput. Phys., 24, 416–444.
- WMO, 1986: A preliminary cloudless standard atmosphere for radiation computation. World ClimateProgramme, WCP-112, WMO/TD-No.24, 53pp.

- Yabu, S., 2013: Development of longwave radiation scheme with consideration of scattering by clouds in JMA global model. CAS/JSC WGNE Res. Activ. Atmos. Oceanic Modell., 43, 4.07–4.08.
- 米原仁, 2014: 変更の概要. 平成 26 年度数値予報研修 テキスト, 気象庁予報部, 1-3.
- 米原仁, 2019: 気象庁全球モデルにおける近年の改良. 数値予報課報告・別冊 65 号, 気象庁予報部, 1-11.

2.6.1 はじめに

大気中には大小さまざまなスケールの渦の運動によっ て構成される乱流が存在し、運動量、熱、水蒸気等を輸 送している。地表面に隣接した大気最下層の領域(大 気境界層)において、乱流は地面が受けた日射のエネ ルギーを自由大気中へと運び、その運動を駆動してい る。乱流輸送は境界層や自由大気の構造に影響を与え ている他、海面を通じた水蒸気の輸送は積雲対流の励 起や台風の発達に重要な役割を果たしている。

この渦の集団の運動(乱流)は時空間スケールが小 さく、現業運用される数値予報モデルでは直接解像で きない。この乱流を何らかの方法でモデル化し、数値 予報モデルの持つ格子平均値の情報から乱流輸送を見 積もることが境界層過程の役割である。

現在気象庁のメソモデル (MSM) で境界層過程とし て用いている改良 Mellor-Yamada レベル 3 スキーム (MYNN3; Nakanishi and Niino 2009) は、気象庁非静 力学モデル (JMA-NHM; Saito et al. 2006, 2007) が MSM として現業運用されていた 2007 年 5 月に、それ まで用いられていた渦拡散モデル (熊谷・斉藤 2004) に 代わって導入された (原 2006; Hara 2007a,b)。後に運用 を開始した JMA-NHM に基づいた局地モデル (LFM; 永戸ほか 2012) にもこのスキームが導入された。

その後、原 (2012a) 等の調査により、JMA-NHM に 実装されていた MYNN3(旧 MYNN3)はフラックス の振動により過大な乱流輸送を表現しやすいことが判 明し、境界層過程の見直しが行われた。

LFM では、数値予報モデルの asuca(気象庁予報部 2014) への更新に伴い、計算安定性向上のための様々な 改良を施した境界層過程(計算安定化版 MYNN3)を 開発して asuca の物理過程² に実装し、旧 MYNN3 に 見られた問題点を改善した (原 2015)。

ー方、当時 JMA-NHM に基づくモデルであった MSM ではこの計算安定化版 MYNN3 を導入できず、 境界層過程をより簡略化した(その代わりにフラック スの振動が発生しない)スキームであるレベル 2.5 モ デル (MYNN2.5) に変更することでこの問題点に対処 した (原 2015)。

2017 年 2 月には MSM の数値予報モデルも asuca に 更新され、この時、計算安定化版 MYNN3 を用いた方 が MYNN2.5³ を用いるよりも降水、気温予測等の精度 が改善することが確認されたため、境界層過程を LFM と同じ計算安定化版 MYNN3 に変更した (原 2017)。図 2.6.1 に、現在の MSM において計算安定化版 MYNN3 と MYNN2.5 を用いた場合の冬期間の気温、ジオポテ ンシャル高度の対ゾンデ RMSE の差を示す。MYNN3 を用いた結果では対流圏下層の気温が平均的に上昇す る傾向が見られ、MSM の持つ低温バイアスを打ち消 す形で気温の対ゾンデ誤差は小さくなる。また大気の 成層状態の変化を通じて上層の高度場にも影響を与え、 バイアスを打ち消す形でジオポテンシャル高度の誤差 を縮小する⁴。このように MSM において、計算安定化 版 MYNN3 を用いた結果では、MYNN2.5 を用いた結 果よりも統計的なスコアが改善する。

LES (Large Eddy Simulation)⁵ 等と比較した計算 安定化版 MYNN3 の基本的な性能や課題については原 (2012a,b,c)で詳しく調べられているためこちらを参照 いただきたい。また渦拡散モデルと比較した旧 MYNN3 の性能については原・永戸 (2008)を、旧 MYNN3 と 比較した計算安定化版 MYNN3 の性能については原 (2015)を参照いただきたい。

本節では現在 MSM で境界層過程に用いている計算 安定化版 MYNN3 の独自実装について、旧 MYNN3 と の違いを示しつつ、その概要を説明する。

図 2.6.1 冬期間 66 日の 00, 12 UTC 初期値の予報に ついて検証した MSM の FT=12 の対ゾンデ誤差の差 (MYNN3-MYNN2.5)。縦軸は高度 [hPa]。左図、右図は それぞれ気温 [K]、ジオポテンシャル高度 [m] の RMSE の差を表す。またエラーバーはブートストラップ法で推定 した 95% 信頼区間を表す。

2.6.2 乱流フラックス

物理量 ϕ を

$$\phi = \overline{\phi} + \phi' \tag{2.6.1}$$

のように格子平均値 ϕ と乱流による格子平均値からの 変動 ϕ の和で表した場合、乱流輸送による ϕ の格子平 均値の時間変化率は

$$\frac{\partial \overline{\phi}}{\partial t} = -\frac{\partial}{\partial z} \overline{w' \phi'} \tag{2.6.2}$$

¹ 西本 秀祐

² 物理過程ライブラリ (原 2012d) のこと。

³ JMA-NHM に実装されていたものと詳細な仕様は異なる が、MYNN2.5 は物理過程ライブラリにも実装されており、 asuca でも利用することができる。

⁴ その他に地上気温、地上比湿の誤差等も減少する。また夏 期間についても同様である。

⁵ 高解像度で実行する乱流を扱う数値シミュレーション手法 の一種。乱流を構成する渦のうち、比較的スケールの大きい 渦については格子平均で直接解像し、それよりも小さいス ケールの渦はサブグリッド効果としてパラメタライズする。 境界層過程のリファレンスとして用いられることが多い。

のように表すことができる。ただし、wは鉛直風速である。右辺の $\overline{w'\phi'}$ が乱流による輸送量(乱流フラックス)であり、変動成分の2次のモーメント⁶の形で表される。

MYNN3 は $\overline{w'\phi'}$ のような2次モーメントの時間発展 を陽に計算する RANS⁷ モデルの一種である。MYNN3 の予測した2次モーメントを用いて (2.6.2) 式を計算す ることにより、乱流輸送による格子平均値の時間変化 率を計算することができる。

2.6.3 MYNN3 の方程式

MYNN3 は 4 つの 2 次モーメント q^2 , $\theta_{12}', \overline{q_w'^2}, \overline{\theta_{1}'q_w'}$ の 予報方程式と、乱流輸送計算に必要な 4 つの 2 次モーメ ント $\overline{w'\theta_{1}'}, \overline{w'q_w'}, \overline{u'w'}, \overline{v'w'}$ の診断式から構成される。 ただし u, v は水平風速を表す。 q^2 は乱流エネルギーの 2 倍を表す量で $q^2 = \overline{u'^2} + \overline{v'^2} + \overline{w'^2}$ と表される。また θ_1, q_w は熱、水蒸気の乱流輸送を計算するために扱って いる液水温位、総水混合比と呼ばれる変数でそれぞれ 次の式で表される。

$$\theta_{\rm l} = \theta - \frac{L_{\rm v}}{C_{\rm p}} \frac{\theta}{T} q_{\rm c} - \frac{L_{\rm s}}{C_{\rm p}} \frac{\theta}{T} q_{\rm i}$$
(2.6.3)

$$q_{\rm w} = q_{\rm v} + q_{\rm c} + q_{\rm i} = q_{\rm v} + q_{\rm l} \quad (q_{\rm l} = q_{\rm c} + q_{\rm i}) \quad (2.6.4)$$

ただし、 L_v, L_s は蒸発、昇華に伴う潜熱、 C_p は定圧比熱、Tは絶対温度、 q_v, q_c, q_i は水蒸気、雲水、雲氷の混合比である。

乱流フラックス $\overline{w'\theta'_1}, \overline{w'q'_w}, \overline{u'w'}, \overline{v'w'}$ は $\overline{u}, \overline{v}, \overline{\theta_1}, \overline{q_w}$ 等の1次モーメント(以後、平均量と呼ぶ)と MYNN3 の予報変数である $q^2, \overline{\theta'_1}^2, \overline{q'_2}^2, \overline{\theta'_1}q'_w$ から診断される。 従って MYNN3 では予報方程式を積分して $q^2, \overline{\theta'_1}^2, \overline{q'_w}^2,$ $\overline{\theta'_1}q'_w$ の時間発展を計算しつつ、診断式から最終的な出 力である乱流フラックスを計算している。

(1) 2次モーメントの予報方程式

 $q^2, heta_1'^2, \overline{q_w'^2}, \overline{ heta_1' q_w'}$ の予報方程式はそれぞれ次のように表される。

$$\begin{split} \frac{\partial q^2}{\partial t} &= \frac{-\overline{u}\frac{\partial q^2}{\partial x} - \overline{v}\frac{\partial q^2}{\partial y} - \overline{w}\frac{\partial q^2}{\partial z}}{\mathrm{I}} + \frac{\partial}{\partial z}\left(K_{\mathrm{q}}\frac{\partial q^2}{\partial z}\right)}{\mathrm{II}} \\ &-\frac{2q}{\underline{B_1\ell}}q^2 - \frac{2\left(\overline{u'w'}\frac{\partial\overline{u}}{\partial z} + \overline{v'w'}\frac{\partial\overline{v}}{\partial z}\right) + 2\frac{g}{\Theta_0}\overline{w'\theta'_{\mathrm{v}}}}{\mathrm{IV}} \end{split}$$

$$(2.6.5)$$

⁶ 変動量の n 個の積の期待値(相関)を n 次のモーメント と呼ぶ。ただし、1 次のモーメントは平均量のことを指すも のとする。

⁷ 乱流を定量的に取り扱うための手法の一種。Navier-Stokes 方程式から φ, w'φ'等のモーメントの時間発展を記述する方 程式を導出し、その方程式を解くことによりモーメントの時 間発展を予測する。導出した方程式系には必ず未知の項が現 れて方程式は閉じないため、クロージャー関係を仮定してパ ラメタライズする必要がある。

$$\frac{\partial \theta_{1}^{\prime 2}}{\partial t} = \frac{-\overline{u} \frac{\partial \theta_{1}^{\prime 2}}{\partial x} - \overline{v} \frac{\partial \theta_{1}^{\prime 2}}{\partial y} - \overline{w} \frac{\partial \theta_{1}^{\prime 2}}{\partial z}}{I} + \frac{\partial}{\frac{\partial z}{\partial z} \left(K_{\theta_{1}} \frac{\partial \overline{\theta_{1}^{\prime 2}}}{\partial z}\right) - \frac{2q}{\underline{B_{2}\ell}} \frac{\overline{\theta_{1}^{\prime 2}}}{\overline{II}} - 2 \overline{w^{\prime}\theta_{1}^{\prime}} \frac{\partial \overline{\theta_{1}}}{\partial z}}{V} \quad (2.6.6)$$

$$\frac{\partial \overline{q_{w}^{\prime 2}}}{\partial t} = -\frac{\overline{u} \frac{\partial \overline{q_{w}^{\prime 2}}}{\partial x} - \overline{v} \frac{\partial \overline{q_{w}^{\prime 2}}}{\partial y} - \overline{w} \frac{\partial \overline{q_{w}^{\prime 2}}}{\partial z}}{I} + \frac{\partial}{\frac{\partial z}{dz}} \left(K_{q_{w}} \frac{\partial \overline{q_{w}^{\prime 2}}}{\partial z}\right) - \frac{2q}{\underline{B_{2}\ell}} \overline{q_{w}^{\prime 2}} - \frac{2\overline{w^{\prime}q_{w}^{\prime}}}{\overline{N}} \frac{\partial \overline{q_{w}}}{\partial z} \quad (2.6.7)$$

$$\frac{\partial \overline{\theta_{1}^{\prime}q_{w}^{\prime}}}{\partial t} = -\overline{u} \frac{\partial \overline{\theta_{1}^{\prime}q_{w}^{\prime}}}{A} - \overline{v} \frac{\partial \overline{\theta_{1}^{\prime}q_{w}^{\prime}}}{\overline{M}} - \overline{w} \frac{\partial \overline{\theta_{1}^{\prime}q_{w}^{\prime}}}{\overline{N}} - \overline{w} \frac{\partial \overline{\theta_{1}^{\prime}q_{w}^{\prime}}}{\partial z} \quad (2.6.7)$$

$$+\frac{\frac{\partial}{\partial z}\left(K_{\theta q}\frac{\partial\overline{\theta_{l}}'q_{w}'}{\partial z}\right)}{\mathbb{I}}-\frac{\frac{2q}{B_{2}\ell}\overline{\theta_{l}'q_{w}'}}{\mathbb{II}}-\frac{\left(\overline{w'\theta_{l}'}\frac{\partial\overline{q_{w}}}{\partial z}+\overline{w'q_{w}'}\frac{\partial\overline{\theta_{l}}}{\partial z}\right)}{\mathbb{IV}}$$

$$(2.6.8)$$

ただし、g は重力加速度、 Θ_0 は温位の参照値、q は予報 変数 q^2 の平方根である。また B_1, B_2 はクロージャー 定数と呼ばれる定数である。 ℓ は乱流中の渦の代表的な 長さスケールを表す Master Length と呼ばれる量で、 高度やq の分布、地表面、大気の安定度等から診断的 に計算している。 $K_q, K_{\theta_1}, K_{q_w}, K_{\theta_q}$ は、後述する運動 量についての安定度関数 $S_{M2.5}$ を用いて

$$K_{\rm q} = 3q\ell S_{\rm M2.5}, \quad K_{\theta_{\rm l}} = K_{\rm q_w} = K_{\theta_{\rm q}} = q\ell S_{\rm M2.5}$$

$$(2.6.9)$$

のように与えている。(2.6.5) 式に現れる $\overline{w'\theta'_{v}}$ は、鉛 直速度と仮温位の相関を表す 2 次モーメントである。 θ_{v} を含んだ 2 次モーメントの計算では、Mellor and Yamada (1982) に基づき、液水温位、総水混合比のゆ らぎ (θ'_{1}, q'_{w}) によって、格子内で部分的に凝結が起こ る効果(第 2.4.2 項参照)を考慮している。 $\overline{w'\theta'_{v}}$ は次 の式で表される。

$$\overline{w'\theta'_{\rm v}} = \beta_{\theta} \overline{w'\theta'_{\rm l}} + \beta_{\rm q} \overline{w'q'_{\rm w}} \tag{2.6.10}$$

 $\beta_{\theta}, \beta_{q}$ は $\overline{\theta_{l}}, \overline{q_{w}}$ や $\overline{q_{l}}$ (格子内の部分的な凝結を考慮した雲水、雲氷の混合比)等の関数である。

(2.6.5)~(2.6.8) 式に下線で示したように、各予報方 程式の右辺は

- I 移流項(平均流による3次元移流を表す項)
- Ⅱ 拡散項(鉛直方向の拡散を表す項)
- Ⅲ 散逸項(シンクの役割を果たす項)

• IV 生成項 (ソースまたはシンクの役割を果たす項) と呼ばれる項から構成される。これら 4 つの予報方程 式を時間積分することによって q^2 , $\overline{\theta_1'^2}$, $\overline{q_w'^2}$, $\overline{\theta_1'q_w'}$ の時 間発展を計算している。

(2) 乱流フラックスの診断式

乱流フラックス $\overline{u'w'}, \overline{v'w'}, \overline{w'\theta'_1}, \overline{w'q'_w}$ は次のように 診断的に計算される。

$$\overline{u'w'} = \frac{-q\ell S_{M2.5}}{\frac{\partial \overline{u}}{\partial z}} \frac{-q\ell\Gamma_u}{(B)}$$
(2.6.11)

$$\overline{v'w'} = \frac{-q\ell S_{M2.5} \frac{\partial \overline{v}}{\partial z}}{(A)} \frac{-q\ell\Gamma_{v}}{(B)}$$
(2.6.12)

$$\overline{w'\theta_1'} = \frac{-q\ell S_{\text{H2.5}}}{\frac{\partial \overline{\theta_1}}{\partial z}} - \frac{-q\ell\Gamma_{\theta}}{\frac{\partial \overline{\theta_1}}{(B)}}$$
(2.6.13)

$$\overline{w'q'_{\rm w}} = \frac{-q\ell S_{\rm H2.5}}{\frac{\partial \overline{q_{\rm w}}}{\partial z}} - \frac{-q\ell\Gamma_{\rm q}}{({\rm B})}$$
(2.6.14)

式中で (A) と記した項は MYNN2.5 において求まる フラックスを表し、 (B) と記した項は MYNN2.5 から MYNN3 に変わった際に加わるフラックスの補正を表 す。 $S_{M2.5}, S_{H2.5}$ は平均量と q^2 の関数であり安定度関 数と呼ばれる。

 $S_{M2.5}, S_{H2.5}$ は常に正の値を取り (Helfand and Labraga 1988)、 q, ℓ も正の値を取る変数である。その ため (A) 項の符号は平均量の勾配と常に逆符号にな り、平均量を、その値が大きい高度から小さい高度に 向かって輸送するフラックス (勾配輸送)を表現する。 この項は勾配項と呼ばれる。勾配項による平均量の時 間変化率を表す式は

$$\frac{\partial \overline{u}}{\partial t} = \frac{\partial}{\partial z} \left(q \ell S_{\text{M2.5}} \frac{\partial \overline{u}}{\partial z} \right)$$
(2.6.15)

のように平均量についての拡散方程式の形で表される。 (B) 項において $\Gamma_{u}, \Gamma_{v}, \Gamma_{\theta}, \Gamma_{q}$ はそれぞれ

$$\Gamma_{\rm u} = -E_{\rm M} \left(\frac{\ell}{q^2} \frac{g}{\Theta_0}\right)^2 \left(\overline{\theta_{\rm v}^{\prime 2}} - \overline{\theta_{\rm v}^{\prime 2}}_{2.5}\right) \frac{\partial \overline{u}}{\partial z} \quad (2.6.16)$$

$$\Gamma_{\rm v} = -E_{\rm M} \left(\frac{\ell}{q^2} \frac{g}{\Theta_0}\right)^2 \left(\overline{\theta_{\rm v}^{\prime 2}} - \overline{\theta_{\rm v}^{\prime 2}}_{2.5}\right) \frac{\partial \overline{v}}{\partial z} \quad (2.6.17)$$

$$\Gamma_{\theta} = -E_{\rm H} \frac{1}{q^2} \frac{g}{\Theta_0} \left(\overline{\theta_1' \theta_{\rm v}'} - \overline{\theta_1' \theta_{\rm v}'}_{2.5} \right)$$
(2.6.18)

$$\Gamma_{\rm q} = -E_{\rm H} \frac{1}{q^2} \frac{g}{\Theta_0} \left(\overline{q'_{\rm w} \theta'_{\rm v}} - \overline{q'_{\rm w} \theta'_{\rm v}}_{2.5} \right)$$
(2.6.19)

のように表される。 $E_{\rm M}, E_{\rm H}$ は $S_{\rm M2.5}, S_{\rm H2.5}$ と同様、平 均量と q^2 の関数であり、これらも常に正の値を取る⁸。 $\overline{\theta_{\mathrm{v}}^{\prime 2}}, \overline{\theta_{\mathrm{l}}^{\prime} \theta_{\mathrm{v}}^{\prime}}, \overline{q_{\mathrm{w}}^{\prime} \theta_{\mathrm{v}}^{\prime}}$ はそれぞれ

$$\overline{\theta_{\rm v}^{\prime 2}} = \beta_{\theta}^2 \overline{\theta_{\rm l}^{\prime 2}} + 2\beta_{\theta} \beta_{\rm q} \overline{\theta_{\rm l}^{\prime} q_{\rm w}^{\prime}} + \beta_{\rm q}^2 \overline{q_{\rm w}^{\prime 2}} \tag{2.6.20}$$

$$\overline{\theta_1'\theta_{\rm v}'} = \beta_\theta \overline{\theta_1'^2} + \beta_{\rm q} \overline{\theta_1'q_{\rm w}'} \tag{2.6.21}$$

$$\overline{q'_{\rm w}\theta'_{\rm v}} = \beta_{\theta}\overline{\theta'_{\rm l}q'_{\rm w}} + \beta_{\rm q}\overline{q'^2_{\rm w}} \tag{2.6.22}$$

と表される。

 $\frac{\overline{\theta_{v}^{\prime 2}}_{2.5}, \overline{\theta_{l}^{\prime} \theta_{v_{2.5}}^{\prime}, \overline{q_{w}^{\prime} \theta_{v_{2.5}}^{\prime}} \text{ k MYNN2.5 } \text{ k svc x ss } \\ \overline{\theta_{v}^{\prime 2}, \overline{\theta_{l}^{\prime} \theta_{v}^{\prime}, \overline{q_{w}^{\prime} \theta_{v}^{\prime}}, \overline{q_{w}^{\prime} \theta_{v}^{\prime}}, \overline{q_{w}^{\prime} \theta_{v}^{\prime}}, \overline{q_{w}^{\prime} \theta_{v}^{\prime}}, \overline{q_{w}^{\prime} \theta_{v}^{\prime}}, \overline{q_{w}^{\prime 2} \theta_{v}^{\prime 2}}, \overline{q_{w}^{\prime 2} \theta_{v}^{\prime 2}}, \overline{q_{w}^{\prime 2} \theta_{v}^{\prime}}, \overline{q_{w}^{\prime 2} \theta_{v}^{\prime 2}}, \overline{$

 $\Gamma_{\rm u}, \Gamma_{\rm v}, \Gamma_{\theta}, \Gamma_{\rm q}$ の符号は $\left(\overline{\theta_{\rm v}^{\prime 2}} - \overline{\theta_{\rm v}^{\prime 2}}_{2.5}\right)$ 等の符号、つ まり MYNN3 で予報した 2 次モーメントと MYNN2.5 で診断した 2 次モーメントの大小関係に依存している。 従って、(A) 項とは異なり、(B) 項は勾配輸送を表現 する場合もあれば、その逆向きの輸送を表現する場合 もある。この項は逆勾配項と呼ばれる。

2.6.4 計算安定化版 MYNN3 の独自実装

(1) 予報方程式の時間離散化

この項では 2 次モーメントの予報方程式 (2.6.5)~ (2.6.8) を、MSM 内で実際にどのように計算している のかを説明する。

移流項とそれ以外の項の分離

2次モーメントの予報方程式には平均流による3次 元の移流を計算する項(移流項)が存在する。しかし境 界層過程を含めた MSM の物理過程は全て鉛直1次元 で実装されており(原 2012d)、水平方向に隣り合う格 子の情報が必要となる水平移流は、仕様の都合上、境 界層過程内で計算することはできない。そのため移流 項以外による2次モーメントの時間変化率は境界層過 程内で計算し、移流項による時間変化率は力学過程で 計算するという方法を取っている。MSM の時間積分 のループ内において、境界層過程の計算は力学過程の 計算よりも前に行われる(原 2014)。そのため2次モー メントの最終的な時間変化は、境界層過程で移流項以 外による時間変化率(仮の時間変化率)を計算し、力 学過程でこの時間変化率を加えながら移流を計算する ことによって求めている。

$\theta_1^{\prime 2}, \overline{q_w^{\prime 2}}, \overline{\theta_1^\prime q_w^\prime}$ の時間発展の計算

移流項を除いた項による時間発展の計算では、積分 を安定に行うためインプリシットに時間離散化を行っ ており、(2.6.5)~(2.6.8) 式の右辺に現れる予報変数に は未来値を用いている。

⁸ Nakanishi and Niino (2009) の (47), (48) 式において、D'は正の値を取ることが保証されている (Helfand and Labraga 1988)。これより $E_{\rm M} > 0$ は簡単に示すことができる。また $G_{\rm H}$ の定義式 (40) に現れる q^2 には Helfand and Labraga (1988) によって下限値が定められており $G_{\rm H}$ には上限値が 存在する。このことを考慮することにより $E_{\rm H} > 0$ も示すこ とができる。なおこの証明は気象研究所の北村祐二氏よりご 教授頂いた。

各予報方程式において、拡散項、散逸項は予報変 数に比例する。また生成項においても、フラックス $\overline{w'\theta'_1}, \overline{w'q'_w}$ が

$$\overline{w'\theta_{1}'} = -q\ell S_{M2.5} \frac{\partial\overline{\theta_{1}}}{\partial z} - q\ell\Gamma_{\theta}$$

$$\left(\Gamma_{\theta} = -E_{H} \frac{1}{q^{2}} \frac{g}{\Theta_{0}} \left\{\beta_{\theta} \left(\overline{\theta_{1}'^{2}} - \overline{\theta_{1}'^{2}}_{2.5}\right) + \beta_{q} \left(\overline{\theta_{1}'q_{w}'} - \overline{\theta_{1}'q_{w}'}_{2.5}\right)\right\}\right)$$

$$\overline{w'q_{w}'} = -q\ell S_{M2.5} \frac{\partial\overline{\theta_{1}}}{\partial z} - q\ell\Gamma_{q}$$

$$\left(\Gamma_{q} = -E_{H} \frac{1}{q^{2}} \frac{g}{\Theta_{0}} \left\{\beta_{\theta} \left(\overline{\theta_{1}'q_{w}'} - \overline{\theta_{1}'q_{w}'}_{2.5}\right) + \beta_{q} \left(\overline{q_{w}'^{2}} - \overline{q_{w}'^{2}}_{2.5}\right)\right\}\right)$$

と表されることから、予報変数 $\overline{\theta_{l}^{\prime 2}}, \overline{q_{w}^{\prime 2}}, \overline{\theta_{l}^{\prime q_{w}}}$ に比例す る項が存在する。従って (2.6.6)~(2.6.8) 式は次の形で 書き表すことができる。

$$\frac{\partial}{\partial t} \left(\begin{array}{c} \frac{\overline{\theta_{1}}^{\prime 2}}{q_{w}^{\prime 2}} \\ \frac{\overline{\theta_{1}}^{\prime 2}}{\theta_{1}^{\prime} q_{w}^{\prime}} \end{array} \right) = \frac{\partial}{\partial z} \left(K \frac{\partial}{\partial z} \right) \left(\begin{array}{c} \frac{\overline{\theta_{1}}^{\prime 2}}{q_{w}^{\prime 2}} \\ \frac{\overline{\theta_{1}}^{\prime 2}}{\theta_{1}^{\prime} q_{w}^{\prime}} \end{array} \right) - \frac{2q}{B_{2}\ell} \left(\begin{array}{c} \frac{\overline{\theta_{1}}^{\prime 2}}{q_{w}^{\prime 2}} \\ \frac{\overline{\theta_{1}}^{\prime 2}}{\theta_{1}^{\prime} q_{w}^{\prime}} \end{array} \right) + \left(\begin{array}{c} T_{\theta} & 0 & p^{tc} \\ 0 & Q_{q} & p^{qc} \\ p^{ct} & p^{cq} & C_{c} \end{array} \right) \left(\begin{array}{c} \frac{\overline{\theta_{1}}^{\prime 2}}{\overline{q}_{w}^{\prime 2}} \\ \frac{\overline{\theta_{1}}^{\prime 2}}{\theta_{1}^{\prime} q_{w}^{\prime}} \end{array} \right) + \left(\begin{array}{c} R_{\theta} \\ R_{q} \\ R_{c} \end{array} \right) (2.6.23)$$

ただし、

T. T.

$$\begin{split} \mathbf{K} &= \mathbf{K}_{\theta_{1}} = \mathbf{K}_{q_{w}} = \mathbf{K}_{\theta_{q}} = q\ell S_{\mathrm{M2.5}} \\ T_{\theta} &= -E_{\mathrm{H}} \frac{2\ell}{q} \frac{g}{\Theta_{0}} \beta_{\theta} \frac{\partial \overline{\theta_{1}}}{\partial z} \\ Q_{\mathrm{q}} &= -E_{\mathrm{H}} \frac{2\ell}{q} \frac{g}{\Theta_{0}} \beta_{q} \frac{\partial \overline{q_{w}}}{\partial z} \\ C_{\mathrm{c}} &= -E_{\mathrm{H}} \frac{2\ell}{q} \frac{g}{\Theta_{0}} \left(\beta_{\theta} \frac{\partial \overline{\theta_{1}}}{\partial z} + \beta_{q} \frac{\partial \overline{q_{w}}}{\partial z} \right) = \frac{1}{2} \left(T_{\theta} + Q_{q} \right) \\ p^{tc} &= -E_{\mathrm{H}} \frac{2\ell}{q} \frac{g}{\Theta_{0}} \beta_{q} \frac{\partial \overline{\theta_{1}}}{\partial z} \\ p^{qc} &= -E_{\mathrm{H}} \frac{2\ell}{q} \frac{g}{\Theta_{0}} \beta_{\theta} \frac{\partial \overline{q_{w}}}{\partial z} \\ p^{ct} &= \frac{1}{2} p^{qc} \\ p^{cq} &= \frac{1}{2} p^{tc} \\ R_{\theta} &= 2q\ell S_{\mathrm{H2.5}} \left(\frac{\partial \overline{\theta_{1}}}{\partial z} \right)^{2} + E_{\mathrm{H}} \frac{2\ell}{q} \frac{g}{\Theta_{0}} \frac{\partial \overline{\theta_{1}}}{\partial z} \overline{\theta_{1}'} \overline{\theta_{v}'}_{2.5} \\ R_{\mathrm{q}} &= 2q\ell S_{\mathrm{H2.5}} \left(\frac{\partial \overline{q_{w}}}{\partial z} \right)^{2} + E_{\mathrm{H}} \frac{2\ell}{q} \frac{g}{\Theta_{0}} \frac{\partial \overline{q_{w}}}{\partial z} \overline{q_{w}'} \overline{\theta_{v}'}_{2.5} \end{split}$$

$$\begin{aligned} R_{\rm c} &= 2q\ell S_{\rm H2.5} \frac{\partial \overline{\theta_1}}{\partial z} \frac{\partial \overline{q_{\rm w}}}{\partial z} \\ &+ E_{\rm H} \frac{\ell}{q} \frac{g}{\Theta_0} \left(\frac{\partial \overline{q_{\rm w}}}{\partial z} \overline{\theta_1'} \overline{\theta_{\rm v}'}_{2.5} + \frac{\partial \overline{\theta_1}}{\partial z} \overline{q_{\rm w}'} \overline{\theta_{\rm v}'}_{2.5} \right) \end{aligned}$$

である。各予報方程式には、自分自身に比例する項に 加えて、逆勾配項を通じて自分以外の予報変数に比例 する項が存在する(例えば $\overline{\theta_1'^2}$ の予報方程式の右辺に は $\overline{\theta_1'q'_w}$ に比例する項が存在する)。 $p^{tc}, p^{qc}, p^{ct}, p^{cq}$ は このような異なる予報変数同士の相関を表している。

旧 MYNN3 では、(2.6.23) 式は右辺第1項、第2項 の $\overline{\theta_1^{(2)}}, \overline{q_w^{(2)}}, \overline{\theta_1' q_w'}$ として未来値を用いてインプリシット に時間離散化し、相関項を含む右辺第3項は現在値を 用いてエクスプリシットに離散化していた。このよう な離散化のもとでは、 $\overline{\theta_1'^{(2)}}, \overline{q_w'^{(2)}}, \overline{\theta_1' q_w'}$ の時間変化率を求め る方程式はそれぞれ3重対角行列によって表される連 立方程式になり、前進消去、後退代入による簡単な行 列計算によって時間変化率を計算することができる。

一方で、この時間離散化方法では2次モーメントの 振動が発生して安定に計算を行えない場合があった(原 2012a)。そのため計算安定化版 MYNN3 ではより計算 安定性を重視し

$$\frac{1}{\Delta t} \begin{pmatrix} \overline{\theta_1^{\prime 2}}^* - \overline{\theta_1^{\prime 2}} \\ \overline{q_w^{\prime 2}}^* - \overline{q_w^{\prime 2}} \\ \overline{\theta_1^{\prime q_w^{\prime *}}}^* - \overline{\theta_1^{\prime q_w^{\prime 2}}} \\ \frac{\overline{\theta_1^{\prime 2}}^*}{\overline{\theta_1^{\prime q_w^{\prime *}}}} \end{pmatrix} = \frac{\partial}{\partial z} \left(K \frac{\partial}{\partial z} \right) \begin{pmatrix} \overline{\theta_1^{\prime 2}}^* \\ \overline{q_w^{\prime 2}}^* \\ \overline{\theta_1^{\prime q_w^{\prime *}}}^* \end{pmatrix} - \frac{2q}{B_2 \ell} \begin{pmatrix} \overline{\theta_1^{\prime 2}}^* \\ \overline{q_1^{\prime q_w^{\prime *}}} \\ \overline{\theta_1^{\prime q_w^{\prime *}}} \end{pmatrix} + \begin{pmatrix} T_{\theta} & 0 & p^{tc} \\ 0 & Q_q & p^{qc} \\ p^{ct} & p^{cq} & C_c \end{pmatrix} \begin{pmatrix} \overline{\theta_1^{\prime 2}}^* \\ \overline{q_1^{\prime q_w^{\prime *}}}^* \\ \overline{\theta_1^{\prime q_w^{\prime *}}}^* \end{pmatrix} + \begin{pmatrix} R_{\theta} \\ R_q \\ R_c \end{pmatrix}$$

$$(2.6.24)$$

のように (2.6.23) 式の右辺第 3 項についてもインプリ シットに時間離散化を行っている。ただし、上付き添 字^{*}の付いた量は未来値を表している。

(2.6.24) 式の右辺には q^{2^*} に比例する項は存在しない ため、 q^{2^*} についての方程式と $\overline{\theta_{12}'}^*$, $\overline{q_{2*}'}^*$, $\overline{\theta_{1}'q_w'}^*$ につい ての方程式は独立に解くことができる。一方で、相関 項をインプリシットに扱ったため、 $\overline{\theta_{12}'}^*$, $\overline{q_{2*}'}^*$, $\overline{\theta_{1}'q_w'}^*$ に ついての方程式はそれぞれ独立に解くことができず、3 つの 2 次モーメントの方程式を連立して解く必要があ る。(2.6.24) 式において拡散項を空間離散化すること により、 $\overline{\theta_{12}'}^*$, $\overline{q_{2w}'}^*$, $\overline{\theta_{1}'q_w'}^*$ を求める方程式は最終的に次 のようになる。

(2.6.25)

ただし、下付き添字 (1,2,...,n) は鉛直層番号を表す (n は鉛直層数)。また

$$\begin{aligned} a_k^t &= a_k^q = a_k^c = -\frac{K_{k-\frac{1}{2}}}{\Delta z_k \Delta z_{k-\frac{1}{2}}} \Delta t \\ c_k^t &= c_k^q = c_k^c = -\frac{K_{k+\frac{1}{2}}}{\Delta z_k \Delta z_{k+\frac{1}{2}}} \Delta t \\ b_k^t &= 1 - a_k^t - c_k^t + \left(\frac{2q}{B_2\ell} - T_\theta\right) \Delta t \\ b_k^q &= 1 - a_k^q - c_k^q + \left(\frac{2q}{B_2\ell} - Q_q\right) \Delta t \\ b_k^c &= 1 - a_k^c - c_k^c + \left(\frac{2q}{B_2\ell} - C_c\right) \Delta t \\ q^t &= \overline{\theta_1'^2} + R_\theta \Delta t \\ q^q &= \overline{q_w'^2} + R_q \Delta t \\ q^c &= \overline{\theta_1'q_w'} + R_c \Delta t \end{aligned}$$

であり、 Δz は鉛直層間隔を表す。(2.6.25) 式を解く際 に現れる行列は $3n \times 3n$ の巨大な帯状行列であり、相 関項が存在するため 3 重対角行列にはならない。直接 法による計算では計算量が $O(n^3)$ に比例し、非常に計 算コストが大きいため、反復法によって解を計算して いる⁹。反復法には様々な手法を試して最も計算効率の 良かった、前処理に 2 階の ILU 分解を用いた双共役傾 斜安定化法(Bi-CGSTAB 法)¹⁰ を採用している。ま た Bi-CGSTAB 法で指定の反復回数内に解が十分に収 束しなかった場合には直接法である LU 分解法によっ て解を計算している。

(2.6.24) 式のような時間離散化を採用することによって2次モーメントの計算安定性は大幅に向上した。その効果については原 (2012a)の図 3.3.4、図 3.3.5 を参照いただきたい。

q²の時間発展の計算

 q^2 の予報方程式においても、(2.6.5) 式の右辺に現れ る予報変数には未来値を用いている。生成項において、 フラックス $\overline{u'w'}, \overline{v'w'}, \overline{w'\theta'_v}$ には $\overline{\theta_1'^2}, \overline{q_w'}, \overline{\theta_1'q'_w}$ に比例す る項が存在するため、これらの計算には $\overline{\theta_1'^2}, \overline{q_w'}, \overline{\theta_1'q'_w}$ の 未来値を用いる。前述の通り (2.6.24) 式は q^2 の予報方 程式とは独立に解くことができるため、先に (2.6.24) 式を解いて未来値 $\overline{\theta_1'^2}, \overline{q_w'^2}, \overline{\theta_1'q'_w}^*$ を計算しておけば、 この未来値を用いて q^2 の予報方程式を解くことができ る。時間離散化を行った q^2 の予報方程式は

$$\frac{q^{2^{*}}-q^{2}}{\Delta t} = \frac{\partial}{\partial z} \left(K_{q} \frac{\partial q^{2^{*}}}{\partial z} \right) - \frac{2q}{B_{1}\ell} q^{2^{*}} + P_{k} \quad (2.6.26)$$

のように表される。ただし、

$$P_{k} = 2q^{2} \frac{q}{\ell} \left(S_{M2.5} G_{M} + S_{H2.5} G_{H} \right)$$
$$+ \frac{2\ell}{q} \left(\frac{g}{\Theta_{0}} \right)^{2} \left(E_{M} G_{M} + E_{H} \right) \left(\overline{\theta_{v}^{\prime 2}}^{*} - \overline{\theta_{v}^{\prime 2}}_{2.5} \right)$$
$$G_{M} = \frac{\ell^{2}}{q^{2}} \left\{ \left(\frac{\partial \overline{u}}{\partial z} \right)^{2} + \left(\frac{\partial \overline{v}}{\partial z} \right)^{2} \right\}$$

⁹ また非対称行列であるため、非対称行列も含めて計算可能 な方法を用いる必要がある。

¹⁰ Saad (2003) 等を参照。

$$G_{\rm H} = -\frac{\ell^2}{q^2} \frac{g}{\Theta_0} \left\{ \beta_\theta \frac{\partial \overline{\theta_1}}{\partial z} + \beta_q \frac{\partial \overline{q_{\rm w}}}{\partial z} \right\}$$
$$\overline{\theta_{\rm v}^{\prime 2}}^* = \beta_\theta^2 \overline{\theta_1^{\prime 2}}^* + 2\beta_\theta \beta_q \overline{\theta_1^{\prime q}}^* + \beta_q^2 \overline{q_{\rm w}^{\prime 2}}^*$$

である。この方程式の拡散項を空間離散化して $q_k^*(k = 1, 2, \cdots, n)$ についての方程式を導くと、式中に現れる 行列は $n \times n$ の3重対角行列となる。従って前進消去、 後退代入によって解を求めることができる。

(2) 逆勾配項の補正による計算安定性の確保

前述のように、2次モーメント予報方程式では右辺 の予報変数に比例する項を全てインプリシットに時間 離散化しており、2次モーメントの計算安定性を確保 している。しかし特定の条件下では、生成項中の逆勾 配項に起因する項によって $\overline{\theta_1'^2}, \overline{q_w'^2}, \overline{\theta_1'q_w'}$ が指数関数的 な成長を起こし、時間離散化の方法に関わらず計算が 不安定になる場合がある。そこで、指数関数的な成長 が予想される場合には、1より小さいファクターを逆 勾配項にかけることによって逆勾配項による急激な 2 次モーメントの成長を抑えている。

(2.6.24) 式において R_{θ}, R_{q}, R_{c} および相関項を 除いた項による $\overline{\theta_{1}^{\prime 2}}, \overline{q_{w}^{\prime 2}}, \overline{\theta_{1}^{\prime q_{w}}}$ の時間変化を考える。 $R_{\theta}, R_{q}, R_{c}, p^{tc}, p^{qc}, p^{ct}, p^{cq} \ge 0 \ge 0$ 、簡単のため拡散係 数、散逸項の比例係数が定数であると仮定して (2.6.24) 式を z 方向にフーリエ変換すると $\overline{\theta_{1}^{\prime 2}}, \overline{q_{w}^{\prime 2}}, \overline{\theta_{1}^{\prime q_{w}}}$ につい ての方程式は

$$\widetilde{\theta_{l}'^{2}}^{*} = \left\{ 1 + \left(Km^{2} + \frac{2q}{B_{2}\ell} - T_{\theta} \right) \Delta t \right\}^{-1} \widetilde{\theta_{l}'^{2}} \quad (2.6.27)$$

$$\widetilde{q'_{w}^{2}}^{*} = \left\{ 1 + \left(Km^{2} + \frac{2q}{B_{2}\ell} - Q_{q} \right) \Delta t \right\}^{-1} \widetilde{q'_{w}^{2}} \quad (2.6.28)$$

$$\widetilde{\theta_{1}'q_{w}'}^{*} = \left\{ 1 + \left(Km^{2} + \frac{2q}{B_{2}\ell} - C_{c} \right) \Delta t \right\}^{-1} \widetilde{\theta_{1}'q_{w}'} \quad (2.6.29)$$

のようになる。ただし $\theta_{1}^{\prime 2}, q_{w}^{\prime 2}, \theta_{1}^{\prime } q_{w}^{\prime }$ は $\overline{\theta_{1}^{\prime 2}}, \overline{q_{w}^{\prime 2}}, \overline{\theta_{1}^{\prime } q_{w}^{\prime }}$ の フーリエ変換であり、*m* は鉛直波数を表す。これらの 方程式が安定に積分できるためには、

$$Km^2 + \frac{2q}{B_2\ell} \ge T_\theta \tag{2.6.30}$$

$$Km^2 + \frac{2q}{B_2\ell} \ge Q_q \tag{2.6.31}$$

$$Km^2 + \frac{2q}{B_2\ell} \ge C_{\rm c} \tag{2.6.32}$$

という条件を満たす必要があり、この条件を破る場合¹¹ には2次モーメントの指数関数的な成長が発生する。 そこで (2.6.30) 式が満たされない場合には、液水温 位フラックスの逆勾配項 (Γ_{θ}) に対してファクター

$$F_{\theta} = \frac{Km^2 + \frac{2q}{B_2\ell}}{T_{\theta}}$$
(2.6.33)

をかけて値を小さくするという補正を行う。この補正 により、(2.6.23) 式中の T_{θ} および Γ_{θ} に由来する相関 項が F_{θ} 倍になり、(2.6.30) 式を満たすようになる。

同様の操作を F_q についても行う。(2.6.31)式が満た されない場合には、総水混合比フラックスの逆勾配項 (Γ_a)に対してファクター

$$F_{\rm q} = \frac{Km^2 + \frac{2q}{B_2\ell}}{Q_{\rm q}} \tag{2.6.34}$$

をかけて (2.6.31) 式を満たすように補正する。

 C_c には、 Γ_{θ} に由来する成分と Γ_q に由来する成分 の両方が存在する。上記の補正を行った後の $\Gamma_{\theta}, \Gamma_q$ が (2.6.32)式を満たしていない場合には、ファクター

$$F_{\rm c} = \frac{Km^2 + \frac{2q}{B_2\ell}}{C_{\theta}}$$
(2.6.35)

を $\Gamma_{\theta}, \Gamma_q$ の両方にかけて (2.6.32) 式を満たすように補 正している。

補正に用いる波数mは鉛直層間隔 Δz を用いて

$$m = \frac{2\pi S}{\Delta z} \tag{2.6.36}$$

のようにパラメタライズしている。Sの値は実験から 経験的に決めており、安定に計算が行える最大¹² のSであった S = 0.225を採用している。

(3) 最下層の生成項

 q^2 の生成項 P_k は

$$P_{k} = -2\left(\overline{u'w'}\frac{\partial\overline{u}}{\partial z} + \overline{v'w'}\frac{\partial\overline{v}}{\partial z}\right) + 2\frac{g}{\Theta_{0}}\overline{w'\theta'_{v}} \quad (2.6.37)$$

のように表される。大気最下層における P_k の値には Monin-Obukhov の相似則から導かれる値を用いてい る。カルマン定数 κ 、Monin-Obukhov の長さ L_{MO} で 規格化した高度 ζ 、摩擦速度 u_* を用いて P_k は

$$P_{k} = \frac{2u_{*}^{3}}{\kappa z} \left[\phi_{\rm m}(\zeta) - \zeta\right]$$
(2.6.38)

と表される。ただし $\phi_{\rm m}$ は第 2.7 節で説明した普遍関数である。また ζ には2という上限値を設定している。詳細については原・永戸 (2008) に詳しく書かれているためここでは省略する。

¹¹ T_{θ}, Q_{q}, C_{c} の定義式において E_{H} は正の値を取る係数であるため、 $\beta_{\theta}(\partial \overline{\theta_{I}}/\partial z), \beta_{q}(\partial \overline{q_{w}}/\partial z)$ が大きな負の値になる場合にこの条件を破る。日中の混合層の下部では温位や水蒸気勾配が負になり、この条件を破りやすい。

¹² *m* が大きいほど、逆勾配項の補正は適用されにくくなり、 MYNN3 が本来表現するフラックスが計算に用いられるよう になるが、同時に計算安定性が悪化する。

(4) 2次モーメントの初期値の与え方

MYNN3 の予報変数である q^2 , $\overline{q'_1^2}$, $\overline{q'_w^2}$, $\overline{\theta'_1 q_w}$ の初期値 には、平均量の初期値から診断的に求めた値を用いて いる。

旧 MYNN3 ではレベル 2 スキーム (MYNN2) の繰 り返し計算によって初期値を計算していた。MYNN2 では、 q^2 , $\overline{\theta_1'^2}$, $\overline{q_w'}$, $\overline{\theta_1'q_w'}$ の予報方程式 (2.6.5)~(2.6.8) 式において、生成項と散逸項が釣り合った平衡状態を 仮定し、これらの 2 次モーメントを平均量から診断的 に計算する。例えば q^2 の診断式は (2.6.5) 式で定常状 態を仮定し、移流項、拡散項による寄与を無視した式 であり、次のように表される。

$$0 = -\frac{2q}{B_{1}\ell}q^{2} + 2q\ell S_{M2} \left\{ \left(\frac{\partial \overline{u}}{\partial z}\right)^{2} + \left(\frac{\partial \overline{v}}{\partial z}\right)^{2} \right\} -2q\ell \frac{g}{\Theta_{0}}S_{H2} \left(\beta_{\theta}\frac{\partial \overline{\theta_{1}}}{\partial z} + \beta_{q}\frac{\partial \overline{q_{w}}}{\partial z}\right)$$
(2.6.39)

ただし S_{M2} , S_{H2} は MYNN2 における安定度関数であ り、平均量のみの関数である。一方で予報方程式から 省略した拡散項の寄与が無視できず、(2.6.39) 式から 非常に大きな(非現実的な大きさの)乱流エネルギー が計算される場合がある。このような大きな乱流エネ ルギーは予報初期の計算安定性に影響を与えることが 懸念される。また原・永戸 (2008) に述べられているよ うに、MYNN2 で診断した q^2 , $\overline{\theta_1'}^2$, $\overline{q_2''}$, $\overline{\theta_1'q_w}$ の初期値は MYNN3 においてバランスの取れる 2 次モーメントの 値と異なっているため、予報初期で 2 次モーメントが 大きく変動する現象が発生する。

計算安定化版 MYNN3 では、この問題点を改善して おり、2 次モーメントの初期値は予報方程式中の生成 項、散逸項に加えて拡散項のバランスを考慮した次の 診断式から計算している。

$$0 = \frac{\partial}{\partial z} \left(3q\ell S_{\rm M2} \frac{\partial q^2}{\partial z} \right) - \frac{2q}{B_1 \ell} q^2 + 2q\ell S_{\rm M2} \left\{ \left(\frac{\partial \overline{u}}{\partial z} \right)^2 + \left(\frac{\partial \overline{v}}{\partial z} \right)^2 \right\} - 2q\ell \frac{g}{\Theta_0} S_{\rm H2} \left(\beta_\theta \frac{\partial \overline{\theta_1}}{\partial z} + \beta_q \frac{\partial \overline{q_w}}{\partial z} \right)$$
(2.6.40)

$$0 = \frac{\partial}{\partial z} \left(q\ell S_{\rm M2} \frac{\partial \overline{\theta_1'}^2}{\partial z} \right) - \frac{2q}{B_2 \ell} \overline{\theta_1'}^2 + 2q\ell S_{\rm H2} \left(\frac{\partial \overline{\theta_1}}{\partial z} \right)^2$$
(2.6.41)

$$0 = \frac{\partial}{\partial z} \left(q\ell S_{\rm M2} \frac{\partial \overline{q_{\rm w}^{\prime 2}}}{\partial z} \right) - \frac{2q}{B_2 \ell} \overline{q_{\rm w}^{\prime 2}} + 2q\ell S_{\rm H2} \left(\frac{\partial \overline{q_{\rm w}}}{\partial z} \right)^2$$
(2.6.42)

$$0 = \frac{\partial}{\partial z} \left(q\ell S_{\rm M2} \frac{\partial \overline{\theta_1' q_{\rm w}'}}{\partial z} \right) - \frac{2q}{B_2 \ell} \overline{\theta_1' q_{\rm w}'} + 2q\ell S_{\rm H2} \frac{\partial \overline{\theta_1}}{\partial z} \frac{\partial \overline{q_{\rm w}}}{\partial z}$$
(2.6.43)

(2.6.40)~(2.6.43) 式の拡散項を空間離散化して $q_k^2, \overline{\theta_{1k}'}, \overline{q_{wk}'}, \overline{\theta_{l}'q_{wk}'}, (k = 1, 2, \cdots, n)$ についての方程式 を導くと、式中には $n \times n$ の3重対角行列が現れる。 従って前進消去、後退代入によって解を求めることが できる。一方、診断式中に現れる q, ℓ は q^2 に依存す る変数であるため、(2.6.40) 式を解いて q^2 の値が更新 されるとこれらの値も更新される。そのため q, ℓ の値 を更新しながら (2.6.40)~(2.6.43) 式を繰り返し計算す ることによって $q^2, \overline{\theta_{1}'}, \overline{q_{w}'}, \overline{\theta_{l}'}q_{w}'$ の初期値を計算して いる。

(5) 平均量の時間変化率の計算

乱流フラックスによる平均量 $\overline{\phi}$ の時間変化率は

$$\frac{\partial \overline{\phi}}{\partial t} = \frac{\partial}{\partial z} \left(q\ell S_{\Phi 2.5} \frac{\partial \overline{\phi}}{\partial z} \right) + \frac{\partial}{\partial z} \left(q\ell \Gamma_{\phi} \right) \qquad (2.6.44)$$

のように勾配項と逆勾配項の和で表される。

逆勾配項の大きさは $\overline{\theta_1'^2}, \overline{q_w'^2}, \overline{\theta_1'q_w'}$ の大きさに依存す るため、2次モーメントの時間積分が安定に行えない 場合は、逆勾配項が暴走して平均量の計算安定性にも 悪影響を与える。

旧 MYNN3 では、平均量 $\overline{\phi}$ の時間変化率の計算において、逆勾配項の寄与を $S'_{\Phi} = \Gamma_{\phi}/(\partial\overline{\phi}/\partial z)$ のように安定度関数で表現し、

$$\frac{\overline{\phi}^* - \overline{\phi}}{\Delta t} = \frac{\partial}{\partial z} \left(q\ell S_{\Phi} \frac{\partial \overline{\phi}^*}{\partial z} \right), \quad (S_{\Phi} = S_{\Phi 2.5} + S_{\Phi}')$$
(2.6.45)

のように逆勾配項の寄与も含めてインプリシットに時 間離散化を行うことで平均量の計算安定性を確保して いた。一方で S'_{Φ} は負の値も取りうる量であり、拡散 係数 $S_{\Phi}(=S_{\Phi 2.5} + S'_{\Phi})$ は正になることが保証されて いない。そこで計算安定性を保証するため S_{Φ} が 0 以 上になるように逆勾配項に制限値を設けていた (原・永 戸 2008)。しかし、平均量の計算を安定に行える一方 で、この人為的な制限値によって乱流フラックスの振 動が発生し、フラックスの過大評価につながっていた (原 2012a)。

この点を踏まえ、計算安定化版 MYNN3 は 2 次モー メントの計算安定性により配慮した実装になっており、 平均量の時間変化率の計算では

$$\frac{\overline{\phi}^* - \overline{\phi}}{\Delta t} = \frac{\partial}{\partial z} \left(q\ell S_{\Phi 2.5} \frac{\partial \overline{\phi}^*}{\partial z} \right) + \frac{\partial}{\partial z} \left(q\ell \Gamma_{\phi} \right) \quad (2.6.46)$$

のように勾配項はインプリシットに時間離散化し、逆 勾配項は外力項のようにエクスプリシットに右辺に加 えるという時間離散化を行っている¹³。(2.6.46) 式のよ

¹³ 実際にこの式を解く際には、(2.6.46) 式を空間離散化して 得られる $\bar{\phi}_{k}^{*}$ ($k = 1, 2, \dots, n$) についての n 本の連立方程式 を地表面過程でインプリシットに時間離散化した方程式と連 立する (インプリシット結合; 草開 2012 等)。

うな離散化を行うことによって前述の逆勾配項の制限 値を廃止し、旧 MYNN3 で見られていた過大なフラッ クスの問題を解決している。

2.6.5 今後予定しているさらなる計算安定性向上の ための改良

計算安定化版 MYNN3 は、第2.6.4 項で説明した様々 な独自実装により、基本的に安定に動作するように作 られている。一方稀ではあるが、大きな風や温位の鉛直 勾配が長時間維持され、大きな乱流統計量が計算され るような場が MSM で計算された場合には、安定に計算 が行えずにフラックスの振動が発生することがあった。

図 2.6.2 は実際に振動が発生した 2017 年 9 月 2 日 における MSM の地上予想図である。黒丸で示した地 点では、台風第 15 号の北側で南東風と北風が合流し、 大きな風、温位の鉛直勾配が維持されていた(図略)。 この地点における液水温位フラックス $\overline{w'\theta'_1}$ の鉛直プロ ファイルを図 2.6.3 に示す。高波数の波状のフラック スの分布が存在することが分かる。このフラックスの 分布は逆勾配項の振動によって振幅を増しながら1ス テップ周期で振動する(図略)。

乱流フラックスによる平均量の時間変化率を計算す る式は (2.6.46) 式のように表される。現在の MSM で は平均量の時間変化率を計算する際の逆勾配項 (Γ_{ϕ}) は $\overline{\theta_{1}^{\prime 2}}, \overline{q_{w}^{\prime 2}}, \overline{\theta_{1}^{\prime 2}q_{w}}$ の現在値からエクスプリシットに計算して いる。 Γ_{ϕ} を、 $\overline{\theta_{1}^{\prime 2}}, \overline{q_{w}^{\prime 2}}, \overline{\theta_{1}^{\prime 2}q_{w}}$ の現在値ではなく (2.6.24) 式を解いて得られる仮未来値¹⁴ $\overline{\theta_{1}^{\prime 2}}^{*}, \overline{q_{w}^{\prime 2}}^{*}, \overline{\theta_{1}^{\prime 2}q_{w}}^{*}$ から 計算することによってこのフラックスの振動はある程 度抑えることができる。詳細については西本 (2019) を 参照いただきたい。

平均量の時間変化率を計算する際の逆勾配項を $\overline{\theta_l^{\prime 2}}$, $\overline{q_w^{\prime 2}}^*$, $\overline{\theta_l^{\prime} q_w^{\prime \prime}}^*$ から計算するように変更し、図 2.6.3 と同 じ事例を計算し直した結果を図 2.6.4 に示す。この変更 により、フラックスの振動が消え、安定に計算が行え るようになった。この事例以外の過去に振動が発生し た事例でも同様に振動を除去できることを確認してい る。また変更による精度への影響はほとんどなく、振 動が発生していた場所以外では MYNN3 の計算結果に ほとんど影響を与えないことを確認している。

2.6.6 まとめと今後の課題

本節では現在 MSM で境界層過程に用いている計算 安定化版 MYNN3 について、その実装の概要と今後予 定している改良項目を説明した。

計算安定化版 MYNN3 では、反復法による複雑な計 算を必要とする代わりに安定に計算できる時間離散化 を採用するなど、2次モーメントの計算安定性に配慮 して旧 MYNN3 から様々な改良がなされている。2次 モーメントの計算安定性が向上したことから、平均量 の時間変化率の計算方法を見直し、逆勾配項の人為的 な制限値を廃止することで旧 MYNN3 に見られた過大 なフラックスの問題を解決している。また計算安定化 版 MYNN3 では 2017 年 2 月の更新以前に用いられて いたスキームである MYNN2.5 と比較しても統計的な スコアが改善しており、現在の MSM による予測精度 の改善に貢献している。

稀に発生する計算不安定に伴うフラックスの振動が 計算安定性上の課題として残っているが、原因は既に 判明しており、第2.6.5項に述べた改良により解決する 見込みである。

最後に今後の課題である、計算安定化版 MYNN3 の 予測精度上の課題について説明する。

MSM が抱えている予測精度上の課題の1つに、冬季 の対流圏下層の低温バイアスがある。冬季の925 hPa 面 における、MSM の気温の対ゾンデ平均誤差を図 2.6.5 に示す。中国南部等の一部の地域を除き、ほとんどの 地点で低温バイアスが見られる。この低温バイアスは 予報時間が進むほど大きくなる。

図 2.6.6 に、中国東北区付近で領域平均した FT=0~24における各物理過程と力学過程(移流)に よる温位の時間変化率の鉛直プロファイルを示す。図 中のTOT(全ての時間変化率を足し合わせた最終的な 時間変化率)を見ると、地上から高度1300m付近に かけて負の値である。これは予報時間が1日進むと下 層気温が低温側にドリフトする傾向があることを意味 しており、予報時間が進むほど対ゾンデの気温バイア スが増加することと整合している。

図 2.6.7 に日中、夜間それぞれにおける各過程の寄 与を示す。境界層過程は、日中は地上から高度 500 m 付近において大気を温め、高度 500 m から 1300 m 付 近では冷却している。また夜間は地上から高度 1000 m 付近までの大気を冷却している。日中、夜間の両方で 境界層過程による寄与は各過程の中で最も大きく、最 終的な気温の時間変化率に大きな影響を与えている。

下層気温のドリフトの原因ははっきりと分かってい ないが、気温の時間変化率への寄与は日中、夜間どちら も境界層過程による寄与が最も大きいこと、ドリフトが 境界層過程の寄与する高度である地上から高度1300 m 付近にかけて見られることから境界層過程が関係して いる可能性があり、冬季の特に大陸上において、乱流 輸送による冷却が過大評価されていないか、また昇温 が過小評価されていないか今後調査する必要があると 考えている。

またこの問題とは別に、原 (2012b) や原 (2012c) は、LES と比較した理想実験の結果から計算安定化 版 MYNN3 の精度上の課題について指摘している。

境界層過程は、地上気象要素や顕著現象の予測精度

¹⁴移流による時間変化が加えられていない未来値のため、ここではそのように呼んでいる。時間積分ループの中で境界層過程の後に力学過程の計算を行っている MSM では、仕様の都合上(移流による時間変化も加えた)本当の未来値を用いて逆勾配項を計算することが困難であったため、仮未来値を用いて計算することにした。

図 2.6.2 2017 年 9 月 2 日 21 UTC を 対象とした MSM の地上予想図。カ ラー、コンター、矢羽はそれぞれ前 3 時間降水量 [mm/3h]、海面更正気 圧 [hPa]、地上風速 [ノット] を表す。

図 2.6.3 w(θ₁ [K⋅m s⁻¹] の鉛直プロ ファイル (縦軸は高度 [m])。青、赤、 緑はそれぞれ勾配項、逆勾配項、勾 配項と逆勾配項の和を表す。

図 2.6.4 図 2.6.3 と同じ。ただし、平 均量の時間変化率を計算する際の逆 勾配項の計算方法を変更した場合の 結果。

図 2.6.5 冬期間 66 日の 00, 12 UTC 初期値の予報で検証した FT=24、925 hPa 面における MSM の気温の対ゾンデ 平均誤差 [K]。

図 2.6.6 左図の青色で塗りつぶした領域について領域平均、 図 2.6.5 と同じ初期時刻について期間平均した、各物理過 程、力学過程による温位の FT=0~24 における平均の時間 変化率 [K·day⁻¹]。縦軸は高度 [m] である。図中のラベル で RS, RL, CN, CL, CU, BL, DY はそれぞれ短波放射、 長波放射、部分凝結、雲微物理、積雲対流、境界層、力学 (移流)を表す。また TOT は全ての時間変化率を足し合 わせた最終的な時間変化率を表す。

図 2.6.7 図 2.6.6 の右図と同じ。ただし図 2.6.6 の計算を 行った初期時刻の内、00 UTC 初期値の予報についての み平均している。また左と右の図はそれぞれ FT=0~6、 FT=12~18 における平均の時間変化率を表す。従って平 均を取った予報対象時刻はそれぞれ 00 UTC~06 UTC(日 中)、12 UTC~18 UTC(夜間)となる。

に大きな影響を与える重要な物理過程である。予測精 度向上に向けて今後も継続的に改良を続けていきたい。

参考文献

- 永戸久喜,藤田匡,原旅人,2012:局地モデルの本運用. 平成24年度数値予報研修テキスト,気象庁予報部, 72-86.
- 原旅人, 2006: 気象庁非静力学モデルへの改良 Mellor-Yamada Level3 スキームと部分凝結スキームの導入について. 第8回非静力学モデルに関するワーク ショップ講演予稿集, 35–36.
- Hara, T., 2007a: Implementation of improved Mellor-Yamada Level 3 scheme and partial condensation scheme to JMANHM and their performance. *CAS/JSC WGNE Res. Activ. Atmos. Oceanic Modell.*, **37**, 4.07–4.08.
- Hara, T., 2007b: Upgrade of the operational JMA mesoscale model and implementation of improved Mellor-Yamada Level 3 scheme. *Extended Ab*-

stract for 22nd Conference on Weather Analysis and Forecasting/18th Conference on Numerical Weather Prediction, American Meteorological Society, J3.5, URL http://ams.confex.com/ams/ pdfpapers/123915.pdf.

- 原旅人, 永戸久喜, 2008: 乱流過程. 数値予報課報告・ 別冊第54号, 気象庁予報部, 117-148.
- 原旅人, 2012a: 鉛直 1 次元モデルによる評価 (1) −雲 のない陸上の境界層の日変化 (GABLS2). 数値予報 課報告・別冊第 58 号, 気象庁予報部, 138–149.
- 原旅人, 2012b: 鉛直1次元モデルによる評価 (2) −層積 雲を伴う海上の境界層の日変化 (EUROCS Sc). 数値 予報課報告・別冊第58号, 気象庁予報部, 150–158.
- 原旅人, 2012c: 鉛直1次元モデルによる評価 (3) –浅い 対流雲を伴う陸上の境界層の日変化 (GCSS-ARM). 数値予報課報告・別冊第58号, 気象庁予報部, 159– 164.
- 原旅人, 2012d: 物理過程ライブラリの開発. 数値予報 課報告・別冊第58号, 気象庁予報部, 205-208.
- 原旅人, 2014: 境界層・地表面・放射過程の実装. 数値 予報課報告・別冊第 60 号, 気象庁予報部, 106–107.
- 原旅人,2015:境界層過程・地上物理量診断の改良.平成 27年度数値予報研修テキスト,気象庁予報部,24-43.
- 原旅人,2017:メソ数値予報システムの改良の概要.平成 29年度数値予報研修テキスト,気象庁予報部,42-47.
- Helfand, H. M. and J. C. Labraga, 1988: Design of a Nonsingular Level 2.5 Second-Order Closure Model for the Prediction of Atmospheric Turbulence. J. Atmos. Sci., 45, 113–132.
- 気象庁予報部, 2014:次世代非静力学モデル asuca. 数 値予報課報告・別冊第 60 号,気象庁予報部, 151 pp.
- 熊谷幸浩, 斉藤和雄, 2004: 気象庁非静力学モデルの境 界層過程の改良. 気象学会春季大会講演予稿集, C104.
- 草開浩, 2012: 地表面過程. 数値予報課報告・別冊第58 号, 気象庁予報部, 29-41.
- Mellor, G. L. and T. Yamada, 1982: Development of a Turbulence Closure Model for Geophysical Fluid Problems. *Rev. Geophys. Space Phys*, **20**, 851–875.
- Nakanishi, M. and H. Niino, 2009: Development of an Improved Turbulence Closure Model for the Atmospheric Boundary Layer. J. Meteor. Soc. Japan, 87, 895–912.
- 西本秀祐, 2019: MSM の境界層過程 (MYNN3) の計 算安定性向上の改良について. 第 21 回非静力学モデ ルに関するワークショップ講演予稿集, 12–13.
- Saad, Y., 2003: Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics, Philadelphia, 528 pp.
- Saito, K., T. Fujita, Y. Yamada, J. Ishida, Y. Kumagai, K. Aranami, S. Ohmori, R. Nagasawa, S. Ku-

magai, C. Muroi, T. Kato, H. Eito, and Y. Yamazaki, 2006: The Operational JMA Nonhydrostatic Mesoscale Model. *Mon. Wea. Rev.*, **134**, 1266–1298.

Saito, K., J. Ishida, K. Aranami, T. Hara, T. Segawa, M. Narita, and Y. Honda, 2007: Nonhydrostatic Atmospheric Models and Operational Development at JMA. J. Meteor. Soc. Japan, 85B, 271–304.

2.7.1 はじめに

地表面は、太陽放射や大気放射、降水などを受け取 る。それらによる熱・水は地表面を構成する森林や農 作物、ビル、積雪、土壌、湖、海などによって貯蓄され る。また、地表面が放出する長波放射や、地表面付近 の大気の乱れ(乱流)によって、大気に熱や水が供給 される。さらに、地表面の構成物が形作る凹凸は、大 気の運動に対する摩擦効果をもたらし、大気の運動エ ネルギーを散逸させる。地表面によるこれらの効果は、 大気混合層の形成や放射冷却など大気に対して直接影 響を与える他、それをトリガーとした対流や霧の発生、 下層ジェットの形成などにも間接的に影響を及ぼす。

数値予報モデルにおいて地表面は大気の偏微分予報 方程式を解くための下部境界条件にあたり、地表面と の熱・水・運動量交換をフラックスの形で大気モデル に与える。これらのフラックスの大きさは、地表面付 近の大気安定度や地表面温度によって大きく左右され るため、それらをモデルで適切に予測する必要がある。 また、地表面の状態は多種多様であり、その形状や熱 的特性は空間的に非一様であることから、地表面の多 様性をいかにモデルで表現するかもフラックスの予測 精度を決める重要な要素となる。

MSM および LFM の地表面過程では、地表面熱収支 やその多様性を比較的簡便に表現できる平板モデルを 採用している。本節では、まず平板モデルの概要を説 明し、そのあとで大気の下部境界条件である地表面フ ラックスと平板モデルにおける熱収支について述べる。 最後に、最近の開発状況および今後の開発方針につい て述べる。モデル化における定式の導出や背景、数値 計算上の工夫点などについては原ほか (2008) や草開 (2012) も併せて参照していただきたい。

2.7.2 平板モデルの概要

平板モデルは、複雑な形状・構成要素を持つ地表面を 単純一様な「平板」として考え、そこでの熱収支を解 くモデルのことである。したがって、平板モデルにお いては、ある地表面状態がもたらす物理的効果を、熱 収支に関連する様々なパラメータを用いて表現してい る。また、地表面状態の多様性(非一様性)は、この パラメータにモデル格子ごとに異なる値を与えること によって表現している。

MSM および LFM に導入している平板モデル(以下、SLAB)では、モデル格子内に陸域と海域が混在 する場合に、陸面と海面の熱収支特性の違いを表現す るため、各格子内の陸域(陸タイル)と海域(海タイ ル)それぞれについて熱収支およびフラックスを求め モデルに与えるパラメータ(以下、地表面パラメー タ)は以下のとおりである。

- 地表面構造物の体積熱容量 c_s
- 地中熱伝達率(熱伝導率と体積熱容量の比) ν_q
- 地表面アルベド α_s
- 粗度(地表面の凹凸の程度を表す長さ) z_{0m}
- 蒸発効率³ β_s

陸タイルの地表面パラメータは、国土数値情報⁴の土 地利用区分と USGS が提供する Global Land Cover Characteristics (GLCC; Loveland et al. 2000)の植生 区分に基づいて決定している⁵。陸タイルについては積 雪のあり・なし、海タイルについては海氷のあり・な しをそれぞれで考慮している。陸タイルに積雪がある 場合や海タイルについては、それぞれの物性に基づい た地表面パラメータを割り当てている。

2.7.3 地表面フラックス

SLABにおける地表面フラックスは、第2.7.2項でも 述べたとおり、陸タイル、海タイルそれぞれで計算し たフラックスをタイル被覆率で平均して各格子の値を 算出する。以下、地表面フラックスの定式化、および 地上での物理量の診断計算方法について説明する。な お陸、海タイルとも定式化は共通である。

(1) フラックスの定式化

現実大気において、地表面付近には地表面構造物の 影響を強く受ける「接地境界層」と呼ばれる層が存在す る。この層では、統計的に、乱流フラックスが高度によ らず一定であるという観測事実(Constant flux layer) があることから、接地境界層の乱流フラックスと地表面 フラックスが同等であるとしてモデリングする。SLAB では、接地境界層内の乱流フラックスはバルク法(接 地境界層内のある高度と地表面それぞれにおける物理 量の差に比例した形でフラックスを表現)を用いて計 算している。モデル大気最下層高度 z_1 の物理量 u_1 (モ デルx方向風速)、 v_1 (モデルy方向風速)、 θ_1 (温 位)、 q_{v1} (比湿)とそれらの地表面における値(u_s (=0), v_s (=0), θ_s, q_{vs})を用いると地表面フラックスは以下の

4 国土交通省国土政策局により提供。

る方法(タイリング法)を用いている²。

² 各タイルの地表面フラックスは、海陸比で平均化した上で 大気モデルに渡す。タイリング法は、2015 年に LFM、2017 年に MSM にそれぞれ導入した。

³ ここで定義した β_s は、(2.7.5) 式を用いて土壌体積含水率 に変換し、メソ解析および局地解析の第一推定値を作成する 際の土壌水分量初期値として用いている。SLAB で直接この 値を利用することはない。

⁵ 具体的には、まず、各土地利用区分、植生区分に応じて、上 記の地表面パラメータを用意する (青柳・清野 2012, 表 12.1 を参照)。そして、各土地利用区分または植生区分別のパラ メータを、それら区分の面積率で平均することにより、各モ デル格子の地表面パラメータを算出する。

¹ 草開 浩

ようになる。

$$\overline{u'w'} = -C_m U_a (u_1 - u_s) \tag{2.7.1a}$$

$$\overline{v'w'} = -C_m U_a (v_1 - v_s) \tag{2.7.1b}$$

$$\overline{w'\theta'} = -C_h U_a(\theta_1 - \theta_s) \tag{2.7.1c}$$

$$\overline{w'q'_v} = -C_q U_a (q_{v1} - q_{vs}) \tag{2.7.1d}$$

 \overline{X} は X の格子平均値、X' は X の平均値からの偏差 を表す(したがって、 $X = \overline{X} + X'$)。 C_m, C_h, C_q は それぞれ運動量、顕熱、潜熱フラックスに対するバル ク係数である(計算方法は (2) で示す)。 U_a は、 z_1 に おける水平風速に接地境界層内の自由対流に伴う風速 強化の効果を加味し (Kitamura and Ito 2016)、以下の ように考慮している。

$$U_a = \sqrt{u_1^2 + v_1^2 + 2CE_{\text{turb}}},$$
 (2.7.2)

ここで *E*_{turb} はモデル大気最下層の乱流エネルギー、 *C* は定数 (= 2/3) である。*E*_{turb} は境界層過程(第 2.6 節)で予測したものを用いる。

 q_{vs} は β_s と地表面温度 T_s に対する飽和比湿 $q_{sat}(T_s)$ を用いて以下のようにパラメタライズする。

$$q_{vs} = (1 - \beta_s)q_{v1} + \beta_s q_{\text{sat}}(T_s)$$
(2.7.3)

なお、 θ_s と T_s の関係は、

$$\theta_s = T_s \left(\frac{p_0}{p_s}\right)^{R_d/C_p} = T_s \Pi_s^{-1} \tag{2.7.4}$$

である (p_s は地上気圧、 $p_0 = 1000$ hPa、 R_d は乾燥 大気の気体定数、 C_p は定圧比熱、 Π_s は地表面付近の Exner 関数)。陸タイルでは、 β_s を土壌水分量に関連 付けて以下のように表す。

$$\beta_s = \begin{cases} w_{g1}/0.3 & (w_{g1} \le 0.3) \\ 1 & (w_{g1} > 0.3) \end{cases}$$
(2.7.5)

 w_{g1} は地表付近の土壌体積含水率である。陸タイルに 積雪がある場合と海タイルでは $\beta_s = 1$ としている。

ここで、モデル大気最下層高度について補足してお く。地表面が平坦な場合、 z_1 は地表面からの高さを意 味する。一方、地表面が森林などの立体的な構造物で 覆われている場合、それら構造物の平均的な高さより 上空の大気についてのみ、Constant flux layer が仮定 できる。そこで、モデル大気最下層が Constant flux layer となるように地表面の高さを嵩上げして考える。 この高さをゼロ面変位 d_0 と呼ぶ。したがって、モデ ル大気最下層の格子間隔を Δz_1 とすると、正確には $z_1 = \Delta z_1 + d_0$ と表す必要があるが、SLAB では d_0 の 高さを地表面としてモデル化しているため、 $d_0 = 0$ で あり、 $z_1 = \Delta z_1$ となる。 (2) バルク係数・安定度関数

バルク係数 (C_m, C_h) は以下のように表す。

$$C_m(z_1) = \frac{\kappa^2}{\left[\ln\frac{z_1}{z_{0m}} - \psi_m\left(\frac{z_1}{L_{\rm MO}}\right) + \psi_m\left(\frac{z_{0m}}{L_{\rm MO}}\right)\right]^2}$$
$$\equiv \frac{\kappa^2}{\Phi_m^2}$$
(2.7.6)

$$C_{h}(z_{1}) = \frac{\kappa^{2}}{\Phi_{m} \left[\ln \frac{z_{1}}{z_{0h}} - \psi_{h} \left(\frac{z_{1}}{L_{MO}} \right) + \psi_{h} \left(\frac{z_{0h}}{L_{MO}} \right) \right]}$$
$$\equiv \frac{\kappa^{2}}{\Phi_{m} \Phi_{h}}$$
(2.7.7)

 L_{MO} は Monin-Obukhov の長さ、 z_{0m} , z_{0h} はそれぞれ 運動量および熱に対する粗度、 κ はカルマン定数 (= 0.4) である。 $\psi_m \geq \psi_h$ は Monin と Obukhov により提 唱された接地境界層の相似則で用いる普遍勾配関数 ϕ_m , $\phi_h を積分したもの⁶$ で、Beljaars and Holtslag (1991) に従い以下のように与える。

$$\psi_m(\zeta) = \begin{cases} -b\left(\zeta - \frac{c}{d}\right)\exp(-d\zeta) & (\zeta \ge 0) \\ & -a\zeta - \frac{bc}{d} & \\ \frac{\pi}{a} - 2\tan^{-1}x & \\ \end{cases}$$

$$\begin{pmatrix}
2 & 2 & \tan^{-x} \\
 & + \ln \frac{(1+x)^2(1+x^2)}{8} \\
 & (\zeta < 0) \\
 & (2.7.9)
\end{pmatrix}$$

$$\psi_{h}(\zeta) = \begin{cases} -b\left(\zeta - \frac{c}{d}\right)\exp(-d\zeta) \\ -\left(1 + \frac{2}{3}a\zeta\right)^{\frac{3}{2}} - \frac{bc}{d} + 1 \\ 2\ln\frac{1+x^{2}}{2} \end{cases} \quad (\zeta < 0)$$

$$(\zeta < 0)$$
 (2.7.10)

ここで、 $\zeta = z/L_{MO}$, a = 1, b = 2/3, c = 5, d = 0.35, $x = (1 - 16\zeta)^{1/4}$ である。 C_q について、海タイルの場合は (2.7.7) 式の z_{0h} を z_{0q} (水蒸気に対する粗度) で置き換えて計算する。陸タイル(積雪なし)については、植生による蒸散量のコントロールを部分的に考慮している。

$$C_q = \left[U_a \left(r_s + \frac{1}{C_h U_a}\right)\right]^{-1} \tag{2.7.11}$$

 $\overline{}^{6}\psi$ と ϕ は以下の関係にある。

$$\frac{\partial\psi(\zeta)}{\partial\zeta} = \frac{1-\phi(\zeta)}{\zeta} \tag{2.7.8}$$

ここで、*r_s*は気孔抵抗で、以下のように日射量*S*に依存した定式化を用いる:

$$r_s = r_{s, \text{day}} + \frac{r_{s, \text{night}}}{1 + \frac{S}{S_0}}$$
 (2.7.12)

 $(S_0 = 1 \text{ W m}^{-2}, r_{s, \text{ night}} = 300 \text{ s m}^{-1})$ 。なお、 $r_{s, \text{day}}$ の値を、4月から10月は30 s m⁻¹、11月から3月は60 s m⁻¹としている。

Monin-Obukhov の長さ L_{MO} は以下の関係式で与えられる。

$$\operatorname{Ri}_{\mathrm{B}} = \frac{z_1}{L_{\mathrm{MO}}} \frac{\Phi_h}{\Phi_m^2} \tag{2.7.13}$$

ここで、Ri_B はバルクリチャードソン数で以下のよう に定義される量である。

$$\operatorname{Ri}_{\mathrm{B}} = \frac{gz_1}{\frac{\theta_{v1} + \theta_{vs}}{2}} \frac{(\theta_{v1} - \theta_{vs})}{U_a^2}$$
(2.7.14)

ここで θ_v は仮温位 (= $\theta(1 + c_v q_v)$, $c_v \approx 0.61$)、g は 重力加速度である。なお、 L_{MO} は (2.7.13) 式から求め るが、 L_{MO} についての非線形方程式であるため、計算 には工夫が必要となる。SLAB では Newton-Raphson 法と逐次近似法を組み合わせて解く (原ほか 2008)。

(3) 粗度

陸タイルの粗度 (z_{0m}) は第 2.7.2 項で説明したとおり 土地利用区分や植生区分に応じて決定する。熱粗度は Garratt and Francey (1978) が提案する $\ln(z_{0m}/z_{0h}) =$ 2 の関係式から、 $z_{0h} = z_{0m}/7.4$ と診断する。また、 $z_{0q} = z_{0h}$ とする。海タイルの粗度については、Beljaars (1995) に従い、以下の診断式を用いて求める。

$$z_{0m} = a_m \frac{\nu}{u_*} + a_{C_h} \frac{u_*^2}{g}$$
(2.7.15a)

$$z_{0h} = a_h \frac{\nu}{u_*}$$
(2.7.15b)

$$z_{0q} = a_q \frac{\nu}{u_*}$$
 (2.7.15c)

ここで、 $a_m = 0.11$, $a_{C_h} = 0.018$, $a_h = 0.40$, $a_q = 0.62$, ν は動粘性係数 (= $1.5 \times 10^{-5} \text{ m}^2 \text{ s}^{-1}$) である。 u_* は摩擦速度で、以下のように定義する。

$$u_* = \left(\overline{u'w'}^2 + \overline{v'w'}^2\right)^{1/4}$$
(2.7.16)

2.7.4 平板地表面モデル

第 2.7.3 項で述べたように、地表面フラックスを求 めるには地表面温度 T_s と土壌体積含水率 w_{g1} が必要 となる。これらは地表面状態を表す代表的な物理量で、 SLAB では予報変数として扱う。 T_s については地表面 熱収支式から、 w_{g1} については地中内の輸送方程式か らそれらの時間発展を予測する。

(1) 地表面熱収支

ここでは、地表面温度 *T*_s についての予報方程式を考える。地表面における熱収支関係から *T*_s の予報方程式は以下のようになる。

$$C_s \frac{\partial T_s}{\partial t} = (1 - \alpha_s) S_{\downarrow} + L_{\downarrow} - \sigma T_s^4 - H - LE - G_s$$
(2.7.17)

ここで、 C_s は単位面積当たりの地表面熱容量、 $S_{\downarrow}, L_{\downarrow}$ は地上下向きの短波放射および長波放射、 σ は Stefan-Boltzmann 定数 (5.67×10⁻⁸ W m⁻² K⁻⁴)、H は顕熱 フラックス、L は気化熱、E は水蒸気フラックス、 G_s は 地表面から地中への熱フラックスである。 C_s は、 $c_s\Delta z_s$ と表す。 Δz_s は地表面が持つ熱慣性を「層間隔」の形 で調整するためのパラメータである⁷。H と LE は以 下のとおりである。

$$H = C_p \rho \overline{w'\theta'} \tag{2.7.18}$$

$$LE = L\rho \overline{w'q'_v} \tag{2.7.19}$$

ここで、 ρ は地表面付近の大気密度である。地表面ア ルベド α_s について、陸タイルは土地利用区分および植 生区分に基づいて決定する。陸タイルで積雪がある場 合および海タイルで海氷がある場合はともに $\alpha_s = 0.6$ としている⁸。海タイルのアルベドについて、直達光に 対するアルベド $\alpha_{s,B}$ は Briegleb et al. (1986) による 以下のパラメタリゼーションで計算する。

$$\alpha_{s,B} = \frac{0.026}{(\mu^{1.7} + 0.065)} + 0.15(\mu - 0.1)(\mu - 0.5)(\mu - 1.0)$$
(2.7.20)

μは太陽天頂角の余弦である。散乱光に対するアルベ ド α_{s.D} は 0.06 の定数である。

*G*_sは、地表面から地中(地面または海氷)への熱伝 導を考える。陸タイルにおける地中熱伝導については 次の項で説明する。

なお、海タイル(海氷なし)の場合は、温度変化率 に対して熱容量が非常に大きいとして、(2.7.17)式の 左辺をゼロとしている。海タイルの*T_s*は海洋気象情報 室作成の海面水温解析値を用いている。

(2) 地中熱伝導および地中温度予測

上記で説明したように、地表面熱収支式を閉じるに は*G*_sを求める必要があり、そのためには地中温度*T*_g が必要となる。SLABでは地中熱伝導方程式を解くこ とにより、地中温度の時間変化を見積もっている。熱 伝導方程式および地中熱フラックス*G*は以下のとおり である。

$$c_g \frac{\partial T_g}{\partial t} = -\frac{\partial G}{\partial z} \tag{2.7.21a}$$

⁷ MSM, LFM ともに 0.5 cm としている。

⁸ すすなどによって汚れた場合の積雪アルベドに近い。

$$G = -\lambda_g \frac{\partial T_g}{\partial z} \tag{2.7.21b}$$

ここで、 c_g は地中の熱容量、 λ_g は地中の熱伝導率で ある。これらは鉛直方向に一様であると仮定し、熱伝 達率 ν_g (= λ_g/c_g)の形で定数として与える。

SLAB では、これらの式を鉛直離散化して数値計算 する。MSM・LFM ともに地中を8層⁹に分割し、各層 の地面温度を予報変数とする。ただし、地中最下層の 温度は気候値を与える。地中熱フラックスは各地中層 の上下境界で定義する。(2.7.21)式を離散化すると、地 中第 k 層の温度の時間変化量 $\Delta T_{g,k}$ と第 k 層下端の地 中熱フラックス G_k は以下のようになる。

$$\frac{\Delta T_{g,k}}{\Delta t} = \begin{cases} -\frac{G_k - G_s}{\Delta z_k} & k = 1\\ -\frac{G_k - G_{k-1}}{\Delta z_k} & 2 \le k \le 7 \\ 0 & k = 8 \end{cases}$$
(2.7.22)

$$G_s = \nu_s \frac{T_s - T_{g,1}}{z_{g,1} - \frac{\Delta z_s}{2}}$$
(2.7.23a)

$$G_{k} = \nu_{g} \frac{T_{g,k} - T_{g,k+1}}{\Delta z_{g,k} + \Delta z_{g,k+1}} \quad (1 \le k \le 7) \quad (2.7.23b)$$

なお、 $\Delta z_{g,k}$ は地中第 k 層の間隔、 $z_{g,1}$ は地中第 1 層 下端の深さを表す。

(3) 土壤水分量予測

SLAB において土壌水分量はボーエン比(顕熱と潜 熱の比)の大きさを左右するパラメータであり、地表面 温度の日変化を適切に予測するためには、より現実的 な土壌水分量の時間変化を予測することが重要である。 SLAB では、土壌水分量を強制復元法に基づいた定式 で予測している。強制復元法は、土壌を2層に分割し、 強制力(蒸発や降水による増減)と復元力(表層の土 壌水分量が土壌深部の平均的な値に戻ろうとする)の 二項により時間変化率を見積もる方法である。MSM で は Deardorff (1978) に従い定式化している。Deardorff (1978) では、強制項および復元項にかかる係数をある 特定の土壌(Adelanto Loam)でのデータを用いて定 めている。この土壌は日本域の代表的な土壌と比べる と砂質が多く、土壌水分量変化の時定数が短い傾向が ある。そのため、MSM では急激な土壌水分量の変化を 抑制するために予測値に対して上下限値を設けている (原ほか 2008)。 asuca および asuca 変分法解析システ

ム (asuca-Var) を LFM に導入する際に、土壌水分量 が急激に変化をするという予測特性の影響で、地上観 測を同化した効果が持続しないという課題があった (幾 田 2015)。そこで、Noilhan and Planton (1989) に従 い、様々な土壌特性を考慮できる方法を SLAB に実装 し、2015 年には局地解析内の 5 km 解像度予報、2017 年には LFM に導入した。以下で、新しく導入した土 壌水分量予測手法を説明する。

表層および深層の土壌水分量の予報方程式は以下の とおりである。

$$\frac{\partial w_{g1}}{\partial t} = \frac{C_1}{\rho_w d_1} (P - E) - \frac{C_2}{\tau} (w_{g1} - w_{g,eq}) \quad (2.7.24)$$
$$\frac{\partial w_{g2}}{\partial t} = \frac{1}{\rho_w d_2} (P - E) \quad (2.7.25)$$

ここで、Pは降水フラックス [kg m⁻² s⁻¹], $d_1 = 0.1$ m, $d_2 = 0.5$ m, $\tau = 86400$ s である。 $w_{g,eq}$ は、平衡状態 における土壌体積含水率で、

$$w_{g,eq} = w_{g2} - aw_{\text{sat}} \left(\frac{w_{g2}}{w_{\text{sat}}}\right)^p \left[1 - \left(\frac{w_{g2}}{w_{\text{sat}}}\right)^{8p}\right]$$
(2.7.26)

と表す (w_{sat} は飽和体積含水率、p は土壌特性に依存 する定数)。 C_1, C_2 は以下のように与える。

$$C_{1} = \begin{cases} C_{1,\text{sat}} \left(\frac{w_{g1}}{w_{\text{sat}}} \right)^{-b/2 - 1} & w_{g1} \ge w_{\text{wilt}} \\ \\ C_{1,\text{max}} \exp \left[-\frac{(w_{g1} - w_{\text{max}})^{2}}{2\sigma_{g}^{2}} \right] & w_{g1} < w_{\text{wilt}} \end{cases}$$

$$(2.7.27a)$$

$$C_2 = C_{2,\text{ref}} \left(\frac{w_{g2}}{w_{\text{sat}} - w_{g2} + 0.01} \right)$$
(2.7.27b)

 w_{wilt} はしおれ点における土壌体積含水率¹⁰を表す。非常に乾いた土壌($w_g < w_{\text{wilt}}$)における C_1 の定式は、 Braud et al. (1993)に基づき、土壌内を水蒸気が移動 することによる輸送効果を表現している。(2.7.27)式 内のパラメータ($C_{1,\max}, w_{\max}, \sigma_g$)は Noilhan and Mahfouf (1996)のとおり、以下のように定める。

$$C_{1,\max} = (1.19w_{\text{wilt}} - 5.09) \times 10^{-2} T_s$$

- 1.464w_{\text{wilt}} + 17.86 (2.7.28)

$$w_{\rm max} = \eta w_{\rm wilt} \tag{2.7.29}$$

$$\eta = (-1.815 \times 10^{-2} T_s + 6.41) w_{\text{wilt}} + (6.5 \times 10^{-3} T_s - 1.4)$$
(2.7.30)

$$\sigma_g^2 = -\frac{w_{\max}^2}{2\ln\frac{0.01}{C_{1,\max}}}$$
(2.7.31)

⁹ 地表面から各層下端境界までの深さはそれぞれ、1.2 cm, 2.25 cm, 3.93 cm, 6.786 cm, 11.9268 cm, 21.69432 cm, 41.22936 cm, 80.29944 cm である。

¹⁰ 土壌水分量がこれ以下になると植生は根から水分を吸い上 げられなくなる。

その他のパラメータ ($w_{sat}, w_{wilt}, w_{fc}, b, C_{1,sat}, C_{2,ref}, a, p$) は土壌特性に依存して決まる。Noilhan and Lacarrére (1995)の経験式を用いて、砂質・粘土質土壌の割合 (f_{sand} [%], f_{clay} [%])から以下のように求める。

$$\begin{split} w_{\rm sat} &= (-1.08 f_{\rm sand} + 494.305) \times 10^{-3} \quad (2.7.32a) \\ w_{\rm wilt} &= 37.1342 \times 10^{-3} (f_{\rm clay})^{1/2} \qquad (2.7.32b) \\ w_{\rm fc} &= 89.0467 \times 10^{-3} (f_{\rm clay})^{0.3496} \qquad (2.7.32c) \\ b &= 0.137 f_{\rm clay} + 3.501 \qquad (2.7.32d) \\ C_{1,\rm sat} &= (5.58 f_{\rm clay} + 84.88) \times 10^{-3} \qquad (2.7.32e) \\ C_{2,\rm ref} &= 13.815 (f_{\rm clay})^{-0.954} \qquad (2.7.32f) \\ a &= 732.42 \times 10^{-3} (f_{\rm clay})^{-0.539} \qquad (2.7.32g) \\ p &= 0.134 f_{\rm clay} + 3.4 \qquad (2.7.32h) \end{split}$$

 f_{sand} および f_{clay} は、HWSD (Harmonized World Soil Database; FAO et al. 2012) を用いて決定している。

2.7.5 地上観測高度における物理量診断

asuca では、地上観測高度における気温、湿度、風 速を接地境界層の相似則に基づくプロファイルを仮定 して診断計算している。これら診断した値は MSM や LFM の地上予測プロダクトとしている他、実際の地上 観測と比較してモデルの予測精度を検証するためにも 使っている。高度 10 m の風速 (u_{10m}) 、高度 1.5 m の 温位 $(\theta_{1.5m})$ および比湿 $(q_{v1.5m})$ は以下のように診断 する。

$$u_{10m} = \sqrt{\frac{C_m(z_1)}{C_m(z_{10m})}} u_1 \tag{2.7.33}$$

$$\theta_{1.5m} = \theta_s + \frac{C_h(z_1)}{C_h(z_{1.5m})} \sqrt{\frac{C_m(z_{1.5m})}{C_m(z_1)}} (\theta_1 - \theta_s)$$
(2.7.34)

$$q_{v1.5m} = q_{vs} + \frac{C_q(z_1)}{C_q(z_{1.5m})} \sqrt{\frac{C_m(z_{1.5m})}{C_m(z_1)}} (q_{v1} - q_{vs})$$
(2.7.35)

2.7.6 今後の開発について

以下に、asuca における地表面過程開発の進捗およ び今後の開発方針について述べる。

(1) 最近の開発状況について

MSM および LFM では地上気象要素の日変化が小さ いという誤差特性があり(例えば、佐藤・安斎 2018 な ど)、多面的な検証や開発を進めている。地上気温につ いては、第 2.4 節や第 2.5 節で述べたように、過剰な上 層雲量によって地上日射量予測が過小となり、このこ とが日中の地上気温予測の誤差の一因であることがわ かっている。現在、雲量診断方法の改良を進めており、 これに合わせて、地表面パラメータの調整も順次実施 していく予定である。地上比湿については、MSM の予 測値は過小であることがわかっており、現在、第 2.7.4 項の(3)で説明した新しい土壌水分量予測方法を MSM にも導入する方向で開発および検証を行っている。

その他、バルク係数の計算方法について、asuca の空 間離散化手法に最適な定式化への変更も計画している。 asuca では空間離散化の方法に有限体積法を採用して おり、各格子点の物理量は各格子境界で囲まれたセル の平均値を表している。しかし、現状の地表面フラッ クス定式化においては、最下層格子点値を最下層格子 の中心の値と捉え、相似則に基づくプロファイル(対数 則)を仮定している。そこで、Nishizawa and Kitamura (2018)に基づき、(2.7.6)式および (2.7.7)式の Φ を大 気最下層内で平均化した以下の定式で与えるように改 良を試みている。

$$\overline{\Phi_m} = \Phi_m(\zeta_1') - \frac{1}{\zeta_1'} \int_{\zeta_{0m}}^{\zeta_1'} \phi_m(\zeta) d\zeta \qquad (2.7.36a)$$

$$\overline{\Phi_h} = \Phi_h(\zeta_1') - \frac{1}{\zeta_1'} \int_{\zeta_{0h}}^{\zeta_1'} \phi_h(\zeta) d\zeta$$
 (2.7.36b)

$$\overline{\Phi_q} = \Phi_q(\zeta_1') - \frac{1}{\zeta_1'} \int_{\zeta_{0q}}^{\zeta_1'} \phi_q(\zeta) d\zeta \qquad (2.7.36c)$$

ここで、 $\zeta'_1 = z'_1/L_{MO}$, $\zeta'_{0m} = z_{0m}/L_{MO}$ (添字 h, q に ついても同様)で、 z'_1 はモデル最下層の上端の高度を 表す。インパクトとしては、バルク係数がこれまでに 比べて大きくなり、地表面フラックスが全体的に増加 した。特に、冬型で大陸からの寒気が日本域に流入す るような事例で、日本海からの顕熱フラックスが増加 し、MSM が持つ冬季対流圏下層の低温誤差の縮小に 貢献することもわかった。引き続き MSM および LFM への導入に向けて開発を進める方針である。

(2) 今後の地表面過程開発について

SLAB では植生を平板として扱っているため、植生 キャノピーの効果(植生内の放射伝達やキャノピー内 部の乱流による熱輸送など)を直接的に表現すること はできない。しかし、それらの物理プロセスを表現す ることは地表面温度の予測精度向上のためには必要不 可欠であり、実際に海外の数値予報センターの陸面モ デルではこの効果が取り込まれている(例えば、Best et al. 2011 など)。SLAB のフレームワークで改良を目 指すには、複数のパラメータ調整を余儀なくされるが、 科学的根拠に乏しい場合が多い。例えば、国土数値情 報の土地利用区分にある「ゴルフ場」に対して SLAB は地表面パラメータを割り当てているが、ゴルフ場自 体、草原や池、森林など複数の要素で構成されている ため、特定の熱容量や熱伝導率を科学的に突き詰める ことは困難である。

数値予報課では、現在のタイリング法の枠組みを維持したまま、GSMの陸面モデルのようなキャノピー植生モデルを導入できるよう、SLABとは別のフレームワークでの陸面モデル開発に取り組んでいる。開発は原ほか (2008) で述べられている「新陸面モデル」を再

構築するところからスタートした。2015 年の段階で、 フレームワークは完成しており、積雪解析の第一推定 値を作成するためにオフラインモデルとしてメソ解析 に導入している (草開 2015)。今後は GSM の陸面モデ ルの開発成果を取り込むとともに、MSM への導入に 向けて開発・評価を進める予定である。

参考文献

- 青柳曉典,清野直子,2012: メソ数値予報モデルと都市. 気象研究ノート,224,273-301.
- Beljaars, A. C. M., 1995: The parameterization of surface fluxes in large-scale models under free convection. Quart. J. Roy. Meteor. Soc., 121, 255–270.
- Beljaars, A. C. M. and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327–341.
- Best, M. J., M. Pryor, D. C. Clark, G. G. Rooney, R. L. H. Essery, C. B. Ménard, J. M. Edwards, M. A. Hendry, A. Porson, N. Gedney, L. M. Mercado, S. Sitch, E. Blyth, O. Boucher, P. M. Cox, C. S. B. Grimmond, and R. J. Harding, 2011: The Joint UK Land Environment Simulator (JULES), model description Part 1: energy and water fluxes. *Geosci. Model Dev*, 4, 677–699.
- Braud, I., J. Noilhan, P. Bessemoulin, P. Mascart, R. Haverkamp, and M. Vauclin, 1993: Bare-ground surface heat and water exchanges under dry conditions: Observations and parameterization. *Bound.-Layer Meteor.*, 66, 173–200.
- Briegleb, B. P., P. Minnis, V. Ramanathan, and E. Harrison, 1986: Comparison of regional clearsky albedos inferred from satellite observations and model computations. J. Climate Appl. Meteor., 25, 214–226.
- Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83, 1889– 1903.
- FAO, ISRIC, ISSCAS, IIASA, and JRC, 2012: Harmonized World Soil Database 42pp., (version 1.2).URL http:// webarchive.iiasa.ac.at/Research/ LUC/External-World-soil-database/ HWSD_Documentation.pdf.
- Garratt, J. R. and R. J. Francey, 1978: Bulk characteristics of heat transfer in the unstable, baroclinic atmospheric boundary layer. *Bound.-Layer Meteor.*, 15, 399–421.
- 原旅人, 大泉三津夫, 三浦大輔, 2008: 地表面過程. 数値 予報課報告・別冊第54号, 気象庁予報部, 166–194.

- 幾田泰醇, 2015: 局地解析の更新と改良. 平成 27 年度 数値予報研修テキスト, 気象庁予報部, 2-8.
- Kitamura, Y. and J. Ito, 2016: Revisiting the bulk relation for heat flux in the free convection limit. *Bound.-Layer Meteor.*, **158**, 93–103.
- 草開浩, 2012: 地表面過程. 数値予報課報告・別冊第58 号, 気象庁予報部, 29-41.
- 草開浩, 2015: 積雪域解析の高度化. 平成 27 年度数値 予報研修テキスト, 気象庁予報部, 44-49.
- Loveland, T. R., B. C. Reed, J. F. Brown, D. O. Ohlen, Z. Zhu, L. Yang, and J. W. Merchant, 2000: Development of a global land cover characteristics database and IGBP DISCover from 1km AVHRR data. Int. J. Remote Sensing, 21, 1303–1330.
- Nishizawa, S. and Y. Kitamura, 2018: A Surface Flux Scheme Based on the Monin-Obukhov Similarity for Finite Volume Models. J. Adv. Model. Earth Syst., 10, 3159–3175.
- Noilhan, J. and P. Lacarrére, 1995: GCM Grid-Scale Evaporation from Mesoscale Modeling. J. Climate, 8, 206–223.
- Noilhan, J. and J.-F. Mahfouf, 1996: The ISBA land surface parameterisation scheme. *Glob. Planet. Chang.*, 13, 145–159.
- Noilhan, J. and S. Planton, 1989: A Simple Parameterization of Land Surface Processes for Meteorological Models. *Mon. Wea. Rev.*, **117**, 536–549.
- 佐藤均, 安斎太朗, 2018: 最近の統計検証について. 平成 30年度数値予報研修テキスト, 気象庁予報部, 42-47.

3.1 はじめに¹

気象庁が運用するメソモデル (MSM) は、防災気象 情報、航空気象情報および天気予報等の作成支援を目 的としている。そのため、MSM の予測精度向上は国民 の生命や財産の安全に直結していると言っても過言で はなく、実際、それに向けて精力的な研究開発が継続さ れてきた。科学的知見に基づく力学過程や物理過程の 改良、計算機資源の増強に伴う高解像度化等により数 値予報モデルの改善が、また初期値についても、先端 的データ同化手法の導入、および新規データの利用も 含む観測データの高度利用により改善が図られ、MSM の予測精度は着実に向上している。これらの開発成果 の一例として、現在の MSM ではこれまで予測が困難 であった弱い強制力のもとでの対流とそれに伴う降水² をある程度予測できるようになってきている (原・倉橋 2017)。

一方で、MSM が予測対象とするメソスケール現象 は、総観スケールの現象に比べ予測可能性が本質的に低 いことが指摘されている(Zhang et al. 2003; Selz and Craig 2015 など)。これは、ほぼ完全な初期値、数値予 報モデルといった理想的な条件下でも、メソスケール 現象予測では積雲対流などの時空間スケールの小さい 現象の非線形性が卓越し、初期値に含まれる僅かな誤 差が急速に時間発展することにより、短時間のうちに 決定論的予測限界を迎えることを意味する。この本質 的な予測可能性(intrinsic predictability; Lorenz 1969; Zhang et al. 2003)の限界は気象場に依存し一定ではな いが、大気の有するカオス的性質に根差しているため 初期値や数値予報モデルの改善による拡張は望めない。

実際の数値予報システムでは、初期値や数値予報モ デルには現実的な誤差が含まれるため、決定論的予測 限界はさらに短時間に制限される。この実用的な予測可 能性 (practical predictability; Melhauser and Zhang 2012) は本質的予測可能性と異なり、初期値や数値予 報モデルの精度向上により高めることが可能である。 しかし、データ同化プロセスで用いられる観測データ の測定精度の限界(質的限界)および利用可能なデー タ数の限界(量的限界)から、解析値(初期値)の決 定精度には限界があり、また数値予報モデルにも離散 化に伴う表現の限界があるため、実用的予測可能性の 向上には限界がある。したがって、上記の本質的予測 可能性、実用的予測可能性の両面を勘案すると、メソ スケール現象が包含する初期値鋭敏性による予測不確 実性は、今後期待される数値予報モデルやデータ同化 システムの進展をもってしても不可避であると考えら れる。

そこで従来の決定論的アプローチに加え、メソスケー ル現象の予測不確実性を評価するアプローチとして、数 値予報の誤差の要因に対応する僅かなばらつきを加え た複数の予測(アンサンブル予報)が有効となる。ア ンサンブル予報は全球モデルによる中長期予報への応 用から始まり、現在では諸外国の気象機関において高 解像度領域モデルによる短期予報への実用化が進んで いる。一般的な高解像度領域モデルが担う役割、およ びメソスケール現象の予測可能性の低さを考慮すると、 アンサンブル予報によるメソスケール現象の発生確率 や予測信頼度の評価はごく自然なアプローチであり、 顕著現象への効率的なリスクマネジメントという点で 非常に有用な手段のひとつである。

このような背景から、気象庁はメソアンサンブル予 報システム(MEPS: Meso-scale Ensemble Prediction System)の開発を進め、2019年6月に本運用を開始し た。MEPSでは、MSMと初期値および境界値の異な る複数のメンバーの予測を行うことにより、MSMの 有するメソスケール現象予測に対する不確実性を定量 的に評価する。これは、MSMの運用目的に対して有用 な資料となり得るものである。本章では、気象庁では 初となる領域モデルに基づくアンサンブル予報システ ムである MEPS についての解説を行う。まず、第3.2 節で開発の経緯について述べ、第3.3節では現業仕様 について解説する。第3.4節で本運用に向けた開発に ついて詳細を示し、最後に第3.5節で今後の展望を述 べる。

参考文献

- 原旅人, 倉橋永, 2017: メソ数値予報システムの特性の 変化. 平成 29 年度数値予報研修テキスト, 気象庁予 報部, 48–55.
- Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. *Tellus*, 21, 289–307.
- Melhauser, C. and F. Zhang, 2012: Practical and intrinsic predictability of severe and convective weather at the mesoscales. J. Atmos. Sci., 69, 3350–3371.
- Selz, T. and G. C. Craig, 2015: Upscale error growth in a high-resolution simulation of a summertime weather event over Europe. *Mon. Wea. Rev.*, 143, 813–827.
- Zhang, F., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 1173–1185.

¹ 國井 勝

² 原・倉橋 (2017) では、前線からやや離れた場所で地形や 風の収束といった強制上昇が弱く、対流を発生させるきっか けがはっきりしない場合にまとまった降水が観測された事例 が挙げられている。

3.2 メソアンサンブル予報システム開発の経緯¹

3.2.1 領域アンサンブル予報システムの動向

アンサンブル予報は、まず全球モデルによる中長期 予報に適用され、1992年には欧州中期予報センター (ECMWF)と米国環境予測センター (NCEP)でそれ ぞれ現業運用が開始された (Molteni et al. 1996; Toth and Kalnay 1993)。気象庁においては、1996年に1か 月アンサンブル予報が、2001年に週間アンサンブル予 報がそれぞれ現業化されている。この他にも、全球モデ ルによるアンサンブル予報は多くの数値予報センター において運用されており、計算機能力の飛躍的な向上 とともに、その性能も発展を続けている。今日、アン サンブル予報は全球モデルを用いた中長期予報の標準 的な手法となっている (余田 2010)。

全球モデルによるアンサンブル予報の現業化に追随 する形で、1990年代後半から領域モデルを用いたアン サンブル予報の実用化が検討されるようになった。既 に全球モデルによる中長期予報では、予測誤差自体を 減少させることを目的とした決定論的アプローチから、 予測誤差を定量的に見積もることで信頼度や確率情報 を評価する確率論的アプローチへのパラダイムシフト が起こっていたが、それが短期のメソスケール現象予 測にも及ぶようになったのである。

1998年には領域アンサンブル予報の相互比較実験と して、SAMEX (the Storm and Mesoscale Ensemble Experiment; Hou et al. 2001) が実施された。SAMEX には米国のオクラホマ大学や国立シビアストーム研究 所、空軍気象局、大気研究センター、および NCEP が参 画し、米国域を対象とした水平格子間隔約 30 km の領 域アンサンブル予報をリアルタイムで実行した。初期摂 動作成には Breeding 法 (Toth and Kalnay 1993, 1997) やランダム摂動法 (Mullen and Baumhefner 1989) が 応用され、また時間ずらし平均 (LAF: Lagged Average Forecast; Hoffman and Kalnay 1983) 法によるアンサ ンブルメンバー数の増強のインパクトについても調査 された。この他、側面境界値や数値予報モデルの不確実 性についても合わせて考慮する機関もあった。SAMEX では、領域アンサンブル予報における側面境界摂動や 物理過程摂動の重要性、決定論的予測に対するアンサ ンブル平均の優位性などが確認され、また全機関のア ンサンブルメンバーを用いたマルチモデルアンサンブ ルが、各々のアンサンブル予報システムに対して優位 であることなどが示された。

NCEP では SAMEX で得られた知見を活かし、2001 年 4 月に SREF と呼ばれる短期アンサンブル予報シス テムの現業運用が開始された (Du and Tracton 2001; Du et al. 2003)。これに続いて、2005 年には英国気象 局で MOGREPS(Bowler et al. 2008) が、2011 年には カナダ気象局 (MSC) で REPS(Charron et al. 2011; Erfani et al. 2013) が、そして 2012 年にはドイツ気 象局で COSMO-DE-EPS(Gebhardt et al. 2008, 2011) が、それぞれ現業運用を開始している。各機関では、現 業運用開始後もアンサンブルメンバーの増強、高解像 度化、および初期摂動作成手法の改良等に取り組んで おり、他機関も含めた領域アンサンブル予報システム の開発状況については、石田・藤田 (2016) に詳しい。

3.2.2 気象庁における MEPS の開発

(1) 気象庁気象研究所における開発

気象庁においても、領域アンサンブル予報における 世界的な趨勢を鑑み、2005 年から気象研究所が主体と なって、領域アンサンブル予報の初期摂動作成を目的 とするメソ特異ベクトル (SV: Singular Vector; Buizza et al. 1993; Buizza and Palmer 1995) 法の開発を開始 した (大関ほか 2005)。メソ SV 法では、気象庁非静力 学モデル (JMA-NHM; Saito et al. 2006, 2007) を基に して数値予報課で開発された非静力学メソ4次元変分 法 (JNoVA; Honda et al. 2005) の摂動予報モデルお よび随伴モデルが用いられた (詳細は第 3.3 節)。ほぼ 同時期に、メソ SV 法の他、全球 SV 法、Breeding 法 や局所アンサンブル変換カルマンフィルタ (LETKF; Hunt et al. 2007) の JMA-NHM への利用可能性につ いての調査も始められた (Miyoshi and Aranami 2006; Saito et al. 2012) 。

2000年代後半、気象研究所は数値予報課の協力の 下、北京オリンピック 2008 研究開発プロジェクト (B08RDP) に参画した。B08RDP は世界気象機関世 界天気研究計画(WMO WWRP)傘下の研究計画で、 2008年の北京オリンピックに合わせ短期予報に関する 国際比較実験を行うものである。ここで実施される水 平格子間隔15km、36時間先までのメソアンサンブル 予報の比較実験に向け、気象研究所は JMA-NHM を用 いた11メンバーによるアンサンブル予報実験システム を構築した。本実験前の予備実験として、前述したメ ソ SV 法、全球 SV 法、Breeding 法、および LETKF の計4通りの初期摂動作成手法の比較が行われ、アン サンブル平均や降水確率予測検証で優位であった全球 SV 法を本実験で採用することが決定された。メソ SV 法については、予報初期のアンサンブルスプレッドの 増加は顕著であり、予報前半において大雨などの顕著 現象の不確実性の捕捉に有効であることが示されたも のの、評価時間が短いことに加え摂動が局在化する傾 向を有するため予報後半までアンサンブルスプレッド の増加が持続せず、1日先までのアンサンブル予報に おいて単独利用は難しいと判断された²。また側面境界 摂動には、当時の気象庁週間アンサンブル予報の摂動 成分が用いられた。この時に調査された領域アンサン

² これ以降、メソ SV は全球 SV とブレンドする方針で開発 が進められた。ブレンド手法の詳細は第 3.3.2 項に記述する。

¹ 國井 勝

ブル予報における側面境界摂動の有効性については、 Saito et al. (2012) にまとめられている。さらに地上付 近のアンサンブルスプレッドの過小評価を改善する目 的で、地面温度への摂動も考慮している。気象研究所 における B08RDP に向けた初期摂動作成手法の比較 実験の詳細については Saito et al. (2010) を参照され たい。

2008 年に実施された B08RDP 本実験では、気象研 究所の他に NCEP や MSC、オーストリア気象地球力 学中央研究所とフランス気象局 (ZAMG and Météo-France)³、中国気象局、中国気象科学院の計 6 機関が 参加した。実験と検証結果の詳細は Duan et al. (2012) および Kunii et al. (2011) に譲るが、各機関の実験シ ステムおよび結果について特筆すべき点は以下の通り である。

- 気象研究所以外の機関では、モデルアンサンブル手法としてマルチモデル法やマルチパラメタリゼーション法が導入されており、アンサンブルスプレッドの過小評価の改善に寄与していた。モデルアンサンブル手法の導入は領域アンサンブル予報での標準的な仕様になりつつあるものの、スキームの選択次第では予報精度が悪化することがあるため、導入には慎重な検討が必要である。
- 初期摂動作成手法として SV 法もしくは Breeding 法を採用する機関が多く、MSC のみアンサンブル カルマンフィルタ (EnKF)を利用していた。EnKF による初期摂動は SV などに比べ摂動の成長率が 小さいため、モデルアンサンブル手法の寄与を大 きくすることでアンサンブルスプレッドの過小評 価を改善していた。
- ZAMGの実験システムでは、総観スケールの摂動 を ECMWF の全球 SV で、より小さいスケールの 摂動を ZAMG の領域モデルに基づくブレッドベ クトルでそれぞれ算出し、両者をブレンドするこ とでマルチスケールの初期摂動を作成した。
- アンサンブル予報による降水予測のブライアスコアの改善率(対コントロール予報)とアンサンブルメンバー数には正の相関があり、比較的メンバー数が少ない気象研究所の11メンバー構成(MSCの20メンバーが最多)では降水の捕捉率に課題が残った。

B08RDPへの参画により、気象研究所内における初 期摂動作成手法の比較検討を通じて各手法の長所、短 所が明らかになったほか、他機関の領域アンサンブル 予報と比較することで、最先端の知見を得ると共に、メ ンバー数の増強やモデルアンサンブル手法の導入など、 今後の開発に関する重要な示唆が得られた。実際、こ れ以降に行われた気象庁における MEPS の開発におい ては、B08RDP の開発成果を参考にした部分は多い。

(2) 数値予報課における開発

数値予報課では 2007 年度より MEPS の開発に着手 した。LAF 法を用いたアンサンブル予報の特性把握 (津口 2008)を端緒として、メソ SV 法の開発が気象研 究所と連携して進められた (小野 2010)。またデータ同 化手法の高度化とも関連し、LETKF やデータ同化ア ンサンブル (EDA; Buizza et al. 2008; Isaksen et al. 2010)の初期摂動作成への応用可能性に関する調査も 並行して実施された (藤田 2010, 2011)。複数の初期摂 動作成手法の研究開発が進捗し、2012 年には現実的な 設定でアンサンブル予報の相互比較が可能になったた め、この時点において最も実用化に近いと考えられる 手法を選択し、将来的な MEPS の実用化に向けて以降 の開発を一本化することになった (石田 2016)。

当時、MEPSの実用化に関しては、確率情報・信頼 度情報の高質化を重視した低解像度多数メンバー構成 と、MSMと代替可能なシナリオ予測としての利用を 優先した高解像度少数メンバー構成といった2つの方 向性で検討が進められていた。前述した初期摂動作成 手法のうち、SV法は指定した評価時間・領域で線形 成長率の大きい摂動を算出する手法であり、MSMの 予測誤差の効率的な捕捉に寄与する。LETKFやEDA は、データ同化と一体化して流れに依存する解析誤差 を反映させたアンサンブル摂動を生成できるため、初 期値に含まれる不確実性を定量的に評価したアンサン ブル予報が可能となる。ここではそれぞれの特性を活 かし、低解像度多数メンバー構成ではSV法を、高解 像度少数メンバー構成ではEDA⁴を初期摂動作成手法 として選択し比較検証が行われた。

SV 法を用いた低解像度多数メンバー構成は、水平格 子間隔 10 km、41 メンバーの設定とされた。性能とし ては、アンサンブルスプレッドはやや過小評価で、SV の評価時間やターゲット域の設定、初期振幅の調整、側 面境界摂動の利用方法に関して課題が残るものの、成 長率の大きな初期摂動が利用できることに加え、多数 メンバーの予報結果から直接的に確率情報を見積もる ことができるといった利点があった。なお、この時点 の SV 法による初期摂動には、B08RDP で得られた知 見を活かし、メソ SV と全球 SV とをブレンドしたも のが用いられている。

一方の高解像度少数メンバー構成は、水平格子間隔 5 km、12 メンバーで、アンサンブル予報の初期値に は3次元変分法 (3D-Var)に基づく EDA で得られた解 析値が用いられた。結果としては、アンサンブルスプ レッドは予測誤差の空間パターンと概ね一致し、また 予測誤差の増大に対応する傾向も見られたが、個々の メンバーの予測精度はコントロールランに比べ著しく

³ ZAMG は Météo-France の協力を得て参加した。

⁴ LETKF も高解像度少数メンバー構成向けの初期摂動作成 手法として開発が進められたが、少数メンバー実行によるサ ンプリングエラーによる悪影響が懸念されたため、EDA の 開発に重点が移された。

低下した。これは、コントロールランでは4次元変分 法で作成した初期値を用いるのに対して、この実験の EDA では計算コストを抑えた 3D-Var を利用したこと に起因する。アンサンブル予報の複数シナリオとして の利用価値を高めるためには本来、各メンバーの予測 はコントロールランと同程度の精度を維持することが 望ましい。しかし EDA ではデータ同化システムの複 数回の実行が必要となるため、計算機資源の制約から 何らかのシステムの簡略化が必須となるが、この条件 下で各メンバーの予測精度を維持することは容易では なかった。この状況を踏まえ、MSM の代替シナリオと して利用可能な高解像度少数メンバー構成の実用化は 困難であるとされた。だが一方で、この実験では予測 誤差とスプレッドの分布に対応が見られるなど、個々 のメンバーの精度が低くてもアンサンブルの確率的な 利用価値は維持される可能性も示唆されている。以上 の検討結果から、確率情報・信頼度情報の高質化を重 視した低解像度多数メンバー構成の方がより MEPS の 実用化に近いものと判断され、初期摂動作成手法とし て SV 法の採用が決定された。

以降、SV 法を初期摂動作成手法とした MEPS の開 発が促進された。初期摂動のブレンド手法の高度化お よび振幅の調整方法の変更、側面境界摂動作成手法の 改良などを経て、2015年3月から、1日1回(18 UTC 初期値)、水平格子間隔5km、11メンバーによる部内 試験運用が開始された (小野 2016; 河野ほか 2018)。こ のように 2012 年の検討時と異なる構成となったのは、 部内試験運用開始までの検討段階において、MEPS 各 メンバーの予測特性が MSM と同等となることが望ま れたため水平格子間隔を含め数値予報モデルの仕様を MSM に揃えたことに加え、数値予報モデルの高解像 度化に伴い計算機資源の都合からメンバー数を11へと 縮減した経緯による (石田 2016)。試験運用期間中は、 側面境界値に与える摂動の作成手法の変更、数値予報 モデルへの asuca の導入、全球 SV の評価時間の 45 時 間化といった、実用化に向けた改良(第3.4節参照)を 行うとともに、気象庁内において現業予報作業での利 用方法の検討を行ってきた。2018年6月の気象庁スー パーコンピュータシステムの更新後は、本運用後の仕 様と同じ1日4回(00,06,12,18 UTC 初期値)の実 行、21メンバー構成に変更し、部内試験運用を継続し た。試験運用期間内に蓄積された検証結果から、開発 した MEPS はアンサンブル予報の基本的な性質および 計算安定性を有し、また現業予報作業における有用性 が確認されたことから、2019年6月の本運用に至った。

参考文献

Bowler, N. E., A. Arribas, K. R. Mylne, K. B. Robertson, and S. E. Beare, 2008: The MOGREPS shortrange ensemble prediction system. *Quart. J. Roy. Meteor. Soc.*, **134**, 703–722.

- Buizza, R., M. Leutbecher, and L. Isaksen, 2008: Potential use of an ensemble of analyses in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 134, 2051–2066.
- Buizza, R. and T. N. Palmer, 1995: The singularvector structure of the atmospheric global circulation. J. Atmos. Sci., 52, 1434–1456.
- Buizza, R., J. Tribbia, F. Molteni, and T. Palmer, 1993: Computation of optimal unstable structures for a numerical weather prediction model. *Tellus*, 45A, 388–407.
- Charron, M., R. Frenette, and N. Gagnon, 2011: First Operational Implementation of the Regional Ensemble Prediction System at CMC (REPS 1.0.0). Canadian Meteorological Centre Technical Note, 22 pp., URL http://collaboration.cmc.ec.gc.ca/cmc/ cmoi/product_guide/docs/lib/op_systems/ doc_opchanges/technote_reps_20111004_e.pdf.
- Du, J., G. DiMego, M. S. Tracton, and B. Zhou, 2003: NCEP short-range ensemble forecasting (SREF) system: multi-IC, multi-model and multi-physics approach. CAS/JSC WGNE Res. Activ. Atmos. Oceanic Modell., 33, 5.09–5.11.
- Du, J. and M. S. Tracton, 2001: Implementation of a Real-Time Short Range Ensemble Forecasting System at NCEP: An Update. 9th Conf. on Mesoscale Processes, Ft. Lauderdale, Florida, paper P4.9, Amer. Meteor. Soc.
- Duan, Y., J. Gong, J. Du, M. Charron, J. Chen, G. Deng, G. DiMego, M. Hara, M. Kunii, X. Li, Y. Li, K. Saito, H. Seko, Y. Wang, and C. Wittmann, 2012: An overview of the Beijing 2008 Olympics Research and Development Project (B08RDP). BAMS, 93, 381–403.
- Erfani, A., R. Frenette, N. Gagnon, M. Charron,
 S. Beauregaurd, A. Giguère, and A. Parent,
 2013: The New Regional Ensemble prediction System (REPS) at 15 km horizontal grid spacing (from version 1.1.0 to 2.0.1). Canadian Meteorological Centre Technical Note,
 39 pp., URL http://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/
 technote_reps201_20131204_e.pdf.
- 藤田匡, 2010: 流れに依存する背景誤差. 数値予報課報 告・別冊第56号, 気象庁予報部, 73-83.
- 藤田匡, 2011: MSM-LETKF. 数値予報課報告・別冊第 57 号, 気象庁予報部, 138-143.
- Gebhardt, C., S. Theis, P. Krahe, and V. Renner, 2008: Experimental ensemble forecasts of precipi-

tation based on a convection-resolving model. Atmos. Sci. Let., 9, 67–72.

- Gebhardt, C., S. E. Theis, M. Paulat, and Z. Ben Bouallègue, 2011: Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries. *Atmos. Res.*, 100, 168–177.
- Hoffman, R. N. and E. Kalnay, 1983: Lagged average forecasting, an alternative to Monte Carlo forecasting. *Tellus*, **35A**, 100–118.
- Honda, Y., M. Nishijima, K. Koizumi, Y. Ohta, K. Tamiya, T. Kawabata, and T. Tsuyuki, 2005: A pre-operational variational data assimilation system for a non-hydrostatic model at the Japan Meteorological Agency: Formulation and preliminary results. *Quart. J. Roy. Meteor. Soc.*, **131**, 3465– 3475.
- Hou, D., E. Kalnay, and K. K. Droegemeier, 2001: Objective verification of the SAMEX '98 ensemble forecasts. *Mon. Wea. Rev.*, **129**, 73–91.
- Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter. *Physica. D.*, 230, 112–126.
- Isaksen, L., J. Haseler, R. Buizza, and M. Leutbecher, 2010: The new ensemble of data assimilations. *ECMWF Newsletter*, **123**, 17–21.
- 石田純一, 2016: メソアンサンブル予報システム. 数値 予報課報告・別冊第 62 号, 気象庁予報部, 93–94.
- 石田純一,藤田匡, 2016:諸外国の現状と動向. 数値予 報課報告・別冊第62号, 気象庁予報部, 95–99.
- 河野耕平,西本秀祐,三戸洋介,2018:メソアンサンブ ル予報システム.平成30年度数値予報研修テキスト, 気象庁予報部,9–13.
- Kunii, M., K. Saito, H. Seko, M. Hara, T. Hara, M. Yamaguchi, J. Gong, M. Charron, J. Du, Y. Wang, and D. Chen, 2011: Verification and intercomparison of mesoscale ensemble prediction systems in the Beijing 2008 Olympics Research and Development Project. *Tellus*, **63A**, 531–549.
- Miyoshi, T. and K. Aranami, 2006: Applying a Fourdimensional Local Ensemble Transform Kalman Filter (4D-LETKF) to the JMA Nonhydrostatic Model (NHM). SOLA, 2, 128–131.
- Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF Ensemble Prediction System: Methodology and validation. *Quart. J. Roy. Meteor. Soc.*, **122**, 73–119.
- Mullen, S. L. and D. P. Baumhefner, 1989: The impact of initial condition uncertainty on numeri-

cal simulations of large-scale explosive cyclogenesis. Mon. Wea. Rev., **117**, 2800–2821.

- 小野耕介, 2010: メソ特異ベクトル法. 数値予報課報告・ 別冊第 56 号, 気象庁予報部, 93-104.
- 小野耕介, 2016: メソアンサンブル予報システムの開発 状況. 数値予報課報告・別冊第62号, 気象庁予報部, 100–113.
- 大関誠,國井勝,本田有機,2005:気象庁非静力学モデ ルに対する特異ベクトルの計算(序報).2005年度 秋季大会講演予稿集,日本気象学会,88,P188.
- Saito, K., J. Ishida, K. Aranami, T. Hara, T. Segawa, M. Narita, and Y. Honda, 2007: Nonhydrostatic atmospheric models and operational development at JMA. J. Meteor. Soc. Japan, 85B, 271–304.
- Saito, K., M. Kunii, M. Hara, H. Seko, T. Hara, M. Yamaguchi, T. Miyoshi, and W.-K. Wong, 2010: WWRP Beijing Olympics 2008 Forecast Demonstration / Research and Development Project (B08FDP/RDP). *Tech. Rep. MRI*, 214 pp.
- Saito, K., H. Seko, M. Kunii, and T. Miyoshi, 2012: Effect of lateral boundary perturbations on the breeding method and the local ensemble transform Kalman filter for mesoscale ensemble prediction. *Tellus*, 64A, 11594.
- Saito, K., T. Fujita, Y. Yamada, J. Ishida, Y. Kumagai, K. Aranami, S. Ohmori, R. Nagasawa, S. Kumagai, C. Muroi, T. Kato, H. Eito, and Y. Yamazaki, 2006: The operational JMA Nonhydrostatic Mesoscale Model. *Mon. Wea. Rev.*, **134**, 1266–1298.
- Toth, Z. and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 2317–2330.
- Toth, Z. and E. Kalnay, 1997: Ensemble Forecasting at NCEP and the Breeding Method. Mon. Wea. Rev., 125, 3297–3319.
- 津口裕茂, 2008: LAF によるメソアンサンブル予報. 数 値予報課報告・別冊第 54 号, 気象庁予報部, 241–245.
- 余田成男, 2010: 領域モデルによるアンサンブル予報. 天気, **57**, 554–560.

3.3 メソアンサンブル予報システムの仕様¹

3.3.1 現業化した MEPS の仕様

現業化した MEPS の仕様と、このうち初期・境界摂 動を作成する SV 法の仕様の詳細を表 3.3.1 と表 3.3.2 にまとめる。実行頻度は1日4回(予報初期時刻:00, 06, 12, 18 UTC)である。予報時間は全予報初期時刻 において 39 時間であり、摂動を与えないコントロー ルランを含め全 21 メンバーでアンサンブルを構成す る。各メンバーの数値予報モデルには MSM と同じく asuca が用いられ、計算領域や水平格子間隔、鉛直層 配置、物理過程を含む各種設定を MSM に揃えている。 したがって、MEPS のコントロールランは MSM その ものである。また、アンサンブル摂動は初期値、側面 境界値のみに与え、下部境界摂動や数値予報モデル自 体の不確実性は考慮していないため、各アンサンブル メンバーは初期値、側面境界値を除き MSM と全く同 じ仕様となる。

初期摂動には、JNoVA の摂動予報モデル、随伴モ デルを基に算出される SV (メソ SV) と、気象庁全球 モデルに基づく全球 SV (GSV; 山口 2017) を用いて いる。具体的には、水平格子間隔 40 km、評価時間 6 時間のメソ SV (MSV40)、水平格子間隔 80 km、評 価時間 15 時間のメソ SV (MSV80) 、水平格子間隔約 270 km、評価時間 45 時間²の GSV を線形結合して作 成する。このうち MSV40 と MSV80 は、MSM 領域内 に存在する比較的時空間スケールの小さい不安定現象 に対応する成長モードの捕捉を目的としている。これ らに日本周辺をより広域にターゲットとした GSV を 結合することで、領域外から流入する、または領域を 跨ぐような大きなスケールの不確実性も表現できるよ うにしている。また側面境界摂動は、初期摂動作成に 用いた GSV を線形時間発展させたものから作成する ことで、初期摂動と側面境界摂動の一貫性を確保する ようにしている。これらの設定は、MEPS における適 切な予測誤差の捕捉に貢献するものである。

以降、本節では上記仕様の理解、および今後の研究 開発の一助となることを目的として、まず初期摂動お よび側面境界摂動の作成に用いられている SV 法、お よびその MEPS での実装について解説する。次に、SV を基にした初期摂動、側面境界摂動の具体的な作成手 法について紹介する。なお、途中式の導出を含めた SV 法の詳細な解説は、Ono (2020) に詳しい。また、統計 検証を含めた数値予報資料としての利用に関する詳細 は、河野ほか (2019) を参照されたい。

3.3.2 初期摂動の作成

(1) 特異ベクトル法

数値予報モデルの系の自由度をnとし、初期摂動 $x \in \mathbf{R}^n$ の成長率 λ を

$$\lambda = \frac{\|\mathbf{M}\boldsymbol{x}\|}{\|\boldsymbol{x}\|} \tag{3.3.1}$$

で定義する。ここで、 $\mathbf{M} \in \mathbf{R}^{n \times n}$ は初期時刻から評価時刻までの摂動予報モデルに相当する時間推進演算子(誤差行列)であり、 $\|\cdot\|$ は任意の正定値対称行列 $\mathbf{E} \in \mathbf{R}^{n \times n}$ で規定されるノルム

$$\|\boldsymbol{x}\| = \sqrt{(\boldsymbol{x}, \mathbf{E}\boldsymbol{x})} \tag{3.3.2}$$

である。(·,·) は標準内積であり、E が単位行列のとき (3.3.2) 式はユークリッドノルムを表す。

初期時刻と評価時刻においてノルムを規定する行列 をそれぞれ \mathbf{E}_i , \mathbf{E}_f とし、さらに評価時刻におけるノ ルムの構成要素を指定する射影演算子 $\mathbf{L} \in \mathbf{R}^{n \times n}$ を用 いると、(3.3.1) 式は

$$\lambda = \sqrt{\frac{(\mathbf{LM}\boldsymbol{x}, \mathbf{E}_f \mathbf{LM}\boldsymbol{x})}{(\boldsymbol{x}, \mathbf{E}_i \boldsymbol{x})}}$$
(3.3.3)

となる。L は、例えば評価時刻において特定の領域 (ターゲット領域)内で摂動の成長率を定義したい場 合、n次の単位行列の対角成分のうち、ターゲット領 域外の格子点に相当する要素を0とした行列を用いれ ば良い。

$$\boldsymbol{x} = \mathbf{E}_i^{-\frac{1}{2}} \hat{\boldsymbol{x}} \tag{3.3.4}$$

とおくと、(3.3.3) 式は

$$\lambda^{2} = \frac{\left(\mathbf{LME}_{i}^{-\frac{1}{2}}\hat{\boldsymbol{x}}, \mathbf{E}_{f}\mathbf{LME}_{i}^{-\frac{1}{2}}\hat{\boldsymbol{x}}\right)}{(\hat{\boldsymbol{x}}, \hat{\boldsymbol{x}})}$$

$$= \frac{\left(\hat{\boldsymbol{x}}, \mathbf{E}_{i}^{-\frac{1}{2}*}\mathbf{M}^{*}\mathbf{L}^{*}\mathbf{E}_{f}^{\frac{1}{2}*}\mathbf{E}_{f}^{\frac{1}{2}}\mathbf{LME}_{i}^{-\frac{1}{2}}\hat{\boldsymbol{x}}\right)}{(\hat{\boldsymbol{x}}, \hat{\boldsymbol{x}})}$$

$$= \frac{\left(\hat{\boldsymbol{x}}, \left(\mathbf{E}_{f}^{\frac{1}{2}}\mathbf{LME}_{i}^{-\frac{1}{2}}\right)^{*}\mathbf{E}_{f}^{\frac{1}{2}}\mathbf{LME}_{i}^{-\frac{1}{2}}\hat{\boldsymbol{x}}\right)}{(\hat{\boldsymbol{x}}, \hat{\boldsymbol{x}})}$$

$$= \frac{\left(\hat{\boldsymbol{x}}, \mathbf{\Lambda}^{*}\mathbf{\Lambda}\hat{\boldsymbol{x}}\right)}{(\hat{\boldsymbol{x}}, \hat{\boldsymbol{x}})}$$
(3.3.5)

と書ける。ここで、行列 $\mathbf{E}_i^{\frac{1}{2}}$ および $\mathbf{E}_f^{\frac{1}{2}}$ が自己随伴 行列³であることを用い、また

$$\mathbf{\Lambda} = \mathbf{E}_f^{\frac{1}{2}} \mathbf{L} \mathbf{M} \mathbf{E}_i^{-\frac{1}{2}} \tag{3.3.6}$$

³ 行列 \mathbf{E}_i および \mathbf{E}_f は正定値対称行列(以下 \mathbf{E} とする)で あることから、直交行列 \mathbf{V} と対角行列 \mathbf{D} を用いて $\mathbf{E} =$ $\mathbf{V}^{-1}\mathbf{D}\mathbf{V}$ と書ける。ここから、 $\mathbf{E}^{\frac{1}{2}} = \mathbf{V}^{-1}\mathbf{D}^{\frac{1}{2}}\mathbf{V}$ とな るが、行列 \mathbf{V} , \mathbf{D} が直交行列であることから $\left(\mathbf{E}^{\frac{1}{2}}\right)^T =$ $\mathbf{V}^T \left(\mathbf{D}^{\frac{1}{2}}\right)^T \left(\mathbf{V}^{-1}\right)^T = \mathbf{V}^{-1}\mathbf{D}^{\frac{1}{2}}\mathbf{V}$ となり、行列 $\mathbf{E}^{\frac{1}{2}}$ が自己 随伴行列であることがわかる。

¹ 國井 勝

² 現業運用スケジュールの関係上、ここで用いられる GSV は MEPS の初期時刻の 6 時間前の全球解析値を用いて算出 される必要があり、また評価時刻を MEPS の終了時刻に合 わせているため、評価時間は予報時間より 6 時間長い 45 時 間となる。

衣 3.3.1 現業化した MEPS の仕物	表 3	.3.1	現業化し	た	MEPS	の仕様
------------------------	-----	------	------	---	------	-----

運用開始日		2019年6月27日		
実行頻度(初期時刻)		1 日 4 回 (00, 06, 12, 18 UTC)		
予報期間		39 時間		
粉店又却エゴル	名称	asuca		
数値 1 報モ 1 ル	水平格子間	5 km、76 層		
隔・鉛直層数				
	大気	メソ解析値		
初期値	陸面	地中温度第1・2層は解析値、第3・4層は気候値(数値予報モデル		
		で用いる9層に内挿して利用)、土壌水分(体積含水率)は解析値		
海面		北西太平洋高解像度海面水温解析値及び北半球海氷解析値		
境界値	陸面	地中温度は熱伝導方程式、体積含水率は強制復元法により予測		
	海面	初期値に固定		
	初期摂動	SV 法		
アンサンブル手法	モデル摂動	なし		
	境界摂動	側面境界摂動は初期摂動に用いた GSV を線形時間発展させて		
		出、下部境界摂動はなし		
メンバー数		21(コントロールラン1 + 摂動ラン 20)		

表 3.3.2 SV 法の仕様(予報変数の太字は摂動として用いる変数)

	MSV40	MSV80	GSV	
水平格子間隔	40 km	80 km	TL63(約 270 km)	
鉛直層数	38	同左	40	
予報変数	運動量水平成分、鉛直成分、	同左	水平風、気温、水蒸気量、	
	気圧、温位、水蒸気量		地上気圧	
評価時間	6 時間	15 時間	45 時間	
ノルム	湿潤 TE	同左	乾燥 TE	
水平ターゲット	125°–145°E, 25°–45°N	同左	110°–170°E, 15°–50°N	
鉛直ターゲット	水蒸気量:モデル面 2-15 層	同左	モデル面 20 層(高度	
	(高度 2900 m まで)、		9000 m)まで	
	水蒸気量以外:同2-20層			
	(同 5300 m まで)			
算出数	10	同左	20	

としている。成長率 λ は、 \hat{x} が $\Lambda^*\Lambda$ の固有ベクトル $v \in \mathbf{R}^n$ の方向に等しいとき極値をとる (山根 2002) こ とから、以下の固有値問題

$$\boldsymbol{\Lambda}^* \boldsymbol{\Lambda} \boldsymbol{v} = \lambda^2 \boldsymbol{v} \tag{3.3.7}$$

を解き、行列 $\Lambda^*\Lambda$ の大きな固有値に対応する固有ベ クトルを求めることで、評価時間内で線形成長率の大 きなモードを得ることができる。ここで、(3.3.7) 式に おける λ および v を、それぞれ行列 Λ の特異値、特異 ベクトル⁴という。なお、行列 $\Lambda^*\Lambda$ は自己随伴行列⁵で あるため、 $\Lambda^*\Lambda$ の n 個の固有値は全て 0 以上の実数と

 5 $(\Lambda^{*}\Lambda)^{*} = \Lambda^{*}\Lambda$ は容易に示すことができる。

なる (山根 2002)。

(3.3.7) 式の固有値問題は、行列 $\Lambda^* \Lambda$ が $n \times n$ 次元 という大規模行列であることに加え、通常の数値予報 モデルでは摂動予報モデル、随伴モデルに対応する行 列 M および M* を陽に構成することはできないため、 直接解くことはできない。そこで、大規模対称行列向 けの固有値問題の近似解法のひとつである Lanczos 法 を用いる。Lanczos 法では対象とする行列を直接構成 する必要はなく、この場合は入力ベクトル v に対して 出力ベクトル $\Lambda^* \Lambda v$ が計算できれば良い。また反復計 算による近似値算出の過程で、最大および最小の固有 値に対応する固有ベクトルが優先される。これらの特 徴は、行列 $\Lambda^* \Lambda$ の大きな固有値に対応した固有ベク トルのみを必要とする SV 法の目的に適う。

⁴ 右特異ベクトル、または前方特異ベクトルと呼ぶこともある。

Lanczos 法では、逐次的に拡大される部分空間への 射影により、大規模固有値問題を小規模固有値問題で 近似する。対象とする大規模行列を $\mathbf{A} \in \mathbf{R}^{n \times n}$ 、任意 の非ゼロベクトルを $u_1 \in \mathbf{R}^n$ ($||u_1|| = 1$) とすると、 部分空間として

$$K_m(\mathbf{A}, \boldsymbol{u}_1) = \operatorname{span}\left\{\boldsymbol{u}_1, \mathbf{A}\boldsymbol{u}_1, \mathbf{A}^2\boldsymbol{u}_1, ..., \mathbf{A}^{m-1}\boldsymbol{u}_1\right\}$$
(3.3.8)

で構成される Krylov 部分空間を採用する。Krylov 部分 空間を選択することで最大および最小付近の固有値に対 する固有ベクトルの成分が増幅され、また部分空間の拡 大に伴い解の精度が向上することが知られている。実際 の計算は、 K_m の正規直交基底である $\{u_1, u_2, ..., u_m\}$ を使って行う。この正規直交基底は、

$$\beta_k \boldsymbol{u}_{k+1} = \mathbf{A} \boldsymbol{u}_k - \alpha_k \boldsymbol{u}_k - \beta_{k-1} \boldsymbol{u}_{k-1}$$
(3.3.9)

で表される関係式により逐次的に構成される。ただし u_{k-1}, u_k, u_{k+1} が正規直交基底をなすことから、 α_k および β_k には $k \ge 1$ において

$$\begin{cases} \alpha_{k} = \boldsymbol{u}_{k}^{T} \mathbf{A} \boldsymbol{u}_{k} \\ \beta_{k} = \| \mathbf{A} \boldsymbol{u}_{k} - \alpha_{k} \boldsymbol{u}_{k} - \beta_{k-1} \boldsymbol{u}_{k-1} \| \end{cases}$$
(3.3.10)

の拘束が課される(ただし $\beta_0 = 0$ 、 $u_0 = 0$)。つまりk回目の反復計算では、入力ベクトル u_k に対して Au_k を計算することで部分空間を拡大し、さらに正規直交 化を行うことで u_{k+1} を生成することになる。上記の 一連のプロセスをLanczos 過程という。

さらに $\{u_1, u_2, ..., u_m\}$ の各要素を列成分とする直 交行列を $\mathbf{U}_m \in \mathbf{R}^{n \times m}$ とすると、(3.3.9) 式の漸化式 の行列表現は

$$\mathbf{A}\mathbf{U}_m = \mathbf{U}_m \mathbf{T}_m + \beta_m \boldsymbol{u}_{m+1} \boldsymbol{e}_m^T \qquad (3.3.11)$$

となる。ここで $e_m \in \mathbf{R}^m$ は単位行列のm列目の成分であり、 \mathbf{T}_m は

で表される 3 重対角行列である。(3.3.11) 式は、残差 成分(右辺の第 2 項目)が十分に小さいときは行列 **A** の相似変換を表すため、3 重対角行列 **T**_m の固有値を θ 、固有ベクトルを $s \in \mathbf{R}^m$ とすると、行列 **A** の近似 固有値は θ 、近似固有ベクトル $\tilde{x} \in \mathbf{R}^n$ は

$$\tilde{\boldsymbol{x}} = \mathbf{U}_m \boldsymbol{s} \tag{3.3.13}$$

となる。 θ とsを求めるには、以下の小規模固有値問 題⁶

$$\mathbf{T}_m \boldsymbol{s} = \theta \boldsymbol{s} \tag{3.3.14}$$

を QL 法⁷などの適当なアルゴリズムで解けば良い。な お、 $\theta \ge \hat{x}$ をそれぞれ Ritz 値、Ritz ベクトルと呼ぶ。

Lanczos 法で求められる Ritz 値、Ritz ベクトルの近 似精度は、反復回数が *k* 回のとき

$$\|\mathbf{r}_k\| = \|\mathbf{A}\tilde{\boldsymbol{x}} - \theta\tilde{\boldsymbol{x}}\| \tag{3.3.15}$$

で定義される残差ノルムの大きさで評価できる。 (3.3.11) 式、(3.3.13) 式、および (3.3.14) 式から

$$\mathbf{A}\tilde{\boldsymbol{x}} - \theta\tilde{\boldsymbol{x}} = \mathbf{A}\mathbf{U}_{k}\boldsymbol{s} - \mathbf{U}_{k}\theta\boldsymbol{s}$$

= $(\mathbf{A}\mathbf{U}_{k} - \mathbf{U}_{k}\mathbf{T}_{k})\boldsymbol{s}$ (3.3.16)
= $\beta_{k}\boldsymbol{u}_{k+1}\boldsymbol{e}_{k}^{T}\boldsymbol{s}$

となるため、(3.3.15) 式は

$$\|\mathbf{r}_k\| = \beta_k \|\boldsymbol{e}_k^T \boldsymbol{s}\| \tag{3.3.17}$$

となる。したがって残差ノルムの大きさは、3 重対角 行列 \mathbf{T}_k の要素 β_k と固有ベクトル*s* で評価できること になる。実際の計算では、残差ノルムの大きさに応じ て収束判定を行い、必要数の特異ベクトルが十分な精 度で算出された段階で反復計算を打ち切れば良い。収 束に要する反復回数は、一般に求めたい特異ベクトル の数の4倍程度 (山口 2006) とされるが、反復回数が 300回以上の時は、その半分の数の特異値が 0.001%以 下の誤差で近似できるとの報告 (Errico et al. 2001) も あるため、実際のシステムに応じた見積もりが必要と なる。

Lanczos 法における注意点は、反復計算を進めるうちに丸め誤差等により Krylov 部分空間の直交性が崩れる可能性があることである。これは、Lanczos 過程における部分空間拡大の際、新たに生成される基底ベクトルは直近に生成された2つの基底ベクトルに対してのみ直交化され、大域的な直交性については保証されないことに起因する。これは (3.3.9) 式から、 u_{k-1} , u_k , u_{k+1} が3項間漸化式の関係をもつことから確認できる。直交性の崩れは固有値の重複を招く恐れがあるため、必要に応じて Lanczos 過程で Gram-Schmidt の再直交化を行う。

Lanczos 過程による部分空間拡大の際、 Au_k すなわ ち $\Lambda^*\Lambda u_k$ の計算には、摂動予報モデルと随伴モデル による時間積分が必要となる。摂動予報モデルと随伴 モデルの開発コストは非常に大きいため、多くの場合、 4 次元変分法で使用されるコードが利用される。なお、 SV 法に要する計算時間の大半は、Lanczos 過程にお ける摂動予報モデルと随伴モデルの時間積分で占めら れる。

⁶ SV 法を用いた通常のアンサンブル予報では、*m* は高々10² 程度である。

⁷ 行列の QL 分解を利用した固有値計算アルゴリズム。

(2) メソ SV の算出

MEPS の初期摂動の構成要素のうち MSV40 と MSV80 は、JNoVA の摂動予報モデルと随伴モデルに 基づく大規模固有値問題を Lanczos 法で近似的に解く ことで算出される。初期時刻と評価時刻の摂動の大き さは、Total Energy (TE; Ehrendorfer et al. 1999)

$$\|\boldsymbol{x}\|^{2} = \int_{S} \int_{Z_{\text{btm}}}^{Z_{\text{top}}} \frac{1}{2} \rho \left[u^{2} + v^{2} + w^{2} + w_{t} \frac{C_{p} \theta^{2}}{T_{r}} + RT_{r} \left(\frac{p}{P_{r}} \right)^{2} + w_{q} \frac{L^{2}}{C_{p} T_{r}} q^{2} \right] dz dS$$

$$(3.3.18)$$

で定義している。ここで u, v, w, θ, p, q はそれぞれ東 西風、南北風、鉛直風、温位、気圧、水蒸気混合比の 摂動、 ρ は密度、 C_p は定圧比熱、Rは乾燥空気の気体 定数、L は蒸発潜熱、Tr と Pr は気温と気圧の参照値 で、それぞれ 300 K、1000 hPa としている。 $\int_{S} dS$ は 領域Sでの面積分、 $\int_{Z_{\rm btm}}^{Z_{\rm top}} dz$ は高度 $Z_{\rm btm}$ から $Z_{\rm top}$ ま での鉛直積分を表す。 $Z_{\rm btm}$ はモデル面第2層、 $Z_{\rm top}$ は 水蒸気項は約 2900 m、それ以外は約 5300 m としてい る。この制限は、メソスケール現象予測に影響が大き い対流圏中下層における物理量の摂動を優先的に算出 するために導入されている。 $w_t \ge w_a$ はそれぞれ温位 項および水蒸気項の重みであり、重みを大きく(小さ く)すると、初期ノルムに対する寄与が小さく(大き く)なる。ここでは、初期摂動の変数間のバランスが 静的な解析誤差 (斉藤ほか 2008) 程度になるよう調整 を行い、それぞれ $w_t = 3.0, w_q = 0.6$ を採用した。ま た、TE ノルムの評価時間は MSV40 が6 時間、MSV80 が15時間であるが、この評価時間程度までは、アン サンブル予報において初期摂動の時間発展の線形性が 維持されることを確認している (小野 2016)。MSV40、 MSV80 ともに、Lanczos 法の繰り返し回数は 40 回で 一定とし、特異値の大きい 10 個の SV を初期値作成に 用いている。

SV 法では TE ノルムのほか、エンストロフィーや流 線関数の分散をノルムとして用いることも提案されて いるが、Palmer et al. (1998) は、アンサンブル予報の 初期摂動としては TE ノルムが最適であると結論づけ ている。また SV 法の枠組みで、初期値の誤差(解析 誤差)の情報を初期摂動に反映させる試みも行われて いる (Reynolds et al. 2005)。初期時刻のノルムを解析 誤差分散に基づき定義することで、解析誤差に基づい た初期摂動が利用可能となるものの、線形成長パター ンは TE ノルムで算出された SV と類似しており、予 測誤差の捕捉という点では TE ノルムと同等であった。 これは特定のデータ同化システムで見積もられた解析 誤差を用いた 1 例であるが、TE ノルムに基づく SV が 実際の予測誤差をある程度適切に捕捉できることを示 唆している。

(3) SV の結合によるマルチスケール初期摂動の作成

MEPSの開発当初は、初期摂動として MSV40 が単 独で用いられていた。しかし MSV40 には摂動が局在化 する傾向があり、単独利用では予報領域全域の予測誤差 を表現することは難しいことが明らかとなった (Saito et al. 2010; 小野 2010)。 摂動の局在化は (3.3.18) 式 で水蒸気項を除くことで緩和される (Kim and Jung 2009) が、MEPS の利用目的を考えると、顕著現象の 信頼度予測のために初期値が包含する水蒸気場の不確 実性を考慮することは必須であり、これを排除するこ とは現実的ではない。そこで MEPS では、より時空間 スケールの大きい成長モードを対象とする MSV80 と GSV を追加し、MSV40 と組み合わせることで局在化 の緩和を図っている (Ono et al. 2011)。これは初期摂 動に含まれるマルチスケールの誤差表現にも有効な手 段である。Guidard and Fischer (2008) は、初期摂動 に GSV のような全球モデルによる SV を含めること で、領域モデルを基調とする SV 法では捕捉できない 総観スケールの不確実性を考慮できるようになること の有用性を指摘している。

異なる初期摂動の組み合わせ方は様々な手法 (Caron 2013; Wang et al. 2014) があるが、MEPS では Variance Minimum 法(VM法; Yamaguchi et al. 2009)を 用いている。VM 法は、SV を列に持つ行列を直交回転 することで、空間的に広がりを持った摂動を生成する 手法である。VM 法では、直交回転後の行列の各列が 表す初期摂動が個々の SV の線形結合となっているた め、結合後も元々の特異ベクトルの構造が維持される 利点がある。一方で VM 法で算出される結合係数は入 力するベクトルの構造に敏感であり、僅かに異なる SV を用いた場合、最終的な初期摂動の構造が大きく異な ることがあるため、開発時には注意を要する。MEPS では、10通りの MSV40 と MSV80、20 通りの GSV を それぞれ振幅調整した後に VM 法にて線形結合を行い、 再度同じ基準で振幅調整を行ったものを初期摂動とし ている⁸。この手順では計 40 通りの初期摂動が作成さ れるが、うち10通りを最終的な初期摂動として選択 し、コントロールランの初期値に摂動を加算したもの をメンバー01から10の、減算したものをメンバー11 から 20 の初期値⁹としている。

SV 法によって算出される摂動はその大きさがノルム で規格化されているため、アンサンブル予報の初期摂 動として用いる場合は改めて振幅を調整する必要があ

⁸ MSV の鉛直風と気圧の摂動は SV 算出時には考慮してい るが、他の要素に比べ無視できる程度に小さいため、計算効 率や VM 法の収束性の向上を目的とし初期摂動には含めて いない。

⁹ 厳密には摂動を加減算した後で、初期値の水蒸気量が負に なった場合は0に、飽和水蒸気量を上回った場合はその分を 取り除く調節(飽和調節)を行っている。このため、初期時 刻のアンサンブル平均がコントロールランの初期値に一致し ないことがある。

る。初期値アンサンブルでは初期値の不確実性、すな わち解析誤差を反映した初期アンサンブルを作成する ことが理想であり、それにより正確な予測誤差の見積 もりが可能になると期待される。しかし、日々の気象 場や観測データ分布によって変動する解析誤差を動的 に見積もることは困難であるため、MEPSでは斉藤ほ か (2008)で用いられた静的な解析誤差を利用し、以下 の手順で振幅を決定している。

- SVの各要素について、摂動の絶対値の水平平均 値が静的な解析誤差(東西風・南北風 1.8 m/s、温 位 0.7 K、水蒸気量 0.001 kg kg⁻¹)となるよう倍 率を決め、このうち全要素の倍率の平均値を採用 する。
- この倍率を SV の各要素に乗じた後、全ての要素 において摂動の絶対値の最大値が上限値(東西風・ 南北風 6.0 m/s、温位 4.0 K、水蒸気量 0.006 kg kg⁻¹)を超えないよう倍率の再調整を行う。
- 上記で求められた倍率を最終的な振幅とする。なお、振幅は各メンバー毎に決定される。

先述の通りメソ SV は摂動が局在化する傾向があり、静 的な解析誤差に基づく調整のみを用いるとしばしば振 幅が過大評価されてしまう。そのため、上限値による 調整を導入することで、初期摂動の振幅が許容範囲に 収まるようにしている。

3.3.3 境界値摂動の作成

領域モデルに基づくアンサンブル予報システム(領 域 EPS)においては、初期値の不確実性に加え、側面 境界の不確実性についても考慮する必要がある。領域 モデルでは一般に、その親モデルの予報値から側面境 界値が提供される。親モデルの予報にも当然、不確実 性が含まれるため、その情報を領域 EPS で考慮するこ とは、予測誤差の適切な評価という点で尤もらしい。 実際、全アンサンブルメンバーで同じ側面境界値を用 いた場合、予報が進むにつれて側面境界付近でアンサ ンブルスプレッドが小さくなり、領域内部へと浸潤し ていく。これは、予測不確実性の過小評価につながり、 領域 EPS に基づく信頼度情報の精度低下の要因となっ てしまう。

領域 EPS における側面境界摂動の必要性について は Saito et al. (2012) で示されている。しかし、そこ では初期摂動と側面境界摂動との相関については考慮 されておらず、初期摂動と側面境界摂動との不整合¹⁰ により、両者の表す不確実性が適切に予報場に反映さ れなくなる可能性があった。領域 EPS における摂動の 不整合に関する研究は数多くある(Bowler and Mylne 2009; Wang et al. 2011; Caron 2013 など)が、特に Caron (2013) では、初期摂動と側面境界摂動の不整合 により積分開始直後に側面境界付近で大きな気圧摂動 が生じ、それが領域全体へ音速で伝搬することで過剰 な地上気圧のスプレッドをもたらすことを示している。 ここから、側面境界摂動は単に側面境界を提供する親 モデルの不確実性を表すのみでなく、初期摂動の時間 発展と矛盾しない摂動であるべきことが示唆される。

この状況を踏まえ、MEPS では初期摂動で利用され た日本付近をターゲット域とした GSV を線形発展させ、 得られた摂動を側面境界摂動として用いている (Ono 2017)。この際、初期摂動作成時に用いられた VM 法 の結合係数を利用することで、GSV による初期摂動と 側面境界摂動の一貫性を保つようにしている。通常、 MSV40 及び MSV80 は側面境界付近で摂動成分が算出 されることはないため、この措置により初期摂動と側 面境界摂動の矛盾が生じにくい上、予報後半でも十分 なアンサンブルスプレッドを確保することができる。 本手法は、2015 年の MEPS 部内試験運用から 2019 年 の本運用にかけて導入された手法であり、より詳細な 記述は第 3.4 節に譲る。

参考文献

- Bowler, N. E. and K. R. Mylne, 2009: Ensemble transform Kalman filter perturbations for a regional ensemble prediction system. *Quart. J. Roy. Meteor. Soc.*, 135, 757–766.
- Caron, J. F., 2013: Mismatching perturbations at the lateral boundaries in limited-area ensemble forecasting: A case study. *Mon. Wea. Rev.*, 141, 356– 374.
- Ehrendorfer, M., R. M. Errico, and K. D. Raeder, 1999: Singular vector perturbation growth in a primitive equation model with moist physics. J. Atmos. Sci., 56, 1627–1648.
- Errico, R. M., M. Ehrendorfer, and K. D. Raeder, 2001: The spectra of singular values in a regional model. *Tellus*, **53A**, 317–332.
- Guidard, V. and C. Fischer, 2008: Introducing the coupling information in a limited-area variational assimilation. Quart. J. Roy. Meteor. Soc., 134, 723–735.
- 河野耕平,氏家将志,國井勝,西本秀祐,2019: MEPS の利用と留意点.令和元年度数値予報研修テキスト, 気象庁予報部,4-14.
- Kim, H. M. and B.-J. Jung, 2009: Influence of moist physics and norms on singular vectors for a tropical cyclone. *Mon. Wea. Rev.*, **137**, 525–543.
- 小野耕介, 2010: メソ特異ベクトル法. 数値予報課報告・ 別冊第 56 号, 気象庁予報部, 93-104.
- 小野耕介, 2016: メソアンサンブル予報システムの開発 状況. 数値予報課報告・別冊第 62 号, 気象庁予報部, 100–113.

¹⁰ ここでは初期摂動と境界摂動とで互いの示す予測誤差の傾向が整合しないことを指す。

- Ono, K., 2017: Consistent Initial Lateral Boundary Perturbations in Mesoscale Ensemble Prediction System at JMA. CAS/JSC WGNE Res. Activ. Atmos. Oceanic Modell., 47, 5.16–5.17.
- Ono, K., 2020: Extension of the Lanczos algorithm for simultaneous computation of multiple targeted singular vector sets. *Quart. J. Roy. Meteor. Soc.*, 146, 454-467.
- Ono, K., Y. Honda, and M. Kunii, 2011: A mesoscale ensemble prediction system using singular vector methods. CAS/JSC WGNE Res. Activ. Atmos. Oceanic Modell., 41, 5.15–5.16.
- Palmer, T. N., R. Gelaro, J. Barkmeijer, and R. Buizza, 1998: Singular vectors, metrics and adaptive observations. J. Atmos. Sci., 55, 633–653.
- Reynolds, C. A., R. Gelaro, and T. E. Rosmond, 2005: A comparison of variance and total energy singular vectors. *Quart. J. Roy. Meteor. Soc.*, **131**, 1955– 1973.
- Saito, K., M. Kunii, M. Hara, H. Seko, T. Hara, M. Yamaguchi, T. Miyoshi, and W.-K. Wong, 2010: WWRP Beijing Olympics 2008 Forecast Demonstration / Research and Development Project (B08FDP/RDP). *Tech. Rep. MRI*, 214 pp.
- Saito, K., H. Seko, M. Kunii, and T. Miyoshi, 2012: Effect of lateral boundary perturbations on the breeding method and the local ensemble transform Kalman filter for mesoscale ensemble prediction. *Tellus*, 64A, 11594.
- 斉藤和雄, 瀬古弘, 國井勝, 原昌弘, 原旅人, 山口宗彦, 経田正幸, 2008: WWRP 北京オリンピック予報実 証/研究開発プロジェクト (B08FDP/RDP). 数値予 報課報告・別冊第 54 号, 気象庁予報部, 246–260.
- Wang, Y., M. Bellus, J.-F. Geleyn, X. Ma, W. Tian, and F. Weidle, 2014: A new method for generating initial condition perturbations in a regional ensemble prediction system: Blending. *Mon. Wea. Rev.*, 142, 2043–2059.
- Wang, Y., M. Bellus, C. Wittmann, M. Steinheimer, F. Weidle, A. Kann, S. Ivatek-Sahdan, W. Tian, X. Ma, S. Tascu, and E. Bazile, 2011: The Central European limited-area ensemble forecasting system: ALADIN-LAEF. *Quart. J. Roy. Meteor. Soc.*, 137, 483–502.
- 山口宗彦, 2006: 特異ベクトル法の開発. 数値予報課報 告・別冊第52号, 気象庁予報部, 50-58.
- 山口春季,2017: 全球アンサンブル予報システムの導入. 平成 29 年度数値予報研修テキスト,気象庁予報部,35-41.
- Yamaguchi, M., R. Sakai, M. Kyoda, T. Komori, and

T. Kadowaki, 2009: Typhoon Ensemble Prediction System developed at the Japan Meteorological Agency. *Mon. Wea. Rev.*, **137**, 2592–2604.

山根省三, 2002: 摂動の線型発展の理論. 気象研究ノート, **201**, 21–71.

 3.4 メソアンサンブル予報システムの本運用に向 けた開発¹

3.4.1 はじめに

本節ではメソアンサンブル予報システム (MEPS) に おいて、部内試験運用の開始(2015 年 3 月) 以降に 行った開発について述べる。主な内容は以下の通りで ある。

- 1. 側面境界摂動作成における全球特異ベクトル (GSV)の利用(2017年1月導入、第3.4.2項)
- 予報モデル asuca の導入(2017 年 7 月導入、第 3.4.3 項)
- GSV 初期時刻の変更・21 メンバー化及び1日4
 回運用(2018年6月導入、第3.4.4項)

この他にも初期摂動作成時の設定変更、GSV 計算に おけるモデル更新 (山口 2017) を行い、MEPS の予測 精度はわずかに改善しているが、上記の変更と比較す ると影響は小さいので省略する。なお、MEPS 部内試 験運用開始時の仕様は小野 (2016) を参照されたい。そ の後の仕様の変遷については表 3.4.1 にまとめた。特 異ベクトル (SV) 法に関連した用語の解説及び現在運 用中の MEPS の仕様の詳細については第 3.3 節を参照 されたい。

3.4.2 側面境界摂動作成における GSV の利用(1) 初期・側面境界摂動間の不整合

MEPS では部内試験運用開始当初、初期摂動作成に SV 法を採用する一方(経緯は第 3.2 節参照)、側面境 界摂動には週間アンサンブル予報システム(WEPS)の 予測値から摂動を抽出し MEPS の摂動を作成してい た(小野 2016)。WEPS を利用することの利点は、摂 動作成のために数値予報モデルを実行する手間を要せ ず、内挿及び振幅調整といった簡単な処理だけで摂動 が作成できることである。一方で、初期摂動と側面境 界摂動を独立に作成するため両者に相関がなく、初期 摂動の構造と側面境界摂動の構造が不連続となる欠点 がある。

図 3.4.1 に側面境界摂動を WEPS で作成していた当時の MEPS と、本項で述べる開発により GSV を利用 して初期・側面境界摂動間で整合を取った MEPS の摂 動を示す。WEPS による側面境界摂動では(図 3.4.1 の破線内)、例えば領域南西側の側面境界付近に領域内 部の初期摂動と側面境界から流入した摂動の間に不連 続が見られる。この不連続なパターンは予報時間の経 過とともに日本付近に流れ込むため、特定のアンサン ブルメンバー(以下、メンバー)に着目して予測シナ リオを検討してしまうと、側面境界摂動の到達ととも に予測の傾向が変わることになる。このような摂動の 不連続は強雨の予測にも悪影響を及ぼす場合があるこ ともわかっている (Ono 2017)。

図 3.4.1 2015 年 6 月 1 日 18UTC 初期値の FT=3 にお けるメンバー 01 の 500 hPa の気温摂動 [K]。側面境界摂 動が WEPS の実験(左)及び GSV で整合を取った実験 (右)。ただし、実験設定の違いにより摂動パターンは異 なる。

一方、初期摂動と側面境界摂動の整合を取ると(図 3.4.1 右)、連続的な摂動となり、側面境界値の流入に よる予測傾向の変化は起こらない。したがって、初期・ 側面境界摂動間の不整合を解消し利便性の向上を図る ため、側面境界摂動の作成方法を見直すこととした。

(2) 初期・側面境界摂動の整合の取り方

初期摂動と連続した側面境界摂動の作成は、初期摂 動で利用している摂動を側面境界摂動でも利用するこ とで実現できる²。MEPS では、初期摂動作成にはメ ソ特異ベクトル(MSV;小野 2010)とGSVの両者を 利用しているが、MSV は解析領域内に限定して算出さ れる。一方、GSV は解析領域とその周辺を含む広範囲 に算出されるため、GSV を側面境界摂動にも利用する ことを考える。

MEPS の初期摂動は MSV 及び GSV の線形結合に より作成され (小野 2016)、結合係数はバリアンスミ ニマム法 (Yamaguchi et al. 2009)により計算される。 この結合係数による GSV 間の重みをそのまま側面境 界摂動作成時の GSV の線形結合に利用する。これに より、初期摂動が持つ GSV のバランスと同等の側面 境界摂動を作成することができる。

(3) 側面境界摂動のための GSV の見直し

GSV の計算設定については、初期摂動に加えて側面 境界摂動も考慮したものへと見直す必要がある。特に、 側面境界摂動は初期摂動と異なり、摂動の時間発展を考 える必要がある。このためには、算出された GSV を、 GSV 計算で利用している非線形モデル (NLM) あるい は接線形モデル (TLM) を用いて積分する方法が最も 簡便である。また評価時間については、初期摂動向け の 24 時間から、MEPS の予報時間である 39 時間に 延長する³。この場合に、検討すべき課題を以下に列挙

² この方針に対して、初期摂動に WEPS を利用することで、 側面境界摂動との整合を図ることも可能である。しかし、予測 精度の面で WEPS は GSV に劣るため (Saito et al. 2011)、 採用していない。

³ 必ずしも評価時間を予報時間と一致させる必要はないが、 予報期間を通したメンバー間のばらつきの確保やシステム上 の容易さを考慮した。

¹ 小野 耕介 (気象研究所)

表 3.4.1 部内試験運用開始後の MEPS の仕様の変遷。変更部分を太字で強調している。★印は設定の変更を表し、本文に詳細 な説明がある。

年	2015	2016	2017	2018~現在
初期時刻	18UTC	18UTC	18UTC	00, 06, 12, 18UTC
メンバー数	11	11	11	21
予報モデル	JMA-NHM	JMA-NHM	asuca	asuca
初期摂動	SV 法	SV 法	SV 法 ★	SV 法 ★
側面境界摂動	WEPS	WEPS	GSV ★	GSV ★

表 3.4.2 2016 年 1 月 15 日 18 UTC 初期値の SV の線形成長率。SV01~SV05 は成長率の大きいものから上位 5 つの SV で あることを意味する。

	SV01	SV02	SV03	SV04	SV05
湿潤 SV	65.3	13.5	11.0	7.1	6.2
乾燥 SV	10.9	9.5	6.0	5.3	4.4

する。

- GSV の時間積分に NLM あるいは TLM のどちら を採用するか。
- 現在の初期摂動用のターゲット領域は側面境界摂動の作成に対しても適切であるか。
- 側面境界摂動の振幅をどう調整するか。

以下では、これらについて検討した結果を述べる。

GSV の時間積分モデル

GSV の時間積分については NLM 及び TLM の選択 肢があるが、利用実績が無かったため両モデルによる比 較実験を行い、摂動の性質を調査した。なお GSV は、 利用する NLM/TLM に組み込まれている物理過程に よって乾燥 SV(力学過程+境界層)と湿潤 SV(乾燥 SV+重力波抵抗・放射・雲水・積雲対流)の 2 種類が あり (酒井 2009)、本節でもこの名称を踏襲する。2015 年当時の MEPS では初期摂動のみを目的とした GSV に湿潤 SV を利用していた。

そこで、初めに当時利用していた湿潤 SV の TLM を 利用して GSV の時間積分の特性を調査した。その結 果、冬季の事例を中心に成長率が他と比べて 10 倍程度 大きい SV が算出されることがわかった(表 3.4.2 上)。 この GSV を基に側面境界摂動を作成しアンサンブル 予報を行うと、予報後半のスプレッドが急激に増加し、 過大なばらつきの原因となることがわかった(図略)。 酒井 (2009) では、大きな成長率を持つ SV は湿潤 SV 特有の性質であるとともに、乾燥 SV ではこのような 性質が見られないことが報告されている。また、当時 の WEPS 及び現在の全球アンサンブル予報システム (GEPS) において、日本付近を含む中緯度帯では乾燥 SV を採用している。以上を踏まえて、MEPS でも乾 燥 SV を利用することを検討し再度実験を行った。そ の結果、上記のような過度に高い成長率の GSV は計 算されないことがわかった(表 3.4.2 下)。そこで、乾燥 SV の TLM を側面境界摂動作成のためのモデルの候補の一つとした。

続いて、乾燥 SV の NLM による側面境界摂動の作 成の可能性を調査した。NLM を用いる利点は、誤差成 長率が一定の TLM とは異なり、流れに応じて振幅が 自然に時間発展することが期待できる点である。しか し多数事例の調査の結果、当時の NLM では GSV の不 自然な時間発展が確認された。図 3.4.2 に NLM による GSV の 24 時間積分後の温度成分の例を示す。日本の はるか上流にあたるチベット付近において、円形かつ 振幅が大きい摂動が見られる。同様な摂動は冬季の他 の初期時刻でも散見され、共通の特徴としてチベット 付近の標高の高いところかつジェット気流の合流場に 対応し、停滞性であった。この不自然な GSV 成分を 含む側面境界摂動からアンサンブル予報を行ったとこ ろ、予報後半でのスプレッドの不自然な急増、計算不 安定によるモデル積分の異常終了が確認された。この ため、当時の NLM の採用は見送った。

以上の調査から、側面境界摂動の作成には乾燥 SV による TLM を採用することとした。

ターゲット領域の再検討

ー般に、SV 法では評価時間を延長すると、ターゲッ ト領域から離れた領域に SV が算出されるようになる。 これは評価時間にターゲット領域内に分布する SV の 初期時刻における起源はその上流側となるためである。 したがって、ターゲット領域を変えずに GSV の評価時 間を 39 時間に延長すると、特に大気の流れが速い冬 季では、初期摂動の主要部分は予報領域の外側上流に 分布することが多い。図 3.4.3 に当時の MEPS 及び評 価時間を 39 時間に延長した実験による 500 hPa のジ オポテンシャル高度 (Z500) の初期スプレッドを示す。

図 3.4.2 2016 年 1 月 18 日 18UTC 初期値の NLM による 24 時間積分における SV01 温度成分の分布。暖色ほど振 幅が大きい。

当時の MEPS (同図左)と比較すると、評価時間を延 長した実験の初期スプレッドの分布(同図右)は、上 流側の西側境界付近のみに主要部分が限定されている ことがわかる。これでは初期場に内在する不確実性を 十分に捕捉できないため、ターゲット領域の変更を検 討した。

GSV のターゲット領域の感度調査は、

- 当時の設定(初期摂動向け; 東経 125-145 度, 北緯 25-45 度)
- 2 MEPS 予報領域の側面境界におおよそ合わせて拡大(東経 110-150 度, 北緯 20-50 度)
- ③ 初期摂動の分布が広がるよう2を下流へ拡大(東 経 110-170 度,北緯 20-50 度)
- ④ 夏季の熱帯擾乱への感度向上のため3を南方にや や拡大(東経 110-170 度,北緯 15-50 度)

の4実験について、2015年の月毎の平均的な分布を比較した。なお、評価時間は全て 39時間に延長して調査した。

図 3.4.4 に 2015 年 1 月の各 GSV の温度成分の分布 を示す。初期時刻に着目すると(同図上段)、実験①と ②に大きな差異は見えず、ともに日本付近の空間分布 が乏しいことがわかる。一方、ターゲット領域を下流 に広げることで(③と④)、初期時刻においても日本周 辺に GSV が分布することがわかる。これは、ターゲッ ト領域を広げたため、評価時間において予報領域の外 側下流に位置する擾乱の成分を検出しているためであ る。なお夏季については、上空の風速が遅いため冬季 ほど初期時刻に上流に偏る様子はないが、ターゲット 領域拡大による GSV の分布傾向は冬季と同様である (図略)。また、③からターゲット領域を南方に広げた ④はわずかに熱帯への感度が増加し、南洋上の熱帯擾 乱に対応した GSV を得ることが期待された。

次に評価時刻に着目すると(同図下段)、①を除きお おむね予報領域を覆っていることが確認できる。この ことは、①以外は MEPS 予報時間 39 時間の間に側面 境界摂動として利用するために十分なカバレッジを持

図 3.4.3 2016 年 1 月 16 日 00UTC 初期値の Z500[gpm] の初期スプレッド。当時の MEPS (左)及び GSV の評価 時間を 39 時間に延長した実験(右)。アンサンブル平均 による風(矢羽根)も併せて表示した。

つことを示唆している。

以上の比較結果を考慮して、ターゲット領域が最も 広い④を採用することにした。

側面境界摂動の振幅

側面境界摂動の大きさは、予報時間ごとに側面境界 値に含まれる誤差の大きさを反映している必要がある。 このことを式で表すと、ある予報時刻における側面境 界値の誤差を dy、初期時刻の(GSV の線形結合から 成る)振幅調整前の側面境界摂動を dx、接線形時間推 進演算子(dx の時間発展は TLM)を M とすると、両 者の間には倍率 α を用いて、

 $dy \sim \alpha M dx \tag{3.4.1}$

の関係がある。ここで基準となる dy が既知ならば、摂動を α 倍することで任意の予報時間における側面境界 摂動 M(dx)の振幅を調整できる。

ここで、側面境界値の誤差 dy に相当する量を検討す る余地があるが、側面境界値(基は GSM 予測値)の MSM 初期値を参照値とした誤差を採用することとした。 この側面境界値の誤差の季節を通じた値を用意するた めに、2015 年 1 月から 12 月の 00, 06, 12, 18UTC 初期 値に対して 3 時間ごとに誤差を算出した。また WEPS では、GSV から初期摂動を作成する際に 500 hPa 気 温を基準値としているため (山口 2011)、MEPS にお いても、500 hPa の気温を利用することとした⁴。

図 3.4.5 左に 2015 年 1 月の側面境界値の 500 hPa 気温誤差の時間発展を示す。参考として MSM 予測値 の同初期値を参照値とした誤差も併せて示した。MSM の誤差は予報時間 3 時間以降ほぼ線形的に増加する。 一方、GSM の予測誤差は予報初期から緩やかな増加を 示すが、中盤以降はやや増加しその大きさは MSM と 同程度で推移する。

この GSM の予測誤差を月別に表示したものを同図 右に示す。500 hPa 気温誤差の特徴として、冬季は予 報初期の誤差が夏季に比べて小さいが時間の経過とと

⁴ GSV の初期時刻のエネルギーは気温に関する項が卓越し ている。

図 3.4.4 2015 年 1 月のターゲット領域(下段の赤枠)が異なる GSV の温度成分の分布。各初期時刻の温度成分を鉛直積算し 最大値で規格化後、月平均を取ったもの。上段が初期時刻、下段が評価時刻(39時間後)における分布を表す。

図 3.4.5 GSM 予測値から作成した側面境界値の 500 hPa 気温の MSM 初期値を参照値とした予報誤差。左図が 2015 年 1 月の誤差(赤線が側面境界値、黒線は MSM 予測値 の誤差)の時間発展を示し、右図に 2015 年各月の誤差を 予報時間別に示す。6 時間予報値の誤差は図の下方、青点 線で示している。

もに誤差が大きくなる、夏季は予報初期の誤差が大き いが誤差成長は小さい、といった特徴がわかる。

この誤差より基準値 dy を決定するが、線形関係 $\alpha M dx = M(\alpha dx)$ より、どの予報時間の誤差を基準 とするかは任意である。ここでは単純に MEPS の予 報初期時刻を基準とすることとし、側面境界値の 6 時 間予測値の誤差を採用した⁵。図 3.4.5 右の 6 時間予報 値の誤差に着目すると、年間を通しておおむね 0.55– 0.60 $^{\circ}$ の範囲で推移しており、季節変化が小さい。こ の誤差に2次曲線近似⁶ を用いて平滑化したものを日々 の誤差の基準値 dyとした。この dy を利用して、予報 初期時刻に $dy \sim \alpha dx$ となるように求めた倍率 α を用 いて側面境界摂動の振幅を調整している。

(4) 統計検証

以上の変更を採用し側面境界摂動を変更した実験 (TEST)と、当時の試験運用中の MEPS (RTN)との 精度比較を行った。実験は梅雨期・台風事例・冬季に

図 3.4.6 梅雨事例における 500 及び 850 hPa の気温 [K] (左 列) 及び東西風 [m/s] (右列) の MSM (桃破線)、MSM 及び MEPS アンサンブル平均予報の RMSE 及びスプレッ ドの時系列。黒線が RTN、赤線が TEST を表す。

対して、それぞれ 10 初期値ずつ行った⁷。GSV の設定 変更は初期摂動にも反映されるため、初期摂動の特性 も本変更で変わる。

スプレッドと誤差の関係

図 3.4.6 に梅雨事例における 500/850 hPa の気温及び 東西風について、MSM 初期値を参照値とする MSM 及 びアンサンブル平均予報の二乗平均平方根誤差 (RMSE) 及び MEPS アンサンブルスプレッド(以下、スプレッ ド)を示す。

気温について、当時のシステム (RTN) の特徴とし

⁵ 側面境界値は MEPS 初期時刻の 6 時間前の予測値を基に 作成される。

⁶ この近似では 12 月と 1 月の間の連続性を考慮していない が、両月の誤差の大きさの差は小さいため無視している。

⁷ 初期時刻は梅雨期の 2016 年 6 月 17-26 日、台風事例は 2015 年 7-9 月から 10 初期値、冬季は 2016 年 1 月 11-20 日で、いずれも 18UTC を初期値としている。

図 3.4.7 2016 年 6 月 23 日 18UTC 初期値の気温 [K](上) 及び風速 [m/s](下)の初期スプレッドについて、RTN(左) と TEST(右)を表す。併せて、アンサンブル平均予報に よる Z500 等値線(上)及び矢羽根(下)を示す。

て、予報初期の気温のスプレッドが 500 hPa を中心に 大きく、3 時間後にかけて減少するといった不自然な 傾向があった。この傾向は今回の GSV の導入により やや強調されるようになった。この特徴を図 3.4.7 のス プレッドの平面図で確認する。RTN の初期スプレッド の分布は局所的かつ振幅が大きい。これは RTN のター ゲット領域が初期摂動のみを対象とした狭い領域に設 定されており、初期摂動の中に複数の GSV が重畳し ているためと考えられる。一方 TEST では、ターゲッ ト領域を広げたため、局所的な振幅が若干減少すると ともにスプレッドの分布が広がっている。なお、アン サンブル平均予報誤差は RTN・TEST ともに同程度で あった。

風速については、図 3.4.7 の平面図から気温スプレッド同様に、振幅の緩和と下流への広がりが確認できる⁸。 図 3.4.6 の時系列では、850 hPa に着目すると、FT=9 以降で RTN に比べて TEST のスプレッドは小さい。これは側面境界摂動の変更による効果と考えられ、GSV の特徴として高度 3000 m 程度から下では振幅が減少 するためである。同様の傾向は台風事例及び冬季にも 確認されており、予報途中からの場のスプレッドが全 体的に抑制されている。なお、冬季のみ側面境界摂動 の影響が出てくる予報後半の 500 hPa の風速及び高度 場のスプレッドが増加している(図略)。

降水予測特性の変化と台風進路予報への影響

図 3.4.8 に梅雨事例の 3 時間降水量に対するスプレッド及びブライアスキルスコア (BSS) を示す。降水検証

図 3.4.8 梅雨事例における 3 時間降水量 [mm/3h] のスプ レッドの時系列(左)と閾値別の BSS(右)。黒線が RTN、 赤線が TEST。

は、解析雨量を参照値とし、20 km 格子平均降水量に 対して、陸域及び沿岸 40 km の範囲で行った。

図 3.4.8 より、RTN と比べて TEST のスプレッドが 予報中盤で減少する傾向がある。これは図 3.4.7 でみ た中層以下の風速場を中心としたばらつきが抑制され たことによるものと考えられる。一方で、BSS はわず かながら改善している。このことを実際の事例で確認 する(図 3.4.9)。九州西部にかかる降水について、ア ンサンブル最大降水量⁹の予測は TEST が RTN に比 べて、実況で観測されている降水により近いところで まとまっていることがわかる。

このスプレッド抑制の効果は台風進路予報でも確認 できる(図 3.4.10)。2016 年台風第 10 号に対する RTN の予測では、メンバー間の進路はそろっているものの 進行速度のばらつきが大きい。また 2016 年台風第 16 号に対しては、RTN の予測進路が定まっていない。一 方 TEST では、両事例ともにベストトラック付近にま とまるよう予測が改善している。

初期・側面境界摂動の整合の効果

初期・側面境界摂動の整合を取ったことにより、メ ンバーの予測が改善した事例を図 3.4.11 に示す。なお、 本実験は側面境界摂動の効果を確認するため、RTN の 初期摂動を TEST と同一にして行っている。この事例 は、MSM による寒冷前線の予測が実況より遅れた事例 であり、RTN では全メンバーが実況を捉えていなかっ た。一方 TEST では、同図右に示すように実況に近い メンバーが確認できた。同図には 850 hPa の相当温位 摂動も示しているが、TEST では寒冷前線の前面で正 摂動、後面で負摂動と前線を強化するスケールの大き い摂動が顕著であった。一方、RTN では初期・側面境 界摂動の不連続に起因して摂動の様子が一貫しておら ず、特に寒冷前線後面で顕著である。このため、RTN では TEST と比較して、寒冷前線の東進を早めること ができず、実況を捕捉できなかったと考えられる。

本開発にあたり、この事例のように降水予測を明ら

⁸ 風速の初期スプレッドの減少は、2016 年当時の内挿にお けるバグ修正の影響も含まれている。

⁹ 個々のアンサンブルメンバーの降水量予測から、最大値を 取り出し描画したもの。

図 3.4.9 2016 年 6 月 19 日 03JST の 3 時間降水量 [mm/3h] について、解析雨量(左)、RTN による予測(中央)、TEST による予測(右)。予測についてはアンサンブル最大降水量であり、2016 年 6 月 17 日 18UTC 初期値の FT=24。

図 3.4.10 2016 年台風第 10 号(上段、2016 年 8 月 28 日 18UTC 初期値)及び台風第 16 号(下段、2016 年 9 月 16 日 18UTC 初期値)の進路予報。左列が RTN、右列が TEST。黒線がベストトラック、青線が MSM による予測、 赤線が各メンバー、緑線がアンサンブル平均による予測を 表す。

かに改善する事例を見つけることは容易ではなかった。 このため、確率論的なスコアには摂動間の整合を取っ た効果は小さく、これまで述べてきた予測精度の改善 は主に GSV 変更による効果と考えられる。

また、摂動間の整合を保った現 MEPS による各メン バーの降水量予測において、摂動メンバーがコントロー ルラン¹⁰ の予測精度をどの程度持続して上回るかは河 野ほか (2019) に示されている。その結果は、WEPS を 利用して整合を取っていなかった小野 (2016) と同様に 摂動メンバーがコントロールランを改善する継続時間 は短いことを示している。したがって、降水量につい ては、引き続き個々のメンバーを過度に信頼すること は、利用上危険であることに変わりはない¹¹。

(5) まとめと課題

初期・側面境界摂動の整合をとるため、側面境界摂 動作成に GSV を利用した。その結果、摂動特性の変 化によりアンサンブル予測精度が改善されるとともに、 摂動の不整合が解消され利便性が向上した。2017 年 1 月 11 日 18UTC 初期値より部内試験運用版 MEPS に 導入された。

側面境界摂動に関わる課題として、図 3.4.5 で示し たように GSM の予測誤差の時間発展は月平均でも線 形ではない。一方で、GSV のモデル更新(山口 2017、 2017 年 7 月に MEPS にも適用)以降、異常な非線形 成長をする GSV が見られない(越智、私信)。このた め、非線形モデルによる側面境界摂動の開発を引き続 き行っており、これにより NLM による場の流れを反 映した振幅が得られることが期待される。

また、WEPS から GSV に変更したことにより、側 面境界摂動に水蒸気摂動を利用していない。これによ る悪影響は今回の統計検証からは見られなかった。一 方で、側面境界から流入する水蒸気場の誤差を考慮す ることは降水予測において必要である。したがって、側 面境界摂動における水蒸気摂動を再検討することは重 要な課題である。

3.4.3 予報モデル asuca の導入

(1) asuca 導入による予測特性の変化

数値予報課では 2007 年頃より非静力学モデル asuca(気象庁予報部 2014)の開発を行っており、MSM の予報モデルとして長年利用されてきた気象庁非静力 学モデル (JMA-NHM; 気象庁予報部 2003, 2008、以 下 NHM) に替わり、2017 年 2 月に asuca が導入され るとともに、鉛直層数も 76 に増強された (原 2017)。 これにより、MSM の予測精度が改善された (原・倉橋

¹⁰ 摂動を与えない予報であり、MSM と同一である。

¹¹ 一方、より時空間スケールの小さい現象に着目する場合は 個々のメンバーの予測が有効なことがある。菊池ほか (2019) では短時間の乱気流予測に MEPS の摂動メンバーの予測を 利用している。

図 3.4.11 2016 年 1 月 17 日 18JST の 3 時間降水量 [mm/3h] について、左から解析雨量、MSM の予測、RTN 及び TEST のメンバーの予測と 850 hPa 相当温位摂動。初期時刻 2016 年 1 月 15 日 18UTC における FT=39 を示す。

図 3.4.12 上段:2016 年 8 月 18 日 09JST の 3 時間降水量 [mm/3h]。左から解析雨量、NHM による予測とアンサンブル最 大降水量、及び同 asuca による予測。予測は 2016 年 8 月 16 日 18UTC の FT=30。下段:上段と同じ、ただし 2017 年 1 月 17 日 18UTC 初期値の FT=21。

2017).

一方、当時の MEPS は MSM への asuca 導入後も 引き続き NHM を利用していた。asuca の導入により MSM の予測特性は NHM 利用時と比べて大きく変わっ ている。例えば夏季において、前線などによる収束で 強制力が強い場では、NHM は強い降水を過度に集中 させる傾向があったが、asuca ではこの傾向が緩和され るようになった (原・倉橋 2017)。図 3.4.12 上に NHM と asuca による降水予測の違いが明瞭に表れた事例を 示す。NHM では収束線に沿って、実況と比較して強 い降水が狭い範囲に集中している。一方、asuca では この特性が緩和されていることがわかる。

モデルの特性は個々のメンバーにも反映されるため、 同図に示したアンサンブル最大降水量の予測もNHMと asucaでは大きく異なっている。したがって、MSMに導 入された asuca による予測の不確実性を適切に MEPS で予測するためには、MEPS にも asuca を導入するこ とが急務であったため、2017 年 7 月より導入している。

ここでは asuca 導入による予測精度の変化について、 降水予測特性を中心にまとめる。実験は梅雨期・台風 事例・冬季の 10 事例について行った¹²。検証方法は第 3.4.2 項と同様である。なお、ここでいうモデル変更と は鉛直層の増強も含意する。

(2) 降水検証

決定論的予測特性

前述の通り予報モデル変更による予測特性の変化は 各メンバーにも反映される。図3.4.13 に、モデル変更に よる特性変化が明瞭である冬季の検証結果を示す。原・ 倉橋 (2017) によると、モデル変更による冬季の MSM の特性変化は 10 mm/3h 以下の降水で捕捉率が向上す るが、空振り率も増加する。この傾向は図 3.4.13 のコ ントロールランのバイアススコアでも明瞭であり、捕 捉率・空振り率の増加を反映して、バイアススコアが 増加している。

図 3.4.12 下段に冬季における事例を示す。NHM と 比べて asuca は降水頻度が過多になったが、この傾向 はアンサンブル最大降水量による MEPS の予測でも見 られた。

¹² 梅雨期は 2016 年 6 月 17–26 日、台風事例は 2016 年 8–9 月の 10 初期値について、冬季は 2017 年 1 月 17–26 日であ り、いずれも 18UTC を初期値とした。

図 3.4.13 冬季の事例を対象とした 3 時間降水量に対する閾 値別のスレットスコア(上段)とバイアススコア(下段)。 左列が NHM、右列が asuca に基づく予測。黒線がコント ロールラン、灰点線が各メンバー、赤線がアンサンブル平 均、緑線がアンサンブル最大を表す。

図 3.4.14 3 時間降水量に対する閾値別の BSS(上)、RO-CASS(中)、スプレッド時系列(下)。黒線が NHM ベー スの MEPS、赤線が asuca ベースの MEPS による実験。 左列が梅雨事例、中列が台風事例、右列が冬事例を示す。

図 3.4.15 2016 年 8 月 22 日 15JST の 3 時間降水 量 [mm/3h] について、左から解析雨量、NHM ベースの MEPS による 30 mm/3h 以上の超過確率、同 asuca ベー ス。初期時刻は 2016 年 8 月 20 日 18UTC 初期値の FT=36。

図 3.4.16 台風事例における 40 mm/3h 閾値の確率値別予 測頻度(左)及び確率値別信頼度(右)。緑が NHM ベー ス、赤が asuca ベースの MEPS による予測。

確率論的予測特性

次に 3 時間降水量について、確率論的スコアであ る BSS、ROC 面積スキルスコア (ROCASS) 及びスプ レッドを事例別に図 3.4.14 に示す。

asucaの導入により、3時間降水量のスプレッドは梅 雨・台風ともに減少し、冬季では増加している。梅雨 事例では、前述の通り強制力の強い場の過度な強雨予 測が緩和されるため、強い降水による位置ずれの寄与 がNHMと比べ asucaでは減少したためと考えられる。 台風事例でのスプレッドの減少は、台風中心付近では モデル間で明確な差異が認められなかったが、台風に 巻き込むスパイラルバンド上の降水域について、NHM は asuca より過剰な予測をする傾向が見られ、このた めスプレッドが大きかった可能性が考えられる。一方、 冬季におけるスプレッドの増加は前述の降水頻度増加 が原因である。

確率論的なスコアに着目すると、梅雨事例では BSS 及び ROCASS ともに強雨を除き同程度である。強雨 の若干の悪化は降水頻度が減少したことによるものと 考えられる。また、台風及び冬季の事例では、asucaの 導入により BSS は悪化するが ROCASS は改善すると いった特徴が見られた。以下では、この点についての 調査を進めた結果を示す。なお、台風・冬季ともにス コアの特徴は同様であったため、台風事例による分析 結果を示す。

図 3.4.15 に閾値 30 mm/3h の超過確率予測を示す。 高めの降水確率を示す領域が、NHM より asuca のほ うが広い。実際、台風 10 事例における予測頻度を図 3.4.16 に示すが、高い確率値で asuca のほうが NHM より予測頻度が増加している。その一方、予測頻度が多 くなった確率値において信頼度が悪化している¹³(同 図右)。つまり、asuca 導入後、現象の発生頻度に比べ て、予測頻度が多くなったことを示している。特に冬季 においては、予測頻度過多が全確率値で見られた(図 略)。このため、BSS では台風及び冬季の事例での悪 化につながった。

次に台風事例・冬季における ROCASS の改善につい て考える。ROCASS は、確率予報を利用して損失軽減

¹³ 図 3.4.15 の事例では asuca のほうが若干台風の進行速度 が遅いことも信頼度の悪化の原因となっている。

図 3.4.17 台風事例 40 mm/3h に対する ROC 曲線。黒が NHM ベース、赤が asuca ベースの MEPS による予測。

の効果を計るコストロス解析と密接に結びついたスコ アであり (高野 2002)、各確率値の捕捉率と誤検出率を 基に計算される。図 3.4.17 に閾値 40 mm/3h の ROC 曲線を示す。モデル変更による特性を反映して、asuca では捕捉率が増えた分 ROC 面積が大きくなっている。 一方で、誤検出率が増加しているが、ROC 面積におけ る影響は小さい。このように ROCASS は捕捉率の向 上に敏感なため、改善がみられている。

以上のように、確率論的検証ではスコアによってモデ ル変更の効果に対する善し悪しが変わるものの、asuca による予測特性の変化が適切に MEPS にも反映され ている。

(3) 場の検証

MEPS への asuca 導入にあたり、モデルは変更となっ たが、摂動は変更していない。したがって、場のばら つきに摂動変更ほどの大きな変化は見られなかったが、 モデル特性の変化により asuca 導入後は中層以下でス プレッドの増加が見られた。

図 3.4.18 に Z500 及び 925 hPa の風速のスプレッド と誤差を示す¹⁴。強調すべき点は、これまでの度重な る摂動方法の変更において、改善が見られなかった上 層高度場のアンサンブル平均予報誤差が、asuca の導 入により改善していることである。一方、925 hPa の 風速のように、中層以下ではスプレッドの若干の増加 が各要素とも確認されているが、アンサンブル平均予 報の改善は見られなかった。

この他に地上・高層観測を対象とした検証を行った が、asuca 導入による精度改善は、アンサンブル平均 予報においても確認された(図略)。

図 3.4.18 梅雨事例における Z500[gpm](左)及び 925 hPa の風速 [m/s](右)のアンサンブル平均予報誤差 RMSE と スプレッドの時系列。黒線が NHM ベース、赤線が asuca ベースの MEPS による。

(4) まとめと課題

MEPS への asuca 導入に伴い、降水確率検証では改 善・改悪がともに見られたものの、モデル変更を適切に 反映したものであった。また、高度場についてアンサ ンブル平均予報精度の向上等の改善が見られた。この ため、MSM の不確実性を見積もることを目的に 2017 年 7 月 27 日 18UTC より、MEPS の各予報には、鉛 直層数を 76 に増強した asuca が導入された。

今後は asuca の改良に合わせて、迅速に MEPS に も反映させていくことが現業利用の観点で大切である。 また、現在初期摂動に利用している MSV は NHM ベー スであるため、asuca に基づく MSV の開発を進めて いる(第 3.5 節)。

3.4.4 GSV 初期時刻の変更・21 メンバー化及び 1 日 4 回運用

(1) 本運用に向けて

第 10 世代スーパーコンピュータシステムが 2018 年 6 月 5 日に導入されたことに伴い、MEPS の部内試験 運用は 1 日 1 回 11 メンバーの運用から、本運用時に 予定していた仕様 (石田 2016)と同等な 1 日 4 回 21 メンバーでの運用を開始した。ここでは、本運用時の MEPS プロダクト配信時間の迅速化に向けた GSV の 計算初期時刻変更とその影響について述べるとともに、 メンバー数増強による予測精度への影響を述べる。ま た、1 日 4 回運用となったことで、初期値更新による 不確実性の変化を追いやすくなった。この点について は河野ほか (2019) に解説されている。

(2) GSV 計算と配信時間について

MEPS の予測結果の閲覧はスーパーコンピュータシ ステムの更新前は、初期時刻からおよそ5時間後であっ た。5時間を要する主な理由は、GSV の計算に必要な 全球速報解析の観測の待ち受け時間が2時間20分で あり、MEPS 初期時刻と同じ時刻の全球速報解析の作 成を待って、GSV 計算・摂動計算・アンサンブル予報 を実行していたためである。これでは、MSM の予測結

¹⁴ なお、誤差計算の参照値となる MSM 初期値を作成するメ ソ解析は NHM を利用して作成している。

図 3.4.19 MEPS 初期時刻の 6 時間前の初期値の GSV を 利用する際に検討した方法の概念図。

果から大きく遅れて MEPS が配信されることになり、 MSM の不確実性を把握するためには不便である¹⁵。そ こで MEPS プロダクトの配信を早めるため、MEPS 初 期時刻の 6 時間前の全球解析を利用して GSV 計算を 行うこととした¹⁶。

6 時間前の全球解析から MEPS 用の GSV を計算す る方法としては、以下の 2 通りの方法が考えられた(図 3.4.19)。

- 基本場を 45 時間積分し、FT=6 から 45 の間で接 線形・随伴モデルによる繰り返し演算を行い、評 価時間 39 時間の GSV を算出する。
- 評価時間 45 時間として GSV を算出し、TLM に よる 6 から 45 時間積分の出力を利用する。

前者の方法は、評価時間が変わらないため GSV の性 質を大きく変えない一方、開発コストが大きいことが 想定された。後者の方法は GSV の出力を利用するだけ で済むため開発コストが小さい。一方、GSV は MEPS 初期時刻より 6 時間前から TLM により積分されたも のを利用するため、摂動成分の寄与が従来と異なり、予 測特性の変化が想定された。

結局、当時は新スーパーコンピュータシステムへの 移植期限が迫っていたため、後者の方法による作業を 行い、予測精度の悪化が見られなかったため導入に至っ た。なお、GSV の初期時刻・評価時間の変更以外、摂 動作成法は従来と同じである。

(3) 統計検証

GSV の初期時刻・評価時間の変更及び 21 メンバー 化による特性変化を調査した。GSV 変更前の実験を RTN、GSV 変更後を TEST11、さらにメンバー数を 21 に増強した実験を TEST21 と表す。ここでも梅雨

図 3.4.20 梅雨事例(上)及び冬季(下)における 500 hPa の気温 [K](左)、Z500[gpm](中央)及び風速 [m/s](右) のアンサンブル平均予報誤差 RMSE とスプレッドの時系 列。黒線が RTN、赤線が TEST11、青線が TEST21 を 表す。

図 3.4.21 3 時間降水量に対する閾値別の BSS(上)、スプ レッド時系列(下)。黒線が RTN、赤線が TEST11、青線 が TEST21 を表す。左から梅雨・台風事例・冬季の検証 結果。

期・台風事例・冬季のそれぞれについて 5 事例ずつ実 験を行った結果を示す¹⁷。検証方法は第 3.4.2 項と同様 である。

図 3.4.20 に 500 hPa の MSM 初期値を参照値とし た予報誤差及びスプレッドを示す。梅雨事例では(同 図上)、気温及び Z500 のスプレッドについて、GSV の変更前までは予報初期の過大とその後の減少という、 図 3.4.6 及び図 3.4.18 に見られた不自然な変化が改善 されている。一方で、風速については初期時刻からス プレッドが増加している。このことは MEPS 初期時刻 の 6 時間前から TLM で積分した摂動に変更したため である。酒井 (2009) では乾燥 SV の特性として、初期 時刻のエネルギーの大部分を占める気温摂動に関係す

¹⁵ 現在の MSM 及び MEPS の配信時間は片山 (2019) を参 照。

¹⁶ 側面境界値は 6 時間前の初期値の GSM に基づいているため、GSV の初期時刻を 6 時間前にすることにより、側面境界値と GSV の基本場の初期時刻が一致することになる。ただし、両者を作成するモデルと分解能は異なっている。

¹⁷ 梅雨期は 2017 年 6 月、台風事例は 2017 年 9 月の台風 18 号から、冬季は 2017 年 12 月 24-28 日とし、いずれも 18UTC を初期値とした。今回の TEST21 と同等である現 MEPS の長期間の検証結果については河野ほか (2019) を参 照。

図 3.4.22 上段左から、2017 年 9 月 18 日 03JST の速報天気図及び同時刻の 3 時間降水量 [mm/3h] について、解析雨量と MSM 予測。下段は左から RTN、TEST11 及び TEST21 による 3 時間降水量のスプレッド。予測は全て 2017 年 9 月 16 日 18UTC 初期値の FT=24。破線については本文参照。

る位置エネルギーは、評価時刻までの間に風速摂動に 関係する運動エネルギーに変換されることを示してい る。したがって、従来よりも6時間長くTLMによっ て積分されたGSVをMEPS 摂動に利用することは、 従来と比較して風速成分の寄与が大きく、気温成分の 寄与が相対的に小さくなると考えられる。したがって、 図 3.4.20 のようなスプレッドの特性変化が現れたと推 測する。

次に冬季の事例を同図下に示す。冬季は特に温帯低 気圧が発達しながら日本付近を通過するため、位置エネ ルギーから運動エネルギーへの変換効率が高く、GSV に起因する摂動の風速成分が増加し、過度なスプレッド に反映されていると考えられる。なお、これより下層で も全般にスプレッドが増加する特徴が見られた(図略)。

アンサンブルメンバー数の増強の観点からもスプレッドの増加は確認できるが、GSVの変更ほどの影響は見られない。また同図より、アンサンブル平均予報誤差への今回の変更の影響は小さいこともわかる。地上・高層検証においても、若干の改善がみられたが、効果は限定的だった(図略)。

3 時間降水量について、スプレッドと降水確率検証 の結果を図 3.4.21 に示す。GSV の変更及びメンバー数 の増強、それぞれによりスプレッドが増えており、BSS が改善していることがわかる。

図 3.4.22 に 2017 年台風第 18 号の降水予測を示す。

台風の中心位置について、MSM は実況より西側を予 想しており、強雨域は台風中心の北西側を中心に予測 している。また、20 mm/3h 以上の降水域は実況より 狭い予測となっている。RTN による降水スプレッドの 大きな領域は能登半島の北西沖に広がるがその東側で は小さく、実況の強雨ポテンシャルを十分に表現でき ていない。一方 TEST11 では、スプレッドの大きな領 域が RTN より東に拡大している。

またメンバー数増強の効果について、TEST11 と TEST21 を比較する。MSM が 50 mm/3h 以上を予 測している近傍の赤破線内ではスプレッドの明瞭な増 加が確認できる。これはメンバーが増えたことによる 新たな強雨シナリオの追加を表す。一方で、台風北側 の白破線内ではスプレッドの減少が見られる。これは メンバー数が増えたことにより、11 メンバー時の少な いサンプル数による過大な分散が抑制されたためと考 えられる。

(4) まとめと課題

GSV の初期時刻・評価時間の変更により、冬季を中 心とした MEPS スプレッドの過大が見られたものの、 降水確率精度の改善と予測資料配信の迅速化による利 便性向上のため、本変更は 2018 年 6 月 5 日 00UTC より、21 メンバー化とともに導入された。また、1 日 4 回 (00, 06, 12, 18UTC)の運用を開始した。なお、 現業運用は 2019 年 6 月 27 日 00UTC から開始して おり、本稿執筆時(2019 年 12 月)に至るまで MEPS の仕様に変更は無い。

本変更により、MEPS の初期の過大な気温のスプレッドが改善されたが、冬季ではスプレッドが過大となった。原因として、側面境界値に含まれる誤差の要素間のバランスが、側面境界摂動の要素間のバランスと一致していないことが考えられる。第3.3節で述べたように、エネルギーノルムの評価には、重み係数を導入することで各要素間のバランスを考慮することができる。したがって、重み係数により、GSV の風速成分と気温成分を、側面境界値の誤差のバランスに近づくよう調整することが必要である。

また、第3.4.2 項で述べた側面境界摂動の振幅調整の 方法にも任意性があるとともに、TLM 積分により振 幅が一定の割合で増加していることも過大なスプレッ ドの要因と考えられる。適切な振幅調整方法の検討と NLM 積分による側面境界摂動の作成も今後の課題で ある。

参考文献

- 原旅人,2017:メソ数値予報システムの改良の概要.平成 29年度数値予報研修テキスト,気象庁予報部,42-47.
- 原旅人, 倉橋永, 2017: メソ数値予報システムの特性の 変化. 平成 29 年度数値予報研修テキスト, 気象庁予 報部, 48-55.
- 石田純一, 2016: はじめに. 数値予報課報告・別冊第 62 号, 気象庁予報部, 93-94.
- 片山桂一, 2019: プロダクトの送信時刻. 令和元年度数 値予報研修テキスト, 気象庁予報部, 143.
- 河野耕平,氏家将志,國井勝,西本秀祐,2019:メソアン サンブル予報システム.令和元年度数値予報研修テ キスト,気象庁予報部,1-15.
- 菊池亮太, 松野賀宣, 本山昇, 又吉直樹, 工藤淳, 瀬之口 敦, 2019: メソアンサンブル予報とフライトデータ を用いた風況場ナウキャスティングの検討. 日本気 象学会 2019 秋季大会講演予稿集, A157.
- 気象庁予報部, 2003: 気象庁非静力学モデル. 数値予報 課報告・別冊第 49 号, 気象庁予報部, 194 pp.
- 気象庁予報部,2008: 気象庁非静力学モデル II~現業 利用の開始とその後の発展~.数値予報課報告・別 冊第54号,気象庁予報部,265 pp.
- 気象庁予報部, 2014: 次世代非静力学モデル asuca. 数 値予報課報告・別冊第60号, 気象庁予報部, 151 pp.
- 小野耕介, 2010: メソ特異ベクトル法. 数値予報課報告・ 別冊第 56 号, 気象庁予報部, 93-104.
- 小野耕介, 2016: メソアンサンブル予報システムの開発 状況. 数値予報課報告・別冊第 62 号, 気象庁予報部, 100–113.
- Ono, K., 2017: Consistent Initial and Lateral Bound-

ary Perturbations in Mesoscale Ensemble Prediction System at JMA. *CAS/JSC WGNE*, *Res. Activ. Atmos. Oceanic. Modell.*, **41**, 5.16–5.17.

- Saito, K., M. Hara, M. Kunii, H. Seko, and M. Yamaguchi, 2011: Comparison of initial perturbation methods for the mesoscale ensemble prediction system of the meteorological research institute for the WWRP Beijing 2008 Olympics research and development project (B08RDP). *Tellus*, **63A**, 445–467.
- 酒井亮太, 2009:初期摂動作成手法.数値予報課報告・ 別冊第55号,気象庁予報部,117-125.
- 高野清治, 2002: アンサンブル予報の利用技術. 気象研 究ノート 201 号, 73–103.
- 山口春季,2011:週間アンサンブル予報における初期摂 動作成手法の改良. 平成23年度数値予報研修テキス ト,気象庁予報部,20-24.
- 山口春季,2017: 全球アンサンブル予報システムの導入. 平成 29 年度数値予報研修テキスト,気象庁予報部,35-41.
- Yamaguchi, M., R. Sakai, M. Kyoda, T. Komori, and T. Kadowaki, 2009: Typhoon Ensemble Prediction System developed at the Japan Meteorological Agency. Mon. Wea. Rev., 137, 2592–2604.

3.5.1 はじめに

2018年10月、気象庁は防災分野を始め社会におけ る情報サービス基盤である数値予報の技術開発を強力 かつ着実に推進していくため、「2030年に向けた数値 予報技術開発重点計画」(以下、「重点計画」;気象庁 2018)を策定した。ここで掲げられた4つの重点目標 のうち「豪雨防災」と「台風防災」では、線状降水帯 の発生・停滞、および台風や前線に伴う大雨などの予 測精度を向上し、これら顕著現象の発生する可能性を 高い確度で予測することで、早期の警戒と避難を可能 にすることを目指している。近年、線状降水帯や台風 などによる集中豪雨は毎年のように日本各地に甚大な 災害をもたらし、社会・経済へ大きな影響を与えてい る。この現状を鑑みると、今後の防災情報の信頼性の 向上、災害軽減を実現するためには、顕著現象の予測 精度向上は喫緊の課題であると言える。

線状降水帯の発生・停滞などの予測精度の向上には、 線状降水帯が発生する環境場を捉えた高精度な初期値 と境界値、個々の積乱雲を表現する高解像度かつ精緻 な雲解像モデルが必要となる。しかし、線状降水帯を 構成する積乱雲に伴う対流運動(積雲対流)は、その初 期値鋭敏性のために予測可能性が著しく低い(Zhang et al. 2003; Zhang et al. 2007; Hohenegger and Schär 2007b; Selz and Craig 2015; Sun and Zhang 2016 な ど) ことが指摘されており、特に Selz and Craig (2015) では、雲解像モデルを用いたシミュレーションにおいて、 小さな振幅の音波でさえも10時間後に全く異なる結果 をもたらすに十分であることが述べられている。雲解像 モデルの初期値精度向上については、先端的データ同化 システムの開発や観測データの高度利用など、精力的な 研究が継続されている (Kawabata et al. 2007; Johnson et al. 2015; Yussouf et al. 2015; Miyoshi et al. 2016; Poterjoy et al. 2017; Degelia et al. 2019 など) ものの、対流発生の場所やタイミング、持続時間を正 確に予測することには依然として困難がある。

この状況は、台風や前線による大雨、強風、高潮、波 浪などの予測についても同様である。海上の台風や前 線の解析に必要となる観測データは十分でなく初期値 の不確実性が大きいことに加え、これらの現象が包含 するメソスケール現象は、先述の通り潜在的な予測可 能性が低い。特に台風予測においては、台風内部の積雲 対流活動が予測可能性に及ぼす影響は大きく、理想的 な環境下においても台風の軸対称構造の予測可能性を 2日以下に制限するといった報告がある (Hakim 2013; Brown and Hakim 2013)。また Emanuel and Zhang (2016, 2017) は雲解像モデルを用いて、台風の強度予 測に対する風速場および内部コア域の水蒸気場の初期

数値予報モデルの高解像度化、物理過程の高度化に より、初期値鋭敏性を有するメソγスケールの顕著現 象、もしくは台風などが内包するメソスケールプロセ スが表現可能になるにつれ、決定論的予測の精度向上 に加えて領域アンサンブル予報システム(領域 EPS) による予測不確実性の評価が、災害軽減に向けた効率 的なリスクマネジメントという点で有用となってくる。 現象の時空間スケールを考慮すると、線状降水帯の発 生・停滞の予測には雲解像モデルによる EPS が、台風 や前線による大雨、強風、高潮、波浪などの予測に対 してはメソスケールモデルによる EPS が、それぞれの 目的に適うと考えられる。前者の雲解像 EPS について は既に現業運用を行っている気象機関もあるが、気象 庁においては初の試みとなるため、初期摂動の作成手 法も含めて新規に開発を行う必要がある。後者につい ては MEPS の拡張利用が妥当である。現状の運用形態 では予報時間が39時間であり、台風や前線に伴う顕著 現象予測には十分とは言えないため、将来的な MSM の予報時間延長に合わせた改良を実施することで、数 日前からの広域避難に関する防災行動に資する情報提 供が可能となる。

上述した背景を踏まえ、以降は「豪雨防災」および 「台風防災」目標の達成に必要な課題のうちアンサンブ ル手法の高度化に焦点を当てつつ、概ね3~5年程度の 短期課題、それ以上の期間を要すると想定される中長 期課題に分けて今後の展望を述べる。ただし、重点目 標の達成にはアンサンブル手法の高度化のみでは十分 ではなく、データ同化、数値予報モデルとの相乗的な 精度向上が必要であることは言うまでもない。

3.5.2 短期課題

概ね 3~5 年程度の短期的な課題としては、現 MEPS の高度化が挙げられる。初期摂動作成手法の改良やモ デルアンサンブル手法の導入により、これまでより確 度の高い情報提供を目指して開発に取り組んでいく必 要がある。

(1) 初期摂動の改良

初期摂動の改良としてはまず、現 MEPS に見られる メソ SV の局在化・偏在化の問題に対処する必要があ る。小野 (2010) で指摘されているように、特に水平格 子間隔 40 km のメソ SV は、ターゲット領域内のある ひとつの擾乱に対して感度をもつ傾向がある。そのた め、例えば北日本に発達した低気圧がある場合でも、 日本の南海上において対流不安定に伴う誤差成長のみ を捉えてしまい²、日本付近の顕著現象の予測不確実性 を適切に表現できなくなってしまうことがある。これ は評価時間におけるターゲット領域を、比較的広い領

値鋭敏性を示している。

² 高解像度モデルでは対流不安定に伴う誤差成長が非常に大きいため、大きい特異値をもつ SV から優先的に算出する現在の手法では、対流不安定に対応した SV が求まりやすい。

¹ 國井 勝

域に固定(表3.3.2)していることに起因している。日本における顕著現象は、南西海上からの水蒸気流入や南方からの台風の北上などの影響が大きく、想定すべき現象が多岐に渡るため、静的なターゲット領域は広めに設定せざるを得ない。しかし、例えば前の初期時刻の MEPS の結果からアンサンブルスプレッドの大きい領域(不確実性の大きい領域)内で誤差を評価する、または、特に夏季において日本から遠く成層安定度が高い領域をターゲット域から除くといった動的なターゲット領域設定手法を導入することで、より効果的なSV の利用が可能になると思われる。

また摂動の偏在化を解消する別のアプローチとして、 SV 算出時に複数のターゲット領域を同時に指定する手 法 (Ono 2020) が開発されている。通常の SV 法では、 ターゲット領域への射影演算子を含む行列に対して固 有値問題を解くことになるため、ターゲット領域を変 更した場合はそれに対応した SV 計算(摂動予報モデ ルと随伴モデルによる時間積分の繰り返し演算を含む) を別途行う必要があり、多大な追加計算コストを要す ることになる。しかし Ono (2020) では、Lanczos 法に おける部分空間拡張の際の摂動の正規直交化と3 重対 角行列の固有値解法のみ個別に行い、摂動予報モデル と随伴モデルによる時間積分を共通化することで、複 数のターゲット領域に対応した SV をはるかに効率的 に算出できる。個々のターゲット領域の処理に必要な 計算コストは時間積分の繰り返し演算に比べると無視 できる程度のものなので、トータルの計算コストは従 来とほぼ変わらない。この手法により、例えば計算領 域の南北で分割した2つのターゲット領域を用いるこ とで、1 つの SV で南海上の対流不安定に伴う予測不 確実性と、北日本の低気圧に伴う予測不確実性を同時 に捕捉する摂動が得られる可能性がある。

さらに初期摂動作成手法の改良として、asuca に基 づく SV 法 (asuca-SV) の導入が挙げられる。現在の MEPS で用いられているメソ SV の計算は、JMA-NHM に基づく摂動予報モデルと随伴モデルを用いている。 MEPS の各アンサンブルメンバーで用いられる予報モ デルは asuca であり、また MSM(MEPS のコントロー ルラン)の初期値を与えるメソ解析も、2020年3月に asuca を基にした 4 次元変分法 (asuca-4DVar) に更新 される予定である。これ以降は、初期値作成を含め予 報と SV 計算がそれぞれ完全に別のモデルで行われる こととなり、現状のメソ SV が MEPS にとっての最適 な成長モードではなくなる可能性がある。この状況を 踏まえ数値予報課では現在、asuca 変分法同化システ ムで利用される摂動予報モデル、随伴モデル³を用いた asuca-SV の開発を行っている。現状では、基本的な実 装方法は従来のものに揃えているため算出される SV の

特性は類似するが、Lanczos 法を並列化したことにより ロードインバランス⁴が若干改善した。また、摂動予報 モデルおよび随伴モデルが2次元分割に対応したこと に加え計算安定性が向上したことから、計算時間が大 幅に短縮され、また比較的長い評価時間でも正常にSV が算出できることを確認している。今後は、MEPSの 初期摂動としての asuca-SV の特性を評価しつつ、摂動 の偏在化の問題に対処するため先述した新規開発項目 の導入を目指すと共に、現業予報作業における MEPS へのニーズを探りながら、評価時間やターゲット域の 設定等も含めた最適化を継続する必要がある。

(2) モデルアンサンブル手法の導入

MEPS において、MSM の有する時間発展の不完全 性に起因する予測不確実性を考慮することも優先課題 として挙げられる。MEPS で捕捉すべき MSM の不確 実性は本来、初期値、境界値のほか、数値予報モデル の不確実性にも帰せられる。MEPS では初期摂動、側 面境界摂動のみで MSM の不確実性を表現するシステ ムとなっているため、本質的にアンサンブルスプレッ ドは過小評価傾向5であり、予測誤差程度のアンサンブ ルスプレッドを確保するために、しばしば過大な初期・ 側面境界摂動が用いられることがある。また、全アン サンブルメンバーが MSM と同じ系統誤差をもつため、 MEPS で MSM の系統誤差が軽減されることは見込め ない。実際、MSM の地表面付近の薄い冷気層に関連 して形成される温度傾度帯に関する系統誤差や、低気 圧を過発達させる系統誤差が、MEPS では低減されな いことが報告されている (河野ほか 2019)。このような アンサンブルスプレッドの過小評価傾向の改善、およ び数値予報モデルの系統誤差の軽減には、初期値、側 面境界値に加え、数値予報モデルの不確実性も表現し た EPS を構築することが有効であると考えられる。

EPS で数値予報モデルの不確実性を考慮する手法と して、モデルアンサンブル手法がある。これには、アン サンブルメンバー間で異なる数値予報モデルを用いるマ ルチモデル法 (Hagedorn et al. 2005; Candille 2009)、 物理過程における定数やパラメータを変更するマルチ パラメータ法 (Hacker et al. 2011a)、特定の物理過程 において異なるパラメタリゼーションを用いるマルチ パラメタリゼーション法 (Hacker et al. 2011b; Berner et al. 2011) がある。この他、確率的に物理過程の不確 実性を扱う手法として、SPPT 法 (Stochastically Perturbed Parametrization Tendencies scheme; Buizza et al. 1999; Palmer et al. 2009)、SPP 法 (Stochastically Perturbed Parametrizations scheme; Ollinaho et al. 2017)、SKEB 法 (Stochastic Kinetic Energy

³ asuca 変分法同化システムの開発については (幾田 2014)、 asuca の摂動予報モデル、随伴モデルの開発については (小 野 2014) に詳しい。

⁴ 並列化した各プロセスに割り当てられた処理量が均等でな く、実行時間にばらつきが生じる状況のこと。

⁵ Nutter et al. (2004) は領域 EPS において、初期摂動に加 え側面境界摂動を導入しても、アンサンブルスプレッドの過 小評価傾向は解消しないことを示している。

Backscatter scheme; Shutts 2005; Berner et al. 2009)、 RP 法 (Random Parameter scheme; Bowler et al. 2008) がある。複数のモデルの開発・運用に多大なコ ストのかかるマルチモデル法以外は、主要な数値予報 センターで現業運用実績がある。それぞれの手法につ いては上に挙げた先行研究、および経田 (2006)、 米 原 (2009)、山口 (2013) に詳しいので、適宜参照され たい。

MEPS では本運用前の開発段階において、RP 法お よび SPPT 法による基礎調査を行っている (Ono 2012; 小野 2016)。RP 法では、確率変数を用いて JMA-NHM ⁶の Kain-Fritsch スキームのトリガー関数に関するパ ラメータを変化させることで、降水域でアンサンブル スプレッドが増加することを確認したが、そのインパ クトは限定的であった。一方 SPPT 法は、境界層、放 射、雲物理、積雲対流の各過程の時間変化率に摂動を 与える形で実装された。総じてアンサンブル平均や降 水検証に正のインパクトが見られたものの、気温のみ 負バイアスが生じ、アンサンブル平均も悪化した。以 上の経緯より、MEPS への導入は現在のところ見送ら れている。

しかし、領域 EPS へのモデルアンサンブル手法の有 効性が多数の先行研究で示されていることに加え、現 MEPS で MSM の不確実性を初期値と側面境界値の摂 動で表現することによって生じ得る過剰な摂動がアン サンブル予報の安定性に支障を及ぼす可能性があるこ とを考慮すると、MEPS へのモデルアンサンブル手法 の導入は妥当なアプローチと言える。MEPS へのモデ ルアンサンブル手法の導入は、まずは全球 EPS、およ び諸外国の領域 EPS で利用実績のある SPPT 法の導 入を再検討することから始めるのが良いだろう。SPPT 法は導入が比較的簡便であり、確率予測精度の改善に 効果的 (Leutbecher et al. 2017; Palmer 2018) といっ た利点もある。ただし、考慮する物理過程によっては 系統誤差が付加される場合もある⁷ため、SPPT 法の導 入で系統誤差の軽減が見られても、数値予報モデルが 有する元々の系統誤差と打ち消し合った結果である可 能性がある (Bouttier et al. 2012; McCabe et al. 2016) ことに注意が必要である。その後、NCEPの SREFの ように複数のモデルアンサンブル手法を組み合わせる 選択もある。実際、Berner et al. (2015) はいくつかの モデルアンサンブル手法の精度比較を行い、単一の手 法よりも複数の手法を組み合わせることで、確率予報 の精度がより向上することを示している。これは、数 値予報モデルの不確実性は、単一の手法で表現できる ほど単純なものではないことを示唆している。

3.5.3 中長期課題

より長期的な課題としては、MEPSの予報時間延長 を含む高度化、および局地モデル (LFM) に基づく局 地アンサンブル予報システム (LEPS)の開発が挙げら れる。MEPSの改良と LEPSの新規開発により、台風 や前線、線状降水帯の発生・停滞に伴う集中豪雨の可 能性を、高い確度でシームレスに予測することを目標 とした開発に取り組む必要がある。

(1) メソアンサンブル予報システムの予報時間の延長

台風や前線に伴う大雨による大規模風水害や高潮災 害の防災・減災には、数日前からの広域避難に関する 防災活動の実施が望まれる。しかし現在の MEPS の予 報時間は39時間であるため、利用できる情報には限り がある。数日前からの広域避難情報の提供を可能にす るには MEPS の予報時間の延長が必要となるが、単純 なシステムの変更のみで実現できるとは言い難い。一 般的に、予報時間の延長に伴って増幅する予測誤差を 捕捉するため、より多くのアンサンブルメンバーが必 要となることが想定される。また、特に台風予測に対 して影響が大きい、海面水温 (SST) などの下部境界の 不確実性についても考慮する必要性が生じる。さらに、 側面境界摂動についても、現 MEPS における作成手法 では延長できる予報時間に限界がある。以下、MEPS の予報時間延長のために必要と想定される改良項目に ついて考察する。

まず、予報時間延長時のアンサンブルメンバー増強 の必要性について述べる。EPS におけるアンサンブル メンバー数は、実行時に必要とされる計算資源量に直 結するため、数値予報モデルの水平格子間隔と合わせ て慎重に検討すべき項目である。一般に EPS は、多く のアンサンブルメンバー数を有することで確率予測の 精度が向上するが、メンバー数の増加に伴いそれに見 合うゲインは逓減し、やがては飽和点⁸に達する。飽和 点付近のメンバー数を採用することが計算コストの観 点から効率的な EPS といえるが、この飽和点は予報時 間や数値予報モデルの水平格子間隔に依存する。Clark et al. (2011)の調査では、水平格子間隔4km、予報時 間 30 時間の領域 EPS による確率降水予測において、 飽和点に達するメンバー数は10であった⁹が、予報時 間を延長、または水平分解能を増強した場合は、飽和 点に達するにはより多くのメンバー数を要することを 示した。これは、予報時間が長くなるほど、また高分 解能になるにつれ予測誤差の確率密度関数 (PDF) の広 がりが大きくなるため、これを捕捉するためにより多 くのメンバー数が必要となることを示唆している。ま

⁶ 本調査の実施時、MEPS の予報モデルは JMA-NHM で あった。

⁷ 先述した通り、小野 (2016) では SPPT 法の導入により気 温の負バイアスが発現したことを報告している。

⁸ Clark et al. (2011) などでは "diminishing returns" と呼 ばれている。

⁹ 飽和点に達するメンバー数は EPS の仕様や対象とする気 象現象に強く依存する。MEPS では 11 メンバーから 21 メン バーに増強したことで、降水確率予測が明瞭に改善した(第 3.4.4 項)。

たこの結果は、対象とする現象の予測不確実性が大き くなるほど、より多くのメンバーによる EPS が有効に なることを述べた Richardson (2001) に整合する。し たがって、MEPS における予報時間の延長の際には、 メンバー数の増強のインパクトについて調査を行い、 予報時間に応じた適切な PDF の表現を目指す必要が ある。

また MEPS の予報時間の延長に伴い、下部境界値の 不確実性の考慮についても検討すべき課題となる。現 在の MEPS では下部境界値は全メンバーで同一となっ ているため、特に下層の気温場でアンサンブルスプレッ ドの過小評価傾向が顕著となる (河野ほか 2019)。Saito et al. (2010) では、地上気温のアンサンブルスプレッド の過小評価傾向を改善するため、統計的関係を用いて 大気最下層気温の摂動に応じた摂動を土壌温度にも与 えた。期待通りスプレッドの増加は確認できたものの、 初期摂動の構造上、大気最下層気温の摂動が小さかっ たため、その効果は限定的であった。一方で陸上にお ける地上要素の確率予測の改善には、モデルアンサン ブル手法が有効との報告がある (Lavaysse et al. 2013; Bouttier et al. 2016)。Lavaysse et al. (2013)の実験 では、地上要素パラメータ(植生比率や葉面積指数、 地表面アルベドなど)と土壌水分や SST などの下部 境界条件に摂動を付加することで、地上物理量のアン サンブルスプレッドの過小評価が大幅に改善した。個 別のインパクトとしては、地上の気温や風の予測には 土壌水分と地表面アルベドの影響が大きく、また SST は地上要素に加えて降水予測にもインパクトを与える ことが示されている。SST は海面における顕熱・潜熱 フラックスを通じて台風予測にも大きな影響を与える ため、SST の不確実性の考慮は海上における下層物理 量のアンサンブルスプレッドの過小評価の改善 (Kunii and Miyoshi 2012) にも寄与し、台風予測誤差の適切 な評価に繋がることが期待される。このように下部境 界値の不確実性は、MSM が有する不確実性の要因の ひとつであり、予報時間延長に伴いその影響はより顕 在化するものと思われる。以上の背景から、MEPS の 予報時間延長に伴う下部境界摂動の不確実性の考慮に 関しては、モデルアンサンブル手法により地上要素の 予測誤差表現の適正化を図り、また SST の不確実性に ついては全球 EPS に導入されている手法 (太田・堀田 2016) 等を参考に開発を進めることにしたい。

さらに、側面境界摂動の予報時間延長への対応も必要となる。MEPSでは初期摂動と境界摂動の一貫性を 保持するため、GSVを初期摂動に、またこれを線形成 長させたものを側面境界摂動に利用している。そのた め、GSVは初期摂動と側面境界摂動の双方の要求を満 たす必要があり、この両立は予報時間を延長するにつ れ困難となることが想定される。初期摂動としてGSV に期待することは、摂動の局在化の解消である。メソ SV は局在化傾向を有するため、単独で初期値の不確実 性を表現するには不十分であることは第3.3.2項で述 べた。このため、GSV を初期摂動に加えることで総観 スケールの不確実性も合わせて表現し、局在化を解消 している。側面境界摂動としては、側面境界値を与え る GSM の不確実性を表現することが求められる。こ れは MEPS の予報時間内を対象とすれば十分であり、 現状では GSV の評価時刻は MEPS の予報終了時刻に 合わせてある。この状況で予報時間を延長した場合、 現在の39時間の予報時間に最適化された側面境界摂動 は、それ以降で成長する保証はなく、また予報領域外 へ流出してしまうことで、予報後半のアンサンブルス プレッドの過小評価を招く恐れがある。一方で、GSV の評価時間も合わせて延長すると、初期時刻における GSV がターゲット領域である日本周辺域からさらに風 上側(多くの場合は日本の西方)に分布するようにな り、MSM 領域内での初期摂動としての有用性を失う。 この状況を改善するには、メソ SV が水平格子間隔、評 価時間の異なる摂動を算出していることに倣い、初期 摂動もしくは側面境界摂動としての利用に適した複数 の GSV を用いることが挙げられる。しかしこれは、シ ステム構成が複雑になることに加え、以降の MEPS の 仕様変更の度に見直しを迫られる可能性が高く、有意 義とは言い難い。他の手法としては、全球モデルによ る EPS からのダウンスケールがある。これは領域 EPS を運用する現業数値センターでの利用実績があること に加え、独自に摂動を算出する必要がなく実装が容易 であるといったメリットがある。また、全球 EPS の初 期摂動には LETKF による解析アンサンブル摂動も併 用されているため、初期時刻において MSM 領域内で 摂動が算出されることが保証される。ただし全球 EPS の摂動成分は、MEPS が対象とする領域・予報時間の 範囲内で成長する保証はないことに加え、領域 EPS は 側面境界摂動の影響を受けやすい (Weidle et al. 2016) ため、全球 EPS のアップデートにより MEPS の特性 が大きく変化する可能性があることに留意する必要が ある。今後は上記の2つの手法、またそれ以外の選択 肢も含めて、MEPS の予報時間延長に向けた最適な初 期摂動・側面境界摂動の構成について検討を進める必 要がある。

(2) 局地アンサンブル予報システムの構築

線状降水帯の発生、停滞の予測には LFM の高度化が 重要であり、またその不確実性を考慮するには LEPS の構築が不可欠となる。ただし、先に述べたように対 流スケールの顕著現象の予測可能性は低く、それを対 象とする雲解像 EPS においては、特に初期摂動作成 手法において従来と同じアプローチが通用する保証は ない。Hohenegger and Schär (2007a) は、水平格子間 隔 2.2 km の領域モデルでは、初期摂動の時間発展が 線形と見なせる時間スケールが 1.5 時間程度となるこ とを示した。これは、初期摂動作成に SV 法を用いた

場合、実用上必要な評価時間の設定下では、非線形モ デルで成長するモードを適切に捕捉できない可能性が あることを示唆している。このような背景から、雲解 像 EPS は数値予報モデルの力学的拘束に基づく SV 法 や Breeding 法にとって未知の領域 (Hohenegger et al. 2008) であり、実際に応用例も多くはない。現在、雲 解像 EPS で多く利用されている初期摂動作成手法とし ては、低解像度の親 EPS からのダウンスケールが挙げ られる。実装が簡便であり独自に摂動を計算する必要 がないというメリットがある一方で、初期時刻におい ては領域 EPS の分解能に比べ大きいスケールの摂動の みしか考慮されないため、モデルの分解能に応じた現 実的な摂動となるまで数時間のスピンアップ期間を要 してしまう。初期摂動の影響が支配的な短時間予報に とっては、モデルの分解能に応じた初期摂動作成手法 を用いる方が望ましく、LEPS に適した初期摂動作成 手法について検討する必要がある。

雲解像 EPS での初期摂動作成は未だ研究段階であ り、ダウンスケール手法の他にはデータ同化アンサン ブル (EDA; Buizza et al. 2008; Isaksen et al. 2010) な どが試行されている。EDA は、観測データの誤差や数 値予報モデルの不確実性といったデータ同化システム に内在する不確実性を考慮し、複数のデータ同化を実 行することで、解析誤差を反映したアンサンブル摂動 を生成する手法である¹⁰。各アンサンブルにおいて、観 測データには誤差統計に基づいたランダム誤差が付加 され、また数値予報モデルの不確実性を考慮するため に SKEB 法などが用いられる。EDA によって得られる アンサンブル摂動は解析誤差を反映したものであるた め、初期摂動として用いることで予測誤差の正確な見 積もりが期待できる。また、EDA をアンサンブル予報 と同じ分解能で行った場合、アンサンブル摂動は数値 予報モデルで解像できる全てのスケールの不確実性を 含んでおり、先述したスピンアップの問題を回避する ことが可能となる (Raynaud and Bouttier 2016)。さ らに EDA は、SV 法や Breeding 法のように成長率の 異なる摂動成分を解析値に加減するのではなく、デー タ同化システムの不確実性を考慮した複数の解析値を 作成するため、従来手法に比べて全てのメンバーの蓋 然性が等しく、またメンバー間の多様性が増すことが 期待される。これらは EPS における真の予測不確実 性の表現に寄与するものであり、また応用面において はシナリオ予測への適性を示すものである。EDA に よるアンサンブル摂動は SV に比べ、局在化傾向は緩 和され水平分布が広がる一方でスケール自体は小さく なること、また摂動の成長率が小さく予測誤差が過小 評価されることでアンサンブル予報としての性能は低 下する(ただし、EDA と SV 法を併用することで性能 は改善に転じる)ことが報告されており (Buizza et al. 2008)、EPS の初期摂動として EDA の単独利用は難し いことが示唆される。最近の研究では、Keresturi et al. (2019)が、雲解像 EPS の初期摂動を、3次元変分法を 基にした EDA による摂動と低解像度 EPS による総観 スケールの摂動をブレンドすることにより作成する手 法を開発し、その有用性を示している。今後の研究開 発の進展にも依るが、EDA は将来的な雲解像 EPS の 有力な初期摂動作成手法のひとつと言えるだろう。

数値予報課では現在、LEPS の仕様のうち水平格子 間隔とアンサンブルメンバー数についての検討を開始 した¹¹。これは利用可能な計算機資源を基に、LEPS の 目的、および予報作業への影響を勘案しつつ決定され るべきものであり、主に

- 決定論的予測と同じ仕様でアンサンブル予報を実行することで、それに対する適切な信頼度、不確 実性等の情報提供を優先する構成(高解像度少数 メンバー)。
- 決定論的予測と予測特性に大きな差異が生じない 程度の低分解能モデルを利用することで多数メン バーを確保し、確率情報・信頼度情報の高質化を 優先する構成(低解像度多数メンバー)。

の選択となる。現状では多数メンバー構成による予測誤 差の適切な捕捉の方が有用だと想定されることから、後 者の選択肢が有力となっているものの、利用可能な計算 機資源が確定し仕様が具体化した際には、Clark et al. (2011)の議論も踏まえ検討する必要がある。 雲解像 EPS における数値予報モデルの水平格子間隔とアンサンブ ルメンバー数については、UKMO の MOGREPS-UK でも検討された経緯がある。MOGREPS-UK は運用開 始時、水平格子間隔 2.2 km、12 メンバー構成であった が、運用開始前には英国域の決定論的領域モデルの水 平格子間隔と同じ 1.5 km で運用することも検討されて いた。しかし、この設定では同じ計算機資源で3ない し4メンバーしか確保できず、予測不確実性を捕捉す るには不十分であるという結論に至っている (Hagelin et al. 2017)。UKMO の選択は、LEPS の仕様決定に 際し後者を支持するものになろう。

最後に、重点計画で目標とされている線状降水帯を 対象とした雲解像 EPS の開発に関し、現時点における 到達点として Barrett et al. (2016) による研究内容を 紹介しておく。ここでは、水平格子間隔 2.2 km、12 メ ンバーで構成される雲解像 EPS (MOGREPS-UK¹²) を、地形を強制力とする 4 つの線状降水帯事例に適用 し、予測可能性について調査を行った。結果として、

いずれの事例でも、線状降水帯の構造、発生場所、
 降水の強度および持続時間の全てを再現すること

¹⁰ ここで述べられる EDA の特性は雲解像 EPS に限ったも のではなく、全球 EPS も含む一般的な EPS によって得られ た知見によるものである。

¹¹ 初期摂動や側面境界摂動、モデルアンサンブル手法に関す る仕様は未定である。

¹² ここでは、水平格子間隔 18 km の領域 EPS (MOGREPS-R) にネストして実行されている。

はできなかった。

- 実況に近い降水量を再現することができても、バンド状の構造は再現されず、複数の孤立した対流セルによる降水によるものであった。
- 降水予測精度は、上流域の環境場の再現性に大きく依存し、特に地上要素との相関が大きかった。
- 各々のケースにおいて、EPSの特性の初期時刻依 存性は小さかったため、LAF法によるメンバー数の増強が確率予測の精度向上に有効であった。
- アンサンブルメンバー間で降水の場所やタイミン グが異なる場合、アンサンブル平均は各々のメン バーの予測特性を失うことになるので、このよう な状況下での情報発出には、降水の構造や強度の 情報を含む何らかの指標が必要である。

こと等が示されている。この結果から今後の LEPS の 開発においては、まず線状降水帯の発生と停滞を的確 に表現するために、LFM の高解像度化、物理過程の精 緻化による積乱雲の構造の表現向上が必要となるだろ う。同時にデータ同化手法においても線状降水帯が発 生する環境場を再現できるよう、観測ビッグデータの 利用も含めたシステムの高度化を図る必要がある。ま た、EPS の高度化においては、初期値、境界値、数値 予報モデルの不確実性を適切に表現できるシステムの 開発と共に、顕著現象予測に対する情報発出の在り方 についても検討を進めなければならない。

重点計画にもある通り、数値予報は気象・気候予測 の根幹であり、安全・安心で豊かな生活に不可欠な社会 基盤である。アンサンブル予報は、数値予報モデルが 内包する誤差情報を定量的に評価することにより、豪 雨や台風といった顕著事例における意思決定プロセス に貢献するポテンシャルがある。このポテンシャルを 十分に活かし、「安全、強靭で活力ある社会」という社 会の将来像が実現できるよう、数値予報モデルやデー タ同化手法の高度化と共に前述した開発課題に取り組 む必要がある。

参考文献

- Barrett, A. I., S. L. Gray, D. J. Kirshbaum, N. M. Roberts, D. M. Schultz, and J. G. Fairman, 2016: The utility of convection-permitting ensembles for the prediction of stationary convective bands. *Mon. Wea. Rev.*, 144, 1093–1114.
- Berner, J., K. R. Fossell, S.-Y. Ha, J. P. Hacker, and C. Snyder, 2015: Increasing the skill of probabilistic forecasts: Understanding performance improvements from model-error representations. *Mon. Wea. Rev.*, 143, 1295–1320.
- Berner, J., S.-Y. Ha, J. P. Hacker, A. Fournier, and C. Snyder, 2011: Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations. *Mon. Wea. Rev.*, 139,

1972 - 1995.

- Berner, J., G. J. Shutts, M. Leutbecher, and T. N. Palmer, 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flowdependent predictability in the ECMWF ensemble prediction system. J. Atmos. Sci., 66, 603–626.
- Bouttier, F., L. Raynaud, O. Nuissier, and B. Ménétrier, 2016: Sensitivity of the AROME ensemble to initial and surface perturbations during HyMeX. Quart. J. Roy. Meteor. Soc., 142, 390– 403.
- Bouttier, F., B. Vié, O. Nuissier, and L. Raynaud, 2012: Impact of stochastic physics in a convectionpermitting ensemble. *Mon. Wea. Rev.*, 140, 3706– 3721.
- Bowler, N. E., A. Arribas, K. R. Mylne, K. B. Robertson, and S. E. Beare, 2008: The MOGREPS shortrange ensemble prediction system. *Quart. J. Roy. Meteor. Soc.*, **134**, 703–722.
- Brown, B. R. and G. J. Hakim, 2013: Variability and predictability of a three-dimensional hurricane in statistical equilibrium. J. Atmos. Sci., 70, 1806– 1820.
- Buizza, R., M. Leutbecher, and L. Isaksen, 2008: Potential use of an ensemble of analyses in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 134, 2051–2066.
- Buizza, R., M. Milleer, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. *Quart.* J. Roy. Meteor. Soc., 125, 2887–2908.
- Candille, G., 2009: The multi-ensemble approach: The NAEFS example. *Mon. Wea. Rev.*, **137**, 1655– 1665.
- Clark, A. J., J. S. Kain, D. J. Stensrud, M. Xue, F. Kong, M. C. Coniglio, K. W. Thomas, Y. Wang, K. Brewster, J. Gao, X. Wang, S. J. Weiss, and J. Du, 2011: Probabilistic precipitation forecast skill as a function of ensemble size and spatial scale in a convection-allowing ensemble. *Mon. Wea. Rev.*, **139**, 1410–1418.
- Degelia, S.K., X. Wang, and D.J. Stensrud, 2019: An Evaluation of the Impact of Assimilating AERI Retrievals, Kinematic Profilers, Rawinsondes, and Surface Observations on a Forecast of a Nocturnal Convection Initiation Event during the PECAN Field Campaign. Mon. Wea. Rev., 147, 2739–2764.
- Emanuel, K. A. and F. Zhang, 2016: On the predictability and error sources of tropical cyclone intensity forecasts. J. Atmos. Sci., 73, 3739–3747.

- Emanuel, K. A. and F. Zhang, 2017: The role of inner-core moisture in tropical cyclone predictability and practical forecast skill. J. Atmos. Sci., 74, 2315–2324.
- Hacker, J. P., C. Snyder, S.-Y. Ha, and M. Pocernich, 2011a: Linear and non-linear response to parameter variations in a mesoscale model. *Tellus*, 63A, 429–444.
- Hacker, J. P., S.-Y. Ha, C. Snyder, J. Berner, F. A. Eckel, E. Kuchera, M. Pocernich, S. Rugg, J. Schramm, and X. Wang, 2011b: The U.S. Air Force Weather Agency's mesoscale ensemble: Scientific description and performance results. *Tellus*, 63A, 625–641.
- Hagedorn, R., F. J. Doblas-Reyes, and T. N. Palmer, 2005: The rationale behind the success of multimodel ensembles in seasonal forecasting. Part I: Basic concept. *Tellus*, **57A**, 219–233.
- Hagelin, S., J. Son, R. Swinbank, A. McCabe, N. Roberts, and W. Tennant, 2017: The Met Office convective-scale ensemble, MOGREPS-UK. *Quart.* J. Roy. Meteor. Soc., 143, 2846–2861.
- Hakim, G. J., 2013: The variability and predictability of axisymmetric hurricanes in statistical equilibrium. J. Atmos. Sci., 70, 993–1005.
- Hohenegger, C. and C. Schär, 2007a: Atmospheric predictability at synoptic versus cloud-resolving scales. Bull. Amer. Meteor. Soc., 88, 1783–1793.
- Hohenegger, C. and C. Schär, 2007b: Predictability and error growth dynamics in cloud-resolving models. J. Atmos. Sci., 64, 4467–4478.
- Hohenegger, C., A. Walser, W. Langhans, and C. Schär, 2008: Cloud-resolving ensemble simulations of the August 2005 Alpine flood. *Quart. J. Roy. Meteor. Soc.*, **134**, 889–904.
- 幾田泰醇, 2014: asuca 変分法データ同化システム. 数 値予報課報告・別冊第 60 号, 気象庁予報部, 91–97.
- Isaksen, L., J. Haseler, R. Buizza, and M. Leutbecher, 2010: The new ensemble of data assimilations. *ECMWF Newsletter*, **123**, 17–21.
- Johnson, A., X. Wang, J. R. Carley, L. J. Wicker, and C. Karstens, 2015: A comparison of multiscale GSI-based EnKF and 3DVar data assimilation using radar and conventional observations for midlatitude convective-scale precipitation forecasts. *Mon. Wea. Rev.*, 143, 3087–3108.
- Kawabata, T., H. Seko, K. Saito, T. Kuroda, K. Tamiya, T. Tsuyuki, Y. Honda, and Y. Wakazuki, 2007: An Assimilation and Forecasting Experiment of the Nerima Heavy Rainfall with

a Cloud-Resolving Nonhydrostatic 4-Dimensional Variational Data Assimilation System. J. Meteor. Soc. Japan, 85, 255–276.

- 河野耕平,氏家将志,國井勝,西本秀祐,2019: MEPS の利用と留意点.令和元年度数値予報研修テキスト, 気象庁予報部,4-14.
- Keresturi, E., Y. Wang, F. Meier, F. Weidle, C. Wittmann, and A. Atencia, 2019: Improving initial condition perturbations in a convectionpermitting ensemble prediction system. *Quart. J. Roy. Meteor. Soc.*, **145**, 993–1012.
- 気象庁, 2018: 2030 年に向けた数値予報技術開発重点 計画. 52 pp.
- Kunii, M. and T. Miyoshi, 2012: Including uncertainties of sea surface temperature in an ensemble Kalman filter. Wea. Forecasting, 27, 1586–1597.
- 経田正幸, 2006: モデルアンサンブル予報. 数値予報課 報告・別冊第 52 号, 気象庁予報部, 7-8.
- Lavaysse, C., M. Carrera, S. Bélair, N. Gagnon, R. Frénette, M. Charron, and M. K. Yau, 2013: Impact of surface parameter uncertainties within the Canadian Regional Ensemble Prediction System. *Mon. Wea. Rev.*, 141, 1506–1526.
- Leutbecher, M., S.-J. Lock, P. Ollinaho, S.T.K. Lang, G. Balsamo, P. Bechtold, M. Bonavita, H.M. Christensen, M. Diamantakis, E. Dutra, S. English, M. Fisher, R.M. Forbes, J. Goddard, T. Haiden, R.J. Hogan, S. Juricke, H. Lawrence, D. MacLeod, L. Magnusson, S. Malardel, S. Massart, I. Sandu, P.K. Smolarkiewicz, A. Subramanian, F. Vitart, N. Wedi, and A. Weisheimer, 2017: Stochastic representations of model uncertainties at ECMWF: state of the art and future vision. *Quart. J. Roy. Meteor. Soc.*, 143, 2315–2339.
- McCabe, A., R. Swinbank, W. Tennant, and A. Lock, 2016: Representing model uncertainty in the Met Office convection permitting ensemble prediction system and its impact on fog forecasting. *Quart.* J. Roy. Meteor. Soc., 142, 2897–2910.
- Miyoshi, T., M. Kunii, J. Ruiz, G.-Y. Lien, S. Satoh, T. Ushio, K. Bessho, H. Seko, H. Tomita, and Y. Ishikawa, 2016: "Big Data Assimilation" revolutionizing severe weather prediction. *Bull. Amer. Meteor. Soc.*, 97, 1347–1354.
- Nutter, P., D. Stensrud, and M. Xue, 2004: Effects of coarsely resolved and temporally interpolated lateral boundary conditions on the dispersion of limited-area ensemble forecasts. *Mon. Wea. Rev.*, 132, 2358–2377.
- Ollinaho, P., S.-J. Lock, M. Leutbecher, P. Bechtold,

A. Beljaars, A. Bozzo, R.M. Forbes, T. Haiden, R.J. Hogan, and I. Sandu, 2017: Towards process-level representation of model uncertainties: Stochastically perturbed parametrisations in the ECMWF ensemble. *Quart. J. Roy. Meteor. Soc.*, **143**, 408–422.

- 小野耕介, 2010: メソ特異ベクトル法. 数値予報課報告・ 別冊第 56 号, 気象庁予報部, 93-104.
- 小野耕介, 2014: 接線系・随伴モデルの実装. 数値予報 課報告・別冊第 60 号, 気象庁予報部, 98–103.
- 小野耕介, 2016: メソアンサンブル予報システムの開発 状況. 数値予報課報告・別冊第 62 号, 気象庁予報部, 100–113.
- Ono, K., 2012: Preliminary results of mesoscale ensemble prediction system with stochastic parameterization. CAS/JSC WGNE Res. Activ. Atmos. Oceanic Modell., 42, 5.11–5.12.
- Ono, K., 2020: Extension of the Lanczos algorithm for simultaneous computation of multiple targeted singular vector sets. *Quart. J. Roy. Meteor. Soc.*, 146, 454-467.
- 太田洋一郎, 堀田大介, 2016: 海面水温摂動の開発. 数 値予報課報告・別冊第62号, 気象庁予報部, 77-84.
- Palmer, T.N., 2018: The ECMWF ensemble prediction system: looking back (more than) 25years and projecting forward 25 years. *Quart. J. Roy. Meteor.* Soc., 145, 12–24.
- Palmer, T. N., R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G. J. Shutts, M. Steinheimer, and A. Weisheimer, 2009: Stochastic parametrization and model uncertainty. *ECMWF Tech. Memo*, **598**, 42 pp.
- Poterjoy, J., R. A. Sobash, and J. L. Anderson, 2017: Convective-scale data assimilation for the Weather Research and Forecasting Model using the local particle filter. *Mon. Wea. Rev.*, 145, 1897–1918.
- Raynaud, L. and F. Bouttier, 2016: Comparison of initial perturbation methods for ensemble prediction at convective scale. *Quart. J. Roy. Meteor. Soc.*, 142, 854–866.
- Richardson, D. S., 2001: Measures of skill and value of ensemble prediction systems, their interrelationship and the effect of ensemble size. *Quart. J. Roy. Meteor. Soc.*, **127**, 2473–2489.
- Saito, K., M. Kunii, M. Hara, H. Seko, T. Hara, M. Yamaguchi, T. Miyoshi, and W.-K. Wong, 2010: WWRP Beijing Olympics 2008 Forecast Demonstration / Research and Development Project (B08FDP/RDP). *Tech. Rep. MRI*, 214 pp.
- Selz, T. and G. C. Craig, 2015: Upscale error growth

in a high-resolution simulation of a summertime weather event over Europe. *Mon. Wea. Rev.*, **143**, 813–827.

- Shutts, G. J., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. *Quart. J. Roy. Meteor. Soc.*, **131**, 3079–3102.
- Sun, Y. Q. and F. Zhang, 2016: Intrinsic versus practical limits of atmospheric predictability and the significance of the butterfly effect. J. Atmos. Sci., 73, 1419–1438.
- Weidle, F., Y. Wang, and G. Smet, 2016: On the impact of the choice of global ensemble in forcing a regional ensemble system. *Wea. Forecasting*, **31**, 515–530.
- 山口春季, 2013: アンサンブル予報における確率的物理 過程強制法. 数値予報課報告・別冊第 59 号, 気象庁 予報部, 188–191.
- 米原仁, 2009: モデルアンサンブル. 数値予報課報告・ 別冊第 55 号, 気象庁予報部, 126-137.
- Yussouf, N., D. C. Dowell, L. J. Wicker, K. H. Knopfmeier, and D. M. Wheatley, 2015: Stormscale data assimilation and ensemble forecasts for the 27 April 2011 severe weather outbreak in Alabama. *Mon. Wea. Rev.*, 143, 3044–3066.
- Zhang, F., N. Bei, R. Rotunno, C. Snyder, and C. C. Epifanio, 2007: Mesoscale predictability of Moist Baroclinic Waves: Convection-permitting experiments and multistage error growth dynamics. J. Atmos. Sci., 64, 3579–3594.
- Zhang, F., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 1173–1185.

4.1 地上 GNSS データ¹

4.1.1 はじめに

GNSS (Global Navigation Satellite System) は人工 衛星を利用した測位システムであり、地上に設置した 受信機と4つ以上のGNSS衛星との距離を同時に知る ことにより現在位置を決定する。受信機とGNSS衛星 の距離は衛星から発した電波が届くまでの時間によっ て測定されるが、大気中での電波の伝達速度は真空中 に比べて遅くなる。この遅延は乾燥大気と湿潤大気(水 蒸気)によってもたらされる²。乾燥大気からの遅延量 (静水圧遅延量)は地上気圧と比例関係があり、大気 遅延量から静水圧遅延量を引くことで湿潤大気による 遅延量(湿潤遅延量)を算出しGNSS衛星から地上受 信機までの水蒸気に関する情報を得る。通常は複数の GNSS衛星を用いて天頂方向へ投影した天頂大気遅延 量を算出することから、地上GNSSからのデータは受 信機上空の水蒸気の状態を反映している。

気象庁では国土地理院の整備する GEONET (GNSS Earth Observation NETwork system) から取得した約 1,300 地点の地上 GNSS 観測点のデータから天頂大気 遅延量を解析し、気象官署の地上気圧、気温データを 用いて可降水量の算出を行っている。気象庁メソ解析 では、この可降水量データを同化している。

2018年に実施した地上 GNSS 可降水量データの品 質調査により、これまで利用していなかった降水域の データには負バイアスが見られなかったこと、2018年 3月以降に利用可能となった新規地点のデータは既存 地点と同等の品質であったことを確認し、2019年3月 に降水域と新規地点のデータを追加利用した (太田ほ か 2019)。本節では、その調査結果とデータを追加利 用した際の予測への影響を述べる。

なお、地上 GNSS の概要やデータ作成手法について は萬納寺 (1998, 2000)、小司・國井 (2007)、小司・國 井 (2008)を、当庁におけるこれまでの現業数値予報シ ステムでの地上 GNSS データの利用方法については石 川 (2008, 2010)、吉本 (2011)、吉本・石川 (2014)を参 照されたい。

4.1.2 地上 GNSS 可降水量データの品質管理

データ同化において、異常データや観測値と第一推 定値の差 (O-B) に系統誤差 (バイアス)を持つデータ など、同化手法で想定していないデータの混入は初期 値の精度を悪化させる。このため、それらのデータに は品質管理による適切な排除や補正が必要である。地

上 GNSS 可降水量データでは以下のように品質管理を 行っている。可降水量は地表から上空までの水蒸気の 積算量であり、地表の高さに応じて値が変動する。数 値予報モデルの水平解像度に依存して表現できる地形 の解像度には限界があり、実際の観測点の標高と数値 予報モデルの中で設定している標高に差が生じる。こ の標高差によって O-B にバイアスが生じるため、第 一推定値との比較する際にはモデルの地上気圧や気温、 比湿を用いて観測値を補正する必要がある。しかし、 標高差が大きい場合にはモデルの地上気圧や気温、比 湿が持つ誤差を無視できなくなるため、その観測点の データは使用しない。また、小司・國井 (2007)の調査 によって標高の高い観測点では可降水量が少ないほど 負バイアスが見られたため、その観測点のデータも使 用しない。それらを考慮し地上 GNSS データの品質管 理手法をまとめて示す。

- 1. 標高 700 m 以上の観測点は使用しない。
- 2. 観測点の実標高とモデル地形の標高との差が200m 以上である場合は使用しない。
- 3. 可降水量が1 mm 以下と 90 mm 以上の場合は使 用しない。
- 可降水量の O-B の絶対値が 8 mm 以上のデータ は使用しない。
- 可降水量の O-B の絶対値が 5 mm 以上で、かつ 周囲 20 km 以内の O-B の平均との差が 5 mm 以 上のデータは使用しない。
- 観測点間の水平距離が 30 km 以上の間隔になるように間引きを行う。

4.1.3 2019 年3月に行った利用手法の改良

(1) 降水域データの利用

降水域の地上 GNSS 可降水量データには第一推定値 に対して負バイアスがあるという調査結果(小司・國井 2008;石川 2010) により、観測点の周囲 15 km に解析 雨量が1.5 mm/h以上ある場合は降水域として、その 観測点のデータを利用しないこととしていた。降水の 予測精度向上には初期値の水蒸気の精度向上が重要で あり、そのためには降水域でも地上 GNSS データをよ り多く利用できることが望ましい。そこで、メソ解析 で利用した降水域での地上 GNSS データの品質を調査 した。品質管理で降水域と判定された降水域データに ついて、可降水量データの O-B ヒストグラムをそれ 以外の非降水域データと比較して図 4.1.1 に示す。この 統計には品質管理手法で除かれる標高 700 m 以上の観 測点とモデル地形との標高差 200 m 以上の観測点を含 めていない。図 4.1.1 より、降水域データの O-B ヒス トグラムは、非降水域データと同様に0mm付近を中 心とした正規分布となっており、負バイアスは見られ なかった。一方、O-B標準偏差は降水域・非降水域と

¹ 太田 行哉、谷 寧人(企画課防災企画室)

² 大気による遅延には電離層による遅延もあるが、周波数依 存性があるため GNSS 衛星から発信される 2 つの周波数の 電波を用いて消去されている。

図 4.1.1 非降水域(黒)と降水域(赤)の地上 GNSS 可降 水量データ [mm] の O-B ヒストグラム。図の右上には O-B の平均 (BIAS) と標準偏差 (SD)の統計値を表す。 統計期間は (a) 2018 年 8 月、(b) 2018 年 12 月の 1 か月。

は無関係に8月の方が12月よりも大きい。これは夏季 ほど可降水量が多く、観測データと第一推定値の差が 大きくなりやすいためである。

降水域データのバイアスについて、過去データが保 存され品質調査が可能な2015年6月から2018年12月 までの可降水量データでも同様の調査を行ったが負バ イアスは見られなかった。観測機器や可降水量データ 算出アルゴリズムは利用開始当時から変更していない ため、バイアスが見られなくなった要因は主に第一推 定値の変化であると考えられる。これは近年の数値予 報システムの改良によってモデルの降水域における水 蒸気の表現が改善したためと推測される。今回の調査 により降水域の可降水量データの品質には問題がない ことを確認したため、メソ解析で利用することにした。

(2) 利用地点の追加

2018年3月に利用可能な地上GNSS 観測点が約100 地点増加したため、その新規地点の観測データの品質を 調査した。新規地点の分布を図4.1.2の赤丸で示す。新 規地点は沿岸部に多く見られる。新規地点の観測データ について可降水量データのO-Bヒストグラムを従来か ら利用していた既存地点のデータと比較して図4.1.3に 示す。可降水量O-Bヒストグラムは正規分布に従って おり、既存地点のデータと比較して品質は同等であった。 ただし、実際にメソ解析で利用される観測点は30 km 間隔の間引きによって10数地点増加する程度であり、 予測への影響はほとんどなかった。

4.1.4 実験結果と考察

前項における調査により、降水域データと新規地点 のデータの品質に問題がないことが分かったため、これ らの観測点を追加した実験を実施した。降水域データ と新規地点を追加した実験を TEST、従来と同じデー タを利用した実験を CNTL と表す。実験結果の検証期 間は 2018 年 6 月 18 日 00UTC から 2018 年 7 月 23 日 21UTC である。

図 4.1.4 に地上比湿予測の予測時間別の平均誤差 (ME) と二乗平均平方根誤差 (RMSE) を示す。僅か

図 4.1.2 2018 年 3 月に利用可能となった地上 GNSS 新規地 点(赤)と従来から利用していた既存地点(青)の分布。

と新規地点(赤)の地上 GNSS 可降水量データ [mm] の O-B ヒストグラム。図の右上に O-B の平均 (BIAS) と 標準偏差 (SD)の統計値を示す。統計期間は (a) 2018 年 8 月、(b) 2018 年 12 月の1か月。

ではあるが、TEST 実験の方が水蒸気をやや少なめに 予測する傾向を改善している時間帯が多くあり RMSE は予測時間全体で減少した。

次に降水予測への影響を見る。3時間降水量の閾値 20 mm 以上の降水予測について、予測時間別バイアス スコア (BI) とエクイタブルスレットスコア (ETS) を 図 4.1.5 に示す。BI は CNTL と TEST で統計的に有意 な差が見られないが、ETS は FT=3 で TEST が有意 に改善し、FT=6 まで改善傾向であった。降水域デー タが追加利用されて水蒸気場が修正され、その付近の 降水予測が改善したためと考えられる。一方、弱い雨 ではこのような改善傾向は見られなかった(図略)。降 水域の判定基準 1.5 mm/h 以下のごく弱い降水域では、 可降水量データが TEST, CNTL どちらも利用されて おり、水蒸気場が修正される効果が TEST と CNTL で 変わらないためと考えられる。

今回の変更によって降水予測に改善が見られた 2018 年7月7日18UTC初期値の3時間予測の事例を図 4.1.6

 図 4.1.4 国内 SYNOP 観測を参照値とした地上比湿予測の 予測時間別 (a) 平均誤差、(b) 二乗平均平方根誤差、(c) 平均誤差の差分、(d) 二乗平均平方根誤差の差分。単位 は g/kg。(a),(b) に CNTL(青)、TEST(赤)それぞ れの値、(c),(d) に TEST – CNTL を表す。エラーバー は 95%の信頼区間を表す。

図 4.1.5 解析雨量を参照値とした閾値 20 mm/3h の予測時 間別 (a) バイアススコア、 (b) エクイタブルスレットス コア、 (c) バイアススコアの差分、 (d) エクイタブルス レットスコアの差分。20 km 検証格子内平均降水量を使 用。 (a), (b) に CNTL (青)、TEST (赤) それぞれの値、 (c), (d) に TEST – CNTL を表す。エラーバーは 95%の 信頼区間を表す。

に示す。CNTLでは広島湾付近で10 mm/3h以下の降水予測であったが、TESTでは該当地域で20 mm/3h 以上の降水予測となり解析雨量に近い予測であった。こ の予測結果となった初期値の地上GNSSデータの利用 状況(図4.1.7)を見ると、大分県沿岸や四国、中国地 方にかけて降水域が広がっていたため、CNTLではそ れらの地域で地上GNSSデータが利用されなかった。 一方、TESTでは大分県沿岸や愛媛県で正のO-Bの 地上GNSSデータが利用された。すなわち該当地域で 水蒸気を増加させるインクリメントが入った。そこで の水蒸気の増加が広島湾付近での予測降水量の増大の 要因となったと考えられる。

4.1.5 まとめと課題

メソ解析の地上 GNSS 可降水量データ利用拡大を目 的に、これまで利用していなかった解析雨量 1.5 mm/h 以上の降水域でのデータ品質と 2018 年 3 月以降に利用 可能となった新規地点のデータ品質を調査した。調査 の結果、最近の降水域データには過去の調査で示され ていた負バイアスは見られなかった。新規地点のデー タは既存地点と同等の品質であった。以上の結果から 降水域データと新規地点を追加利用する解析予報サイ クル実験を行い、主に降水域データを利用した効果に よって予測初期で強雨予測の改善が見られた。

降水域データの品質調査によって O-B のバイアス の変化よりも標準偏差の季節変化が大きいことを確認 した。これは可降水量の多さによって誤差が変化して いることを示唆する。O-Bの誤差は第一推定値の誤 差も含んでいるが、観測の情報をより引き出すため可 降水量の値別の観測誤差を調査する必要がある。地上 GNSS データの新たな利用領域の拡大も重要な課題で ある。特に観測がまばらで水蒸気量の補給源となる海上 のデータは豪雨予測に重要である。今後、船舶へ GNSS 受信機を搭載することで航路上での可降水量データが 得られる予定である。他にも、より長い予測時間にお ける日本付近の降水予測を改善するため、日本の上流 となる大陸のデータも重要である (Shoji et al. 2009)。 ただし国際交換されている地上 GNSS データは少ない のが現状である。近隣国で得られる観測点はロシア、中 国、モンゴルにある国際 GNSS 事業³観測局の数地点 のみであり、世界的にもヨーロッパ各国以外で高密度 に国際配信している国はない。近隣国の数地点のデー タだけでは効果が見込めないため、メソ解析では国内 の地上 GNSS データしか利用していない。今後、世界 中で地上 GNSS データ国際交換が進められデータが入 手可能になれば、品質を調査して利用できるようにす る必要がある。ただし、国外のデータは可降水量の算 出までは行われていない。通報されている天頂大気遅 延量から可降水量を算出するために必要な気圧と気温 が地上 GNSS 観測点に存在するとは限らない。このた め、全球解析では国外の地上 GNSS データは天頂大気 遅延量で同化されている (吉本 2011)。メソ解析でも同 様に、国外の地上 GNSS データの利用するために天頂 大気遅延量での同化が必要となる。

³ http://www.igs.org/

図 4.1.6 2018 年7月7日 21UTC における前3時間降水量 [mm/h] の分布。左が解析雨量、中がTEST の予測値、右がCNTL 予測値。予測値は 2018 年7月7日 18UTC 初期値の3時間予測。

図 4.1.7 2018 年 7 月 7 日 18UTC 初期値の地上 GNSS データ利用状況。プロットは各観測点における可降水量の O-B [mm] で上部のカラースケールで色分けしている。左は TEST、右は CNTL。右図には、同時刻の前 1 時間解析雨量 [mm/h] を左 下のカラースケールで色分けして重ねている。

参考文献

- 石川宜広, 2008: 地上設置型 GPS 大気遅延量の利用. 平成 20 年度数値予報研修テキスト, 気象庁予報部, 53-57.
- 石川宜広, 2010: 地上 GPS データのメソ解析での利用. 数値予報課報告・別冊第56号, 気象庁予報部, 54-60.
- 萬納寺信崇, 1998: GPS 大気遅延量を利用した数値予 報. 数値予報課報告・別冊第 44 号, 気象庁予報部, 14-24.
- 萬納寺信崇, 2000: GPS データ同化実験. 数値予報課報 告・別冊第 47 号, 気象庁予報部, 102–110.
- 太田行哉, 岡部いづみ, 小屋松進, 西本秀祐, 谷寧人, 2019: メソ解析における観測データ利用の改良及び メソ数値予報システムにおける北西太平洋高解像度 日別海面水温解析の利用開始. 令和元年度数値予報 研修テキスト, 気象庁予報部, 61-67.

- 小司禎教, 國井勝, 2007: 地上 GPS:準リアルタイム解 析データの同化実験. 数値予報課報告・別冊第 53 号, 気象庁予報部, 147–152.
- 小司禎教, 國井勝, 2008: 地上 GPS 観測網による可降 水量の同化. 気象研究ノート, **217**, 228–238.
- Shoji, Y., M. Kunii, and K. Saito, 2009: Assimilation of nationwide and global GPS PWV data for a heavy rain event on 28 July 2008 in Hokuriku and Kinki, Japan. SOLA, 5, 45–48.
- 吉本浩一, 2011: GPS 可降水量の全球解析での利用. 数 値予報課報告・別冊第 57 号, 気象庁予報部, 63-69.
- 吉本浩一,石川宜広,2014:全球解析における地上GNSS 天頂大気遅延量の同化利用.平成26年度数値予報研 修テキスト,気象庁予報部,44-48.

4.2.1 はじめに

航空機はその航路上で運航に必要な風、気温、湿度、 乱流や強度など多くの要素を観測している。その観測 データは主に国際民間航空機関 (ICAO) で定められ た AIREP 報と世界気象機関 (WMO) で定められた AMDAR 報で通報され、メソ解析では航空機で観測し た気温と風のデータを利用している。航空機の気温デー タは機体毎に固有の系統誤差(バイアス)があること が知られている (Ballish and Kumar 2008)。バイアス が生じる要因は航空機が高速移動することでセンサ表 面の空気が断熱圧縮されて高温になることであり、気 温測定値は飛行速度を考慮して補正する必要がある。 航空機の気温データのバイアス特性は測器自体の特性 や測器の取り付け位置、測定方法、補正方法などによっ て航空機毎に固有である。しかし、それらの情報は通 報されておらず、バイアスの原因を機体毎に特定する ことは困難である。そこで、全球解析では機体・高度 別に気温データの観測値と第一推定値の差 (O-B)の 前月統計値からバイアス補正値を算出する手法を 2009 年11月に導入し(酒匂 2010)、メソ解析では2019年3 月から全球解析で算出したバイアス補正値を適用して 航空機気温データのバイアス補正を行っている (太田 ほか 2019)。

本節では、メソ解析での航空機気温データのバイア ス状況、バイアス補正手法とバイアス補正によるメソ 数値予報への効果を述べる。

4.2.2 航空機気温データのバイアス状況

航空機気温データを利用するためには、観測データ のバイアスを把握し適切に補正することが必要である。 まずはメソ解析で利用されている航空機気温データの バイアスの状況を調査した。図 4.2.1 に日本付近にある 複数の航空機に対する機体別の気温データの O-B 統 計を示す。O-Bの平均値が機体によって異なっている ことから、航空機の気温データが持つバイアスは機体 によって異なっていることが分かる。よって機体別に気 温バイアス補正が必要となる。この気温バイアスには モデル予測値のバイアスも含まれることから、ラジオ ゾンデ気温データの O–B 統計とも比較し航空機気温 データが持つ真値からのバイアスを推定した。図 4.2.2 は、2016年8月の航空機気温データとラジオゾンデ気 温データの O-B 統計の比較である。航空機気温デー タはラジオゾンデの観測時刻に近い 00UTC と 12UTC 付近の時刻のすべての機体で集計した。図 4.2.2 から 航空機気温データの O-B はラジオゾンデ気温データ の O-Bと比較して対流圏上部で高温側にあり、航空 機気温データに全般的に高温バイアスがあることを示 している。また航空機気温データはラジオゾンデ気温

図 4.2.1 航空機の機体別の気温データの O-B 統計の鉛直 分布。左から、O-B の平均 (BIAS)、標準偏差 (STD)、 データ数 (Data Counts)。統計期間は 2016 年 8 月 11 日 から 8 月 30 日まで。色の違いは異なる航空機の統計値で あることを表す。

図 4.2.2 日本付近にある航空機気温データの O-B 統計の 鉛直分布(青)とラジオゾンデ気温データの O-B 統計の 鉛直分布(緑)。図の配置と統計期間は図 4.2.1 と同じ。

データと比較して O-B の標準偏差が大きい。この結 果は酒匂 (2010) で調査された全球解析での結果と同等 であり、メソ解析でも航空機気温データを適切に利用 するためにはバイアス補正が必要であることを示して いる。

4.2.3 航空機気温データのバイアス補正

航空機気温データのバイアス補正値を見積もるため に、全球解析と同様にメソ解析で航空機気温データの O-B月統計量を計算する方法が考えられる。しかし、 メソ解析は打ち切り時間が短いことや、領域外のデー タを考慮できないことにより、系統誤差の見積もりに 必要なサンプルを十分に得ることができない航空機が 存在する。そこで今回は全球解析の O-B月統計量か ら算出したバイアス補正値をメソ解析で利用すること

¹ 太田 行哉

にした。ここでは航空機の機体に依存するバイアスが モデル間のバイアスの違いよりも十分大きいことを仮 定している。全球解析での航空機気温バイアス補正手 法は酒匂 (2010) で記されているように、ラジオゾンデ バイアス補正と同様の方法を用いている。バイアス補 正値は以下のように算出される。

- 1. 航空機の識別名とラジオゾンデの指定面を中心に した気圧面で層別化して気温データの O-B の前 月平均値を計算する。
- サンプリングエラーを除くために、隣接する気圧 面層で平滑化を行う。
- 3. ある気圧面層での補正値の絶対値が2.5 K 以上の場 合、その当該航空機の気温は全層リジェクトする。
- 4. AIREP 報で通報される航空機は機体識別の情報 が通報されておらず、酒匂 (2010)の調査結果から 顕著なバイアスもないため補正の対象外とする。
- 5. 第一推定値のバイアスを考慮して、経験的に見積 もった調整係数である 0.8 倍した値をバイアス補 正値とする。
- 6. 以上の処理で求めた補正値を統計処理した翌月の 1か月間利用する。

4.2.4 航空機気温データのバイアス補正の効果

メソ数値予報における航空機気温バイアス補正の効 果を確認するため実験を実施した。バイアス補正導入 前の実験を CNTL、現業全球解析の 2016 年 7 月分の O-B 統計で算出したバイアス補正値を適用した実験 を TEST と表す。実験期間は 2016 年 8 月 11 日から 30 日(夏実験)である。実験では 2018 年 6 月時点の現業 メソ数値予報システムをベースとした。冬季に対して も同様の実験を行ったが、バイアス補正の効果は夏冬 変わらないため、予測結果に対して、より明瞭な効果 が見られた夏実験について記述する。

バイアス補正による航空機気温データのサイクル解 析を通じた O-B の変化について、O-B 統計の CNTL と TEST の比較を図 4.2.3 に示す。CNTL では全層に わたって O-B が正バイアスであったが、TEST では バイアス補正処理により想定通りバイアスが減少した。 特に対流圏上層で顕著であった。また TEST では O-B の標準偏差は全層にわたって大幅に減少した。これは バイアス補正前では O-B のばらつきが大きかったこ とを意味する。図 4.2.1 で示したように航空機の機体 別に気温バイアスの量が異なる。バイアス補正処理に よって、どの航空機の気温データも O-B が 0 に近づ いて機体別のばらつきが小さくなったことが O-B の 標準偏差が減少した理由である。

続いて予測値の統計検証でバイアス補正効果を確認 した。図 4.2.4 にラジオゾンデ気温に対する 12 時間予 測の気温誤差の鉛直分布を示す。わずかではあるが、上 層で低温化、中層で高温化して平均誤差や二乗平均平 方根誤差が減少した。一方、下層 (925, 850 hPa) では

図 4.2.3 日本付近の航空機気温データの O-B 統計の鉛直 分布。青は CNTL、赤は TEST を表す。図の並びや統計 期間は図 4.2.2 と同じ。航空機気温データは全時刻を用い て、データ数はどちらの実験もほぼ変わらない。

元々低温バイアスを持っていたものが、更に低温化し て平均誤差が拡大した。下層のバイアス補正量に問題 があり十分でないことが原因の一つと考えられる。図 4.2.3 の CNTL (青線)から TEST (赤線)への変化か らバイアス補正によって上層だけでなく下層も正バイ アスが減少したが、図 4.2.2 の左図で示したラジオゾ ンデ (緑線)と航空機 (青線)のO-Bの平均の比較 から、ラジオゾンデも同様に第一推定値に対して正バ イアスがある。つまり、モデルに下層の低温バイアス が見られる。全球モデルでも同様に下層の低温バイアス が見られる。全球モデルでも同様に下層の低温バイア スを持っており、バイアス補正算出に用いる全球解析 での第一推定値にも、下層の低温バイアスの影響を受 けてバイアス補正量が過剰となり、ラジオゾンデ気温 データと差が拡大したものと推測される。

次に地上気温予測について図 4.2.5 にアメダス気温 に対する予測時間別の誤差推移を示す。ラジオゾンデ 気温に対する下層の誤差と同様の傾向が地上気温予測 にも見られた。CNTLと比較して TEST では地上気温 の予測値が低下しており、6 時間予測までの平均誤差 や二乗平均平方根誤差がやや増大した。予測時間が進 むと CNTL との差が小さくなった。

更に降水予測の検証結果を図 4.2.6 に示す。1 mm/3h から 5 mm/3h の弱雨の頻度が減ったため見逃しが増 加しエクイタブルスレットスコアが改悪したが、それ 以上の閾値の強雨ではエクイタブルスレットスコアが 改善した。

最後にバイアス補正によって台風進路予測が改善し た平成28年台風第9号の事例を図4.2.7に示す。台風第 9号は2016年8月22日03UTCごろ千葉県館山市付近 に上陸した。上陸前の台風進路予測は実況より西側にず れており、CNTLでは2016年8月21日06UTC初期 値で実況並みに修正された。一方 TEST では2016年8

図 4.2.4 日本のラジオゾンデ気温を参照値とした 12 時間予 測の気温誤差。(a) 平均誤差、(b) 二乗平均平方根誤差、 (c) 平均誤差の差分、(d) 二乗平均平方根誤差の差分。単 位は K 。(a), (b) に CNTL(青)、TEST(赤) それぞれ の値、(c), (d) に TEST – CNTL を表す。統計に用いた サンプルの数は、1000 hPa で 448、それ以外の高さでは 約 690。エラーバーは 95%の信頼区間を表す。

図 4.2.5 アメダス観測を参照値とした地上気温予測の予測 時間別 (a) 平均誤差、(b) 二乗平均平方根誤差、(c) 平均 誤差の差分、(d) 二乗平均平方根誤差の差分。単位は K。 (a),(b) に CNTL(青)、TEST(赤) それぞれの値、(c), (d) に TEST – CNTL を表す。統計に用いたサンプルの 数は約 141200。エラーバーは 95%の信頼区間を表す。

月 21 日 03UTC 初期値で実況並みに修正され、CNTL よりも 3 時間早い初期値で実況に近い予測ができてい た。これ以外の初期値においても、全般的に進路予測 に改善が見られており、航空機気温データのバイアス 補正を導入することで、台風の進路に影響する上空の トラフの予測が改善したためと考えられる。

4.2.5 まとめと課題

航空機の気温データは機体毎に固有のバイアスがあ り、気温データを利用するにはバイアス補正する必要 がある。メソ解析において全球解析で算出したバイア ス補正値を適用してバイアス補正をする手法を導入し た。これによって、対流圏上部を中心に気温の予測誤 差が減少し、台風の進路予測も改善した。

今後の課題として、バイアス補正手法の高度化があ る。全球解析で求めたバイアス補正値は、全球モデル の第一推定値のバイアスも含まれている。ラジオゾン デやアメダス検証で見られた下層の気温低下は全球モ デルの低温バイアスの影響を受けている。加えて、バ イアス補正に必要な統計値を算出する時のサンプルに 関する問題がある。航空機の運航状況によっては定常 的に観測データが存在するとは限らないため、前月の 統計からバイアス補正量を算出する手法ではそのサン プルに期間の偏りが生じる航空機もあり得る。サンプ ルの偏りは高度に対しても同様であり、航空機データ はラジオゾンデのように指定面の気圧層に対して均等 にデータがあるわけではない。更に、航空機気温デー タのバイアスは上昇中と下降中に異なった特性を持つ ことが知られており、気圧層別よりも航空機の飛行状 態別でバイアス補正量を計算しなくてはならない。こ れらの問題点に対応するには、衛星輝度温度データの 補正手法に用いている変分法バイアス補正のような周 囲の観測データや気象条件に適合したバイアス補正手 法の導入が必要である。また、バイアス補正を行って いない局地解析に対してもバイアス補正手法を導入す る必要がある。

参考文献

- Ballish, B. A. and V. K. Kumar, 2008: Systematic differences in aircraft and radiosonde temperatures. *Bull. Amer. Meteor. Soc.*, 89, 1689–1708.
- 太田行哉, 岡部いづみ, 小屋松進, 西本秀祐, 谷寧人, 2019: メソ解析における観測データ利用の改良及び メソ数値予報システムにおける北西太平洋高解像度 日別海面水温解析の利用開始. 令和元年度数値予報 研修テキスト, 気象庁予報部, 61-67.
- 酒匂啓司, 2010: 航空機気温データの全球解析での利用. 平成 22 年度数値予報研修テキスト, 気象庁予報部, 33-37.

図 4.2.6 解析雨量を参照値とした 3 時間降水量 [mm/3h] の閾値別 (a) バイアススコア、 (b) エクイタブルスレットスコア、 (c) 空振り率、 (d) 見逃し率、 (e) バイアススコアの差分、 (f) エクイタブルスレットスコアの差分、 (g) 空振り率の差分、 (h) 見逃し率の差分。20 km 検証格子内平均降水量を使用。 (a), (b), (c), (d) に CNTL (青)、TEST (赤) それぞれの値、 (e), (f), (g), (h) に TEST – CNTL を表す。エラーバーは 95%の信頼区間を表す。

図 4.2.7 平成 28 年台風第 9 号の進路予測の比較。青が CNTL、赤が TEST、黒または灰色がベストトラックを表す。灰色は 予測対象外の期間を示す。■が 00 または 12UTC、▲が 06 または 18UTC, ×が 03, 09, 15, 21UTC の台風中心位置を示す。 左図から 2016 年 8 月 20 日 21UTC 初期値、8 月 21 日 00UTC 初期値、03UTC 初期値、06UTC 初期値、09UTC 初期値。

4.3 マイクロ波散乱計海上風¹

4.3.1 はじめに

マイクロ波散乱計(以下、単に散乱計と記す。)は地 球に向かってマイクロ波を照射し、その後方散乱強度 を測定する能動型の測器である。地表面の状態によっ て後方散乱強度が変化することを利用し、陸地では土 壌水分量の値を、海上では風速と風向を推定すること ができる。海上風の観測として以前より用いられてい る船舶やブイによる直接観測と比べ、衛星に搭載され た散乱計による観測では広範囲かつ密にデータが得ら れ、低気圧の周辺の風の循環やシアーの情報を面的に 得ることができる。このため、散乱計による海上風の 観測は数値予報システムの初期値作成において非常に 重要なデータのひとつとなっている。

気象庁のメソ数値予報システムでは欧州気象衛星開発 機構 (EUMETSAT) が運用する現業極軌道衛星 Metop-A, B に搭載された散乱計 ASCAT により観測され、オ ランダ王立気象研究所 (KNMI) により算出された海上 風プロダクトを 2015 年 12 月から現業同化利用してい る (守谷 2016)。2019 年 3 月からは、より解像度の高 い ASCAT 海上風プロダクトの利用を開始した (太田 ほか 2019)。本節では、高解像度 ASCAT 海上風の導 入にあたり実施した調査について記述する。

4.3.2 高解像度 ASCAT 海上風の利用開始

KNMIによる ASCAT 海上風プロダクトは、海上風 算出時の空間平滑化の処理の違いにより、「25 km 風プ ロダクト」 (ASCAT 25 km Winds) と「沿岸風プロダ クト」 (ASCAT coastal Winds) の 2 種類が配信され ている²。沿岸風プロダクトは 25 km 風プロダクトよ りも高解像度となる 12.5 km 間隔で海上風が算出され ている。沿岸風プロダクトの利用により沿岸部や諸島 周辺の海域でより陸地近くまでデータが利用可能とな り、特に水平解像度の高いメソ解析において解析値の 精度向上に寄与することが期待される。

(1) 実験設定

メソ解析における沿岸風プロダクトの利用による影響を評価するため、2018年6月時点でのメソ数値予報 システムを用いて解析予報サイクル実験を行った。当時 の現業システムと同じ25km風プロダクトを利用した コントロール実験(CNTL)を基準に、25km風プロダ クトを沿岸風プロダクトに替えたテスト実験(TEST) を行い、両者の結果を比較した。実験期間は2016年6 月22日から8月30日(夏実験)および2016年12月 6日から2017年1月15日(冬実験)である。沿岸風

図 4.3.1 2016 年 8 月 16 日 12UTC のメソ解析における (a) 25 km 風プロダクト、および (b) 沿岸風プロダクトのデー タ分布。Metop-A, B 衛星による観測データから算出され た風データを描画している。矢羽つきの丸はデータ同化に 利用されるデータ、黒十字は品質管理または間引き処理に よりデータ同化に利用されないデータである。丸印の色は 風速 [m/s] を表す。

プロダクトの品質管理として、強風(風速 25 m/s 超) の除去、Ambiguity Removal³、風速・風向のグロスエ ラーチェックと group QC³を行った。品質管理を通過

図 4.3.2 (a) 夏実験期間および (b) 冬実験期間における AS-CAT 海上風の風速ヒストグラム。青は 25 km 風プロダク ト、赤は沿岸風プロダクトを表す。

¹ 小屋松 進

²他に試験的なデータとして「5.7 km 風プロダクト」 (AS-CAT 5.7 km Winds) が配信されている。各プロダクトの詳し い情報は OSI SAF のウェブサイト (http://www.osi-saf. org) を参照。

³ Ambiguity Removal および group QC の詳細は太原 (1999)を参照。

図 4.3.3 ASCAT 海上風と第一推定値の風速差の分布。データ同化に用いた ASCAT 海上風について第一推定値との風速差を 60 km×60 km の格子で統計をとった。上段の (a), (b) は夏実験期間平均、下段の (c), (d) は冬実験期間平均、左側の (a), (c) は CNTL、右側の (b), (d) は TEST を表す。

したデータは、観測誤差の空間的な相関を除去するため 0.5° 間隔で間引き、観測誤差は 3.0 m/s とした。これらの手法・パラメータは 25 km 風プロダクトから変更を加えていない。

(2) 海上風データの比較

25 km 風プロダクトと沿岸風プロダクトにおける海 上風データの比較を行った。図 4.3.1 にある解析時刻 での ASCAT 海上風データの分布を示す。沿岸風プロ ダクトは本州の海岸線のより近くまでデータが存在し ている。また、伊豆諸島の存在により 25 km 風プロダ クトのデータが存在しない 140°E 付近でも、沿岸風プ ロダクトでは海上風が算出されている。このように、 TEST ではデータ同化でより多く、より広範囲のデー タが利用されるようになった。

図 4.3.2 に 25 km 風プロダクトおよび沿岸風プロダ クトの海上風データの風速ヒストグラムを示す。全体 的には 25 km 風プロダクトと沿岸風プロダクトで風 速の頻度分布に大きな違いはない。沿岸付近でデータ 分布が拡大したことに伴って、沿岸風プロダクトでは 5 m/s 以下の弱風の割合が増加している。 (3) 第一推定値および解析値における平均風速の変化 第一推定値への影響を比較するため、図 4.3.3 に AS-CAT 海上風と第一推定値の風速差の期間平均の分布を 示す。MSM の海上風速の予測値は ASCAT 海上風と 比較して夏季で正バイアス、冬季で負バイアスを持っ ており (原・倉橋 2017)、第一推定値においてもその傾 向が見られる⁴。TEST では沿岸部を中心にデータ同化 数が増加した以外に、バイアスの傾向に大きな差はな かった。

次に解析値の変化を見るため、図 4.3.4 に解析値に おける TEST と CNTL の平均風速差の分布を示す。 TEST は CNTL と比較して、夏実験は風速を弱める変 化、冬実験は風速を強める変化が見られる。この変化 は図 4.3.3 で見られた第一推定値のバイアスを打ち消 す方向であり、解析値が ASCAT 海上風データに近づ いたことを表している。特に比較的バイアスの大きな 冬の日本海や東シナ海で広範囲に風速が増加している。 これは、わずかではあるが、沿岸部以外でも利用数が 増加して、観測データの情報が反映されたためである。

⁴ 図 4.3.3 ではデータ同化に用いる ASCAT 海上風 – 第一 推定値を表示しているため、予測値のバイアスとは逆符号と なる。

図 4.3.4 風速の平均解析場。上段の (a), (b) は夏実験期間平均、下段の (c), (d) は冬実験期間平均、左側の (a), (c) は TEST、 右側の (b), (d) は差分 (TEST-CNTL) を表す。

(4) 24 時間予測値および降水スコアへの影響

予測値の変化を見るため、図 4.3.5 に 24 時間予測値 における TEST と CNTL の平均風速差の分布を示す。 夏実験では日本海や東海沖を中心に風速が弱くなる領 域が広く見られ、MSM の正バイアスを軽減する変化 があった。一方、九州の西海上から日本の南海上にか けて、解析値で風速を強くした領域が拡大して、24 時 間予測値でも風速が強くなった。冬実験では解析値で 風速が強くなった日本海や東シナ海には差がほぼ見ら れなくなり、解析値での改善は 24 時間予測値まで持続 しなかった。冬季は北西風が卓越しており、大陸から 影響を受けるこれらの領域では、海上風の効果は小さ くなるためと考えられる。

最後に降水スコアを確認した。図 4.3.6 に夏実験の、 図 4.3.7 に冬実験の降水閾値別のバイアススコアとエ クイタブルスレットスコアを示す。夏実験、冬実験と もに降水の頻度がやや増加し、閾値 20 mm/3h を超え る強雨に対してバイアススコアの悪化が見られた。一 方、エクイタブルスレットスコアはすべての閾値に対 して改善した。沿岸風プロダクトの利用で初期値での 風の場が改善したことによって、降水域の収束帯の予 測が改善したためと考えられる。

以上の結果を踏まえ、2019年3月よりメソ解析にお ける沿岸風プロダクトの利用を開始した。

4.3.3 今後の課題

ASCAT 海上風の利用について、今後取り組むべき 課題を三つ挙げる。

一つ目は、間引き間隔および観測誤差の最適化を含 む高密度データの有効利用である。今回の沿岸風プロ ダクトの利用では間引き間隔は従来と同一にしたため、 高密度データの大部分を利用できていない。観測誤差 や間引き間隔の最適な設定値を得るための調査だけで なく、スーパーオブザベーションに代表されるような 複数の観測データを空間平均化して同化する新たな手 法の導入も視野に入れ、データを最大限に活かす改良 が必要である。

二つ目は早期配信されるデータの利用である。メソ 解析は解析時刻の50分後までに入電したデータしか利 用されないため、観測後できるだけ早くデータを入手 する必要がある。通常は極軌道衛星による観測データは 周回軌道毎に地上の基地局で受信・処理されるため、観 測から配信まで2時間程度の時間を要する。EUMET-SATではEARS-ASCATと呼ばれる速報性を重視した ASCAT海上風プロダクトの配信サービスを提供して いる。EARS-ASCATでは複数の地上基地局によって、 その上空を衛星が通過した際に観測されたデータを即 時的に受信し、各基地局で受信したデータを収集・処理 してプロダクトを作成する。EARS-ASCATは観測か ら 30分程度で配信されており、通常の配信と比較して 早期にプロダクトが入手可能である。EARS-ASCAT

図 4.3.6 解析雨量に対する 3 時間降水量の閾値別降水スコ ア。夏実験期間のもの。検証格子は 20 km×20 km。左側 にバイアススコア、右側にエクイタブルスレットスコアを 示す。上段の (a), (b) は CNTL (青) および TEST (赤) のスコア、下段の (c), (d) は差分 (TEST-CNTL) を表 す。エラーバーは 95%の信頼区間である。

の利用によって、より解析時刻に近い気象現象をメソ 解析へ反映することができる。

三つ目は新規衛星データの利用である。Metopシリーズ最後の衛星となる Metop-C が 2018 年 11 月に打ち 上げられ、Metop-A, B と同様に ASCAT 海上風プロ ダクトが配信されている。全球解析においては 2019 年 12 月より Metop-C/ASCAT 海上風プロダクトの利用 を開始し、海上風データのカバレッジ増加により下層 風解析場の精度向上に寄与している。メソ解析におい ても Metop-C/ASCAT 海上風の早期利用開始を目指 す必要がある。

参考文献

- 守谷昌己,2016:マイクロ波散乱計の全球解析での利用 方法の変更及びメソ解析での利用開始.平成28年度 数値予報研修テキスト,気象庁予報部,55-57.
- 原旅人, 倉橋永, 2017: メソ数値予報システムの特性の 変化. 平成 29 年度数値予報研修テキスト, 気象庁予 報部, 48–55.
- 太原芳彦, 1999: マイクロ波散乱計. 数値予報課報告・ 別冊第 45 号, 気象庁予報部, 27-43.
- 太田行哉, 岡部いづみ, 小屋松進, 西本秀祐, 谷寧人, 2019: メソ解析における観測データ利用の改良及び メソ数値予報システムにおける北西太平洋高解像度 日別海面水温解析の利用開始. 令和元年度数値予報 研修テキスト, 気象庁予報部, 61-67.

4.4.1 はじめに

マイクロ波イメージャは、地球大気や地表面からの マイクロ波放射を観測するセンサーであり、昼夜を問 わず雲・降水域においても、大気中の水蒸気量の情報 を得ることが出来る(竹内 1999)。現在の気象庁のメソ 解析では、海上のマイクロ波イメージャデータを利用 して、晴天域では輝度温度を直接同化し、降水域では 輝度温度から推定(リトリーブ)した降水強度を同化 している。メソ解析のデータ同化に利用しているマイ クロ波イメージャは、GCOM-W衛星搭載のAMSR2、 DMSP衛星(17号、18号)搭載のSSMIS、GPM衛 星搭載のGMIである。現在の気象庁の数値予報シス テムで利用しているマイクロ波イメージャのセンサー と周波数の一覧を表 4.4.1 に示す。

メソ解析におけるマイクロ波イメージャ観測データ の利用は2003年10月に開始された。当時はマイクロ 波イメージャで観測された輝度温度から降水強度及び 可降水量をリトリーブし、4次元変分法で同化してい た(佐藤2003)。当時のシステム導入前に行われた解析 予報サイクル実験では、3時間降水量予報のスレット スコアとバイアススコアが改善する結果が得られた。 2010年には輝度温度から可降水量に変換する際の変換 誤差を混入させないために、リトリーブ可降水量の代 わりに観測された輝度温度を直接同化するように変更 された(計盛2011)。その後衛星の世代交代に伴って利 用するセンサーが順次更新され現在に至る。

今後のさらなるマイクロ波イメージャデータの利用 促進のために、現在のマイクロ波イメージャデータ同 化の問題点や影響を改めて確認する必要がある。以降 ではマイクロ波イメージャデータ同化の影響や問題点 について、最新の気象庁メソ数値予報システムを用い て調査した結果を報告する。

4.4.2 調査方法

メソ解析におけるマイクロ波イメージャデータ同化 の影響を調査するために、マイクロ波イメージャを同 化しない実験(棄却実験)を行った。実験には2018年 6月時点での気象庁メソ数値予報システムと同等のシス テムを用いた。基準となるコントロール実験(CNTL) は、現業システムと同じ観測データセットと数値予報 システムを用いたもの、テスト実験(TEST)はCNTL からマイクロ波イメージャ(GMI, AMSR2, SSMIS)の 輝度温度データと輝度温度からリトリーブした降水強 度のデータを同化しないように設定したものである。 TEST と CNTLの結果を比較することでマイクロ波イ メージャのデータ同化が解析値・予測値に与える影響 を調査した。実験期間は、2017年6月21日から2017 年7月8日までである。 表 4.4.1 2019 年 12 月現在の気象庁の数値予報システムで 利用中のマイクロ波イメージャの観測周波数一覧。単位は GHz。黒下線はメソ・局地解析で同化している周波数、赤 下線は全球解析で同化している周波数を表す。偏波は観測 されるマイクロ波放射が、垂直偏波(V)か水平偏波(H) であることを示す。AMSR2の89 GHzの入射角の異なる 2 種類のものは、89A と 89B で示す。GMIの183.31±3 等の表記は、水蒸気の吸収線 183.31 GHz の両側で測定さ れていることを意味する。

偏波			センサー名		
	AMSR2	GMI	SSMIS	MWRI	WindSat
V	6.925				6.8
Н	6.925				6.8
V	7.3				
Η	7.3				
V	10.65	10.65		10.65	10.7
Η	10.65	10.65		10.65	10.7
V	18.7	18.7	19.35	18.7	18.7
Η	18.7	18.7	19.35	18.7	18.7
V	23.8	23.8	22.235	23.8	23.8
Η	23.8			23.8	23.8
\mathbf{V}	36.5	36.64	<u>37</u>	36.5	$\underline{37}$
Η	36.5	36.64	37	36.5	37
\mathbf{V}	<u>89A</u>	<u>89</u>	91.655	89	
Η	89A	89	91.655	89	
V	89B				
Η	89B				
V		166			
Η		166			
V		183.31 ± 3			
Η			183.31 ± 3.0		
V		183.31 ± 7			
Н			183.31 ± 6.6		
Н			183.31 ± 1.0		

4.4.3 解析値と第一推定値への影響

マイクロ波イメージャを棄却することで第一推定値の 精度がどのように変化したのかを調べるために、観測値 と第一推定値の差 (FG departure) の統計結果を TEST と CNTL で比較する。図 4.4.1 に、TEST と CNTL で 共通に利用され、水蒸気に感度のあるマイクロ波水蒸 気サウンダ MHS、ラジオゾンデの相対湿度、GNSS 可 降水量について、チャンネル・高度別に FG departure の標準偏差の CNTL からの変化率およびデータ利用数 の変化率を示す。TEST では CNTL と比べて、マイク ロ波水蒸気サウンダ MHS、ラジオゾンデの 850 hPa から 600 hPa 付近の相対湿度、GNSS 可降水量の FG departure の標準偏差が増大した。これはマイクロ波 イメージャを棄却したことによって、TEST の第一推 定値の水蒸気場の精度が悪化したことを意味している。 また、水蒸気に感度のあるデータでは第一推定値から の乖離が大きくなり、品質管理でリジェクトされるデー タが増加することで、利用データ数が減少した。この

¹ 清水 宏幸

図 4.4.1 FG departure の標準偏差の CNTL からの変化率 とデータ使用数の変化率 [%]。(a) はマイクロ波水蒸気サウ ンダ MHS、(b) はラジオゾンデの相対湿度、(c) は GNSS 可降水量に関する図をそれぞれ示す。誤差幅は差の有意判 定で用いた 95%の信頼区間を表し、丸印は統計的に有意な 差であることを示す。

結果からマイクロ波イメージャは解析値および第一推 定値の水蒸気場の精度向上に寄与していることが確認 できた。

解析場の変化を見るために、実験期間平均の解析値 のTEST と CNTL の差を見る。図 4.4.2 に実験期間平 均の可降水量の水平分布と、比湿の帯状平均鉛直断面 図 (TEST-CNTL)を示す。可降水量の水平分布(図 4.4.2 左図)を見ると、マイクロ波イメージャを利用 している海上を中心に可降水量が減少している。また 比湿の帯状平均鉛直断面図(図 4.4.2 右図)を見ると、 900 hPa から 600 hPa 付近の比湿が TEST で減少して いる。これらの結果から平均的にはマイクロ波イメー ジャは対流圏中下層の水蒸気量を増加させる効果があ ることが確認された。

図 4.4.3(a) に CNTL と TEST で共通に利用されて いるラジオゾンデの FG departure と観測値 – 解析値 (AN departure)の平均を示す。CNTL 実験ではモデ ルがラジオゾンデの観測に対して湿潤バイアスであっ た。TEST 実験では 925 hPa 付近で乾燥バイアスが増 大したが、多くの高度で湿潤バイアスを解消するよう に変化した。これはマイクロ波イメージャのデータ同 化が平均的にはモデルの湿潤バイアスを拡大させてい ることを表している。図 4.4.3(b) に CNTL で同化利用

図 4.4.2 実験期間平均の解析値の TEST-CNTL。左図は 可降水量の水平分布 [mm]、右図はメソ領域における比湿 の帯状平均鉛直断面図 [g/kg] を示す。右図の横軸は緯度、 縦軸は高度 [hPa] を対数軸で表す。

図 4.4.3 (a) ラジオゾンデ相対湿度の FG departure (破線) と AN departure (実線)の平均 [%]。(b)(a) と同じ。た だしマイクロ波イメージャの統計 [K]。黒線は CNTL、赤 線は TEST の結果を示す。

されたマイクロ波イメージャ輝度温度のFG departure と AN departure の平均を示す。いずれのセンサーも モデルに対して正のバイアスとなっており、これがモ デルの湿潤バイアスを増大させている原因と考えられ る。メソ解析では、全球解析で決定された変分法バイ アス補正係数を利用してバイアス補正を行っているが、 モデルの特性の違いにより、バイアス補正に用いてい る説明変数の特性が全球解析とメソ解析で異なる。そ の結果、全球解析の説明変数で最適化されたバイアス 補正係数がメソ解析にとって最適なものになっていな いため、メソ解析でのモデル予報値に対するバイアス 補正が十分に機能していないことが考えられる。

4.4.4 予測値への影響

降水予測への影響を評価するために、実験期間にお けるバイアススコア、エクイタブルスレットスコアを 図 4.4.4 に示す。TEST では CNTL に比べて 1 mm/3h から 25 mm/3h の雨に対して、有意にバイアススコア が減少した。これは海上を中心に可降水量が減少した 影響を受け、降水予測の頻度が減少した結果であると 考えられる。また TEST では CNTL に比べてエクイタ ブルスレットスコアが概ね減少傾向であり、降水予測 の精度が悪化した。これらの結果から、マイクロ波イ メージャデータを同化することで降水予測の頻度を増 加させる効果と、降水予測の精度を向上させる効果が あることを確認できた。 図 4.4.5 にラジオゾンデの混

図 4.4.4 実験期間における解析雨量に対する 3 時間降水量の閾値別 [mm/3h]の検証結果。検証格子は 20 km。(a)はバイアススコア、(b) エクイタブルスレットスコア。上段が TEST(赤)、CNTL(青)それぞれのスコア。下段が TEST と CNTL の差 (TEST-CNTL)、エラーバーは 95%の信頼区間を示す。

図 4.4.5 ラジオゾンデの混合比に対する 24 時間予測の 平均誤差と二乗平均平方根誤差。上段が TEST(赤)、 CNTL(青)それぞれの結果。下段が TEST と CNTLの差 (TEST-CNTL)、エラーバーは 95%の信頼区間を示す。

合比に対する 24 時間予測の平均誤差 (ME) と二乗平均 平方根誤差 (RMSE) を示す。CNTL では中下層にかけ て混合比が正バイアスとなっているが、TEST では全 体的に正バイアスを小さくする方向に変化した。他の 予測時間においても、同様の傾向であった。このこと から、マイクロ波イメージャはモデル下層の湿潤バイ アスを増大させていることが分かった。これは第 4.4.3 項で示したようにマイクロ波イメージャがモデルに対 して正のバイアスをもって同化されていることに起因 すると考えられる。一方で CNTL よりも TEST の方 がRMSEが大きくなったことから、マイクロ波イメー ジャには混合比の予測誤差を減らす効果があり、水蒸 気場の予測精度向上に寄与していることが確認された。

4.4.5 事例

マイクロ波イメージャを同化することによって、平 均的には海上の可降水量が増加し降水予測の頻度を増 加させること、水蒸気場の予測誤差が減少し降水予測 の精度を向上させることが確認された。以下では、実 験期間中の降水予測について TEST と CNTL の差が 特に大きく、マイクロ波イメージャデータ同化の影響 が顕著であった事例を示す。

マイクロ波イメージャを同化することによって降水予 測が改善した 2017 年 7 月 4 日 12UTC 初期値の事例を 図4.4.6に示す。この事例は島根県で4日夜から5日朝 にかけて記録的な大雨となり5日朝に大雨特別警報を発 表した事例である。CNTLでは島根県付近で50mm以 上の強い降水帯を予測していた。一方で TEST では島 根県付近に降水帯を予測していたが、降水量が CNTL に比べて少なくなっていた。図 4.4.7(a) は、CNTL の 解析時刻において同化利用されたマイクロ波イメージャ の23 GHz帯のチャンネルの観測地点分布と可降水量 の水平分布を示す。23 GHz 帯は対流圏中・下層の水蒸 気に感度のある周波数である。CNTL では対馬海峡付 近から日本海南部にかけてマイクロ波イメージャの輝 度温度データが同化されており、同領域で CNTL の方 が可降水量が多く解析された (図 4.4.7(b))。また、そ の領域が6時間予測にかけて島根県付近に流入してい た (図 4.4.7(c))。他にも実験期間中には予報期間前半 に TEST の方が CNTL よりも降水量が少なくなった 事例が多く見られた。この結果から、海上でマイクロ 波イメージャが同化されることによって、陸上に流れ 込む水蒸気場の予測がより現実に近くなり、降水強度 予測を改善することが分かった。

4.4.6 まとめと今後の予定

マイクロ波イメージャの輝度温度および輝度温度か らリトリーブした降水強度データを同化することによ る気象庁のメソ数値予報システムへの影響について述 べた。マイクロ波イメージャデータの棄却実験の結果 から、マイクロ波イメージャは対流圏中下層の水蒸気 場の解析精度向上に寄与し、降水予測精度を向上させ ることが確認された。これはマイクロ波イメージャを 導入する際に行われた解析予報サイクル実験の結果と 概ね整合的な結果である。一方で、マイクロ波イメー ジャを同化することでモデルの湿潤バイアスをさらに 増加させる悪影響も確認された。これは現在のメソ解 析が全球解析で決定された変分法バイアス補正係数を 用いてバイアス補正を行っているためと考えられる。 今後メソ解析では asuca-4DVar への変更が予定されて おり、メソ解析自身で変分法バイアス補正が行われる

図 4.4.6 2017 年 7 月 4 日 18UTC の前 3 時間降水量 [mm/3h]。(a) は TEST の予測値、(b) は CNTL の予測値、(c) は解析 雨量。予測値は 2017 年 7 月 4 日 12UTC 初期値における 6 時間予測の降水量を示す。

図 4.4.7 (a)2017 年 7 月 4 日 12UTC の解析において CNTL で同化利用されたマイクロ波イメージャ輝度温度の観測地点分布 と可降水量 [mm] の解析値。(b)2017 年 7 月 4 日 12UTC における TEST と CNTL の可降水量解析値の差分 [mm]。(c)(b) と同じ。ただし 6 時間予測値における可降水量の差分 [mm]。

ようになる予定であるため、メソ解析におけるマイク ロ波イメージャ輝度温度のバイアスは改善されると考 えられる。

全球解析では 2019 年 12 月にマイクロ波イメージャ 輝度温度を雲・降水域も含めて同化利用する(全天同 化)変更をしており、雲・降水域における水蒸気場の解 析精度だけでなく、4次元変分法によってその水蒸気場 を再現するように気温や風の解析精度の向上が確認さ れた。現在のメソ解析の輝度温度同化は、雲・降水の 影響を受けていない晴天域に限定され、降水域ではマ イクロ波イメージャの輝度温度からリトリーブされた 降水強度が同化されている。雲・降水域においても輝 度温度で直接同化する方が水蒸気の情報をより正確に 引き出すことができると考えられるので、メソ解析に おいても輝度温度全天同化の開発を進めていく予定で ある。また、全球解析で利用していて、メソ解析で利 用していないマイクロ波イメージャ (FY-3C/MWRI, Coriolis/WindSat) があり、それらの利用に向けた開 発も予定している。

参考文献

- 計盛正博,2011:メソ解析における衛星輝度温度データの同化.平成23年度数値予報研修テキスト,気象庁 予報部,3-8.
- 佐藤芳昭,2003: メソ解析へのマイクロ波放射計データ 同化. 平成15年度数値予報研修テキスト,気象庁予 報部,7-12.
- 竹内義明, 1999: マイクロ波放射計. 数値予報課報告・ 別冊第45号, 気象庁予報部, 75–96.

4.5.1 はじめに

気象衛星には、赤道の上空約 36,000 km の位置で地 球の自転に合わせて周回する静止気象衛星と、上空約 1000 km 以下の低軌道で約 1~2 時間で地球を1 周する 極軌道衛星がある。極軌道衛星は、静止気象衛星より も低い軌道を通るため、より高密度な観測が得られる が、同じ地点を通るのは1日2回程度と観測頻度は限定 的である。一方、静止気象衛星は1機で北半球および 南半球の低緯度から中緯度までの広い範囲を高頻度に 観測することが出来る。例えば日本のひまわり8号は、 10 分毎にフルディスク観測(衛星から見える地球全体 の観測)を実施できる。観測密度についても、ひまわ り8号や米国の GOES-16 による赤外画像の水平格子 間隔は約2km、欧州の Meteosat Second Generation による赤外画像の水平格子間隔は約3km(共に衛星直 下点)であり、上記のような広範囲をこれだけの密度 で観測できる機器は従来型観測測器も含めて他にない。 このように、静止気象衛星からは高頻度・高解像度な 観測データが得られ、刻々と状況が変化する気象現象 の実況監視や予測に必要不可欠なものとなっている。

静止気象衛星に搭載された赤外イメージャの観測デー タから作成される晴天放射輝度温度プロダクト (CSR: Clear-Sky Radiance) とは、赤外画像のピクセルデー タ毎に晴天判別を行い、ある一定の領域(セグメント という)内にある晴れピクセルだけの放射輝度や輝度 温度の平均値を算出したプロダクトである。主にデー タ同化されるのは、対流圏の水蒸気に関する情報を持 つ水蒸気チャンネルの CSR で、これらの観測データ を利用する目的は、対流圏の水蒸気に関する観測情報 を数値予報システムの初期値に反映させ、解析精度を 向上させることである。特に、モデルでは現実のよう な水蒸気場のメリハリを維持することが難しいため、 データ同化により解析毎に補正する必要がある。初期 値における水蒸気場がより現実に近い、メリハリのあ るものに改善することにより、降水の予測精度の改善 も期待できる。

数値予報現業センターでの利用は、2002 年に欧州 中期予報センター (ECMWF: the European Centre for Medium-Range Weather Forecasts) が全球解析へ Meteosat-7 の水蒸気チャンネルの CSR データ (輝度温 度)を同化したのが始まりである (Munro et al. 2004)。 既に、静止気象衛星による観測データとして大気追跡風 (AMV: Atmospheric Motion Vector) のデータは同化 されていたが、水蒸気チャンネルの場合、晴天域では高 度推計が難しいという問題があり (Velden et al. 1997)、 その対応策として輝度温度データの直接同化が有効と 考えられていた背景がある。今日では、多くの数値予報 現業センターで水蒸気チャンネルの CSR データを直接 同化している (Szyndel et al. 2005; Stengel et al. 2009; Zou et al. 2011, 2015)。気象庁でも、2003 年には極軌道 NOAA 衛星に搭載された鉛直サウンダ (ATOVS: the Advanced TIROS Operational Vertical Sounder) に よる輝度温度データの全球解析への直接同化を開始し (計盛・岡本 2004)、2008 年には静止気象衛星 MTSAT-IR による水蒸気チャンネルの CSR(Uesawa 2009)の 輝度温度データ同化が開始された (石橋・上沢 2007; Ishibashi 2008)。その後、2010 年にメソ解析への輝度 温度データ直接同化が開始され、同時に CSR データの 同化も開始された (Kazumori 2014)。

また近年では、晴天のみでなく雲域も含めた水蒸気 チャンネルの全天放射輝度 (ASR: All-Sky Radiance) の 利用についても開発・研究が進められている (Lupu and McNally 2012; Burrows 2018; Okamoto 2013, 2017; Zhang et al. 2016; Harnisch et al. 2016)。

4.5.2 ひまわり 8 号による CSR データ

2015年7月、MTSAT-2に代わり、静止気象衛星ひ まわり8号が本運用機となった。静止位置は東経140.7 度で、日本列島を含む極東アジアからオーストラリア、 太平洋にかけての低緯度から中緯度までの広い観測領 域を持つ。観測データのスペックは飛躍的に向上し、 10分毎のフルディスク観測の他、任意の領域を2.5分 または30秒毎に観測することもできるようになった (Bessho et al. 2016)。CSR データ利用の観点からは、 観測データの水平解像度が向上したことや、バンド毎 に晴天率を算出できるようになったため水蒸気バンド において晴天と判別される領域が拡大したこと(プロ ダクトの算出数増加)に加え、水蒸気バンドが1つか ら3つに増強され、より下層の水蒸気に感度のあるバ ンドのCSR データが利用できるようになったことが大 きな進歩である (Imai and Uesawa 2016)。

気象衛星センターでは、ひまわり8号に搭載された イメージャ (AHI: Advanced Himawari Imager) によ る 10 分毎のフルディスク観測データを用いて、全 16 バ ンドのうち赤外バンドの10バンド(バンド7-16、そ のうちバンド 8-10 が水蒸気バンド) についての CSR を作成している²。水平解像度の異なる2種類のデータ セットがあり、一つは、16×16ピクセル(1 セグメン ト、衛星直下点で約 32 km 四方)内にある晴天ピクセ ルの放射輝度、及び、輝度温度の平均値を算出したも ので、セグメント内の晴天ピクセルの割合(晴天率)、 晴天ピクセルの輝度温度の標準偏差などの情報が付与 されている。(以下、GSM 用 CSR データ、または単に CSR データと呼ぶ。) もう一つは、ピクセルデータに 晴天判別の情報(晴れ、曇りのいずれか)を付与し、そ のままの水平解像度で出力したプロダクト(雲域も含 まれる)で、日本周辺の領域について庁内向けに配信 されている。(以下、ピクセル輝度温度データと呼ぶ。)

¹ 岡部 いづみ

² 雲域判別には、可視バンドの観測データも用いられている。

2022 年、ひまわり 8 号に代わり本運用を開始する計 画のひまわり 9 号にも、ひまわり 8 号と同スペックの イメージャ (AHI) が搭載されており、同様の仕様で GSM 用 CSR とピクセル輝度温度データが作成される 予定である。

4.5.3 数値予報システムでの利用と最近の改良

2019年12月現在、気象庁数値予報システムのメソ 解析では、全球・局地解析と同じく、水蒸気バンドの GSM 用 CSR データを利用している。全球・メソ解析 では全3つの水蒸気バンド8,9,10を利用しており、局 地解析ではバンド8のみを利用している。各解析の同 化窓の中で、他の観測データと同様に1時間毎にデー タ同化をしている。メソ解析の同化窓は、解析時刻の -3時間前から解析時刻までで、解析時刻から-3時間、 -2 時間、-1 時間、±0 時間の4 時刻分の第一推定値 が作成される。各第一推定値の時刻の±30分に観測さ れたデータがそれぞれ正時の観測データとして同化さ れる。ひまわり8号のCSR データは10分毎に入電す るが、現時点ではデータ同化の頻度に併せて正時(観 測時刻 50-59 分)のデータのみを利用している。ひま わり8号 CSR の利用開始当時の詳細については、計 盛 (2016)、Kazumori (2018) を参照されたい。メソ解 析の同化窓とひまわり8号 CSR データの同化につい ては、計盛 (2015) にも詳細な解説がある。

2017 年 3 月よりメソ解析でのひまわり 8 号による CSR データの同化が開始された当時は、MTSAT-2の IR3(水蒸気)チャンネルに相当するバンド8(中心波 長: 6.2 µm)のみが利用されていた (計盛 2016)。バン ド9,10を利用するには後述のとおり調査や工夫が必 要であり、ひまわり8号のCSRデータの早期利用開 始を目指していた当時は、その後の課題とされた。図 4.5.1 に、代表的な大気プロファイル (a), (b) に対して 描画したバンド 8,9 (中心波長: 6.9 µm)、10 (中心 波長: 7.3 µm)の荷重関数 (c), (d), (e) を示す。バン ド9.10はバンド8に比べて荷重関数がピークとなる 高度が低いため、大気が乾燥した環境下では地表面か らの影響を受ける。そのようなバンドの CSR は、放射 計算において、地表面に関するパラメータの精度が計 算輝度温度³の精度にも影響する。CSR データの同化 では、計算輝度温度の精度が高いほど、より正確に大 気に関する観測情報(修正量)を取り出すことが出来 るため、計算輝度温度の精度は重要である。そのため、 それらの CSR データを利用するには、地表面に関する パラメータの精度が十分であるかの確認や、その精度 を向上させるための工夫が必要であった。

バンド 9,10 の CSR データを陸域でも利用するため、 以下の 2 点の改良を行った。

- 図 4.5.1 代表的な大気プロファイル (a) 気温、 (b) 水蒸気 とひまわり 8 号水蒸気バンド (c) 8, (d) 9, (e) 10 の荷重 関数。太実線は米国標準大気、細線は中緯度、破線は低緯 度、点線は高緯度の代表的な大気プロファイルの場合を表 す。縦軸は気圧高度 [hPa]。
- a. 地表面射出率を 0.9 の固定値から、植生や季節変化 を考慮した気候値に変更。
- b. 地表面温度を第一推定値から、窓バンドの CSR デー タからのリトリーブ値に変更。

気候値の地表面射出率としては、高速放射伝達モデ ル (RTTOV: Radiative Transfer for TOVS, Saunders et al. 2018)の公式サイト⁴で公開されている version 11.3の赤外データ用地表面射出率アトラス (Borbas and Ruston 2010)を用いた。a, bの変更点それぞれの効果 を確認するため、2018年10月時点の数値予報システ ムのメソ解析と同様の設定を CNTL、これに a の変更 のみ適用した設定を TEST-A、a と bの変更を適用し た設定を TEST-B とし、これらの放射計算を含むデー タ同化前処理の実行結果を比較した。図 4.5.2 は 2017 年 12 月の TEST-A, TEST-B の計算輝度温度(バンド

³数値予報モデルから計算した輝度温度のこと。モデル予測 変数である気温、比湿などから放射伝達モデルで計算される。 データ同化において、第一推定値として使われる。

⁴ https://www.nwpsaf.eu/site/software/rttov/ download/

10)の期間平均値の CNTL からの差である。TEST-A では最大 0.2 K 程度、TEST-B では最大 1.5 K 程度の 差が見られ、b の改良の方が効果の大きいことが分か る。同期間の CNTL, TEST-A, TEST-B について作成 した観測値と第一推定値の差のヒストグラム (図 4.5.3) で確認しても、標準偏差が CNTL と比較して TEST-A での減少より TEST-B での減少の方が顕著であること がわかる。b のリトリーブ地表面温度を用いた計算輝 度温度の算出方法については、付録 4.5.A に記す。以 上の改良を、2018 年 10 月 18 日に全球解析に、2019 年 3 月 26 日にメソ解析に適用した。これらの改良を 適用した実験結果については、岡部 (2019)、太田ほか (2019) を参照されたい。

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 図 4.5.2 ひまわり 8 号バンド 10 の計算輝度温度の各変更 を加えた場合の期間平均変化量 [K]。(a) 地表面射出率 を 0.90 から気候値に変更した場合(TEST-A)の計算輝 度温度の差。(b)(a)に地表面温度を第一推定値からリト リーブ値に変更した場合(TEST-B)。統計期間は 2017 年 12 月。

4.5.4 メソ解析における今後の課題

メソ解析は、顕著現象の予報作業にとって重要なメ ソモデルの初期値である。急激に変化するメソスケー ルの現象を精度良く予測するためには、対流圏の水蒸

図 4.5.3 ひまわり 8 号バンド 10 の計算輝度温度の各変更を 加えた場合の、観測値と第一推定値の差(ただし観測値は バイアス補正前の値)のヒストグラム。CNTL は 2018 年 10 月時点の数値予報システムのメソ解析と同等の設定で、 TEST-A, TEST-B の定義は図 4.5.2 と同じ。ba は期間平 均バイアス、sd は標準偏差、num は品質管理をパスした データ数。統計期間は 2017 年 12 月。

気の流れを常時捉え、迅速に反映させた初期値が求め られる。静止気象衛星から得られる観測データは、常時 迅速に水蒸気の流れを捉えることの出来る重要なデー タであり、現状より更に有効に利用するための開発が 必要である。その一つに、より水平解像度の高いピク セル輝度温度データの利用が挙げられる。ピクセル輝 度温度データについては、より水平解像度の高い局地 解析での利用から開発を進めているところである。以 下、その開発段階で分かったピクセル輝度温度データ の特徴と、メソ解析での利用に向けた課題について(1) で述べる。また、GSM 用 CSR データの利用で用いて いる雲域除去手法についても、改善の余地があると考 えられるので、(2)に記す。その他、中・長期的な課題 としては、全天放射輝度温度 (ASR: All-sky radiance) の同化への移行や、現在は1時間毎のデータ同化となっ ているところ、10 分毎に作成される CSR データをよ り有効に活用するため、より高頻度なデータ同化など が挙げられる。

(1) ピクセル輝度温度データの利用に向けて

GSM 用 CSR データは、衛星直下点で水平格子間隔 が約 32 km となっており、メソ解析のインナーモデル の水平格子間隔 15 km よりも水平解像度が低い。一方、 ピクセル輝度温度データは衛星直下点で水平格子間隔 が約 2 km なので、Super-observation 手法⁵などの処 理を用いて、適切な水平格子間隔のデータに変換する ことが出来るなどの利用メリットがある。図 4.5.4 に 2019 年 11 月 7 日 00UTC のバンド 8 の GSM 用 CSR データと、同時刻のピクセル輝度温度データの下記 (a), (b), (c) それぞれの条件をパスしたデータの分布図を

⁵ 高密度な観測データを空間平均する手法。既に全球解析で は、マイクロ波イメージャの観測データをインナーモデルの 水平格子間隔に合わせるなどの目的で導入されている。

示す。メソ解析では GSM 用 CSR データを 45 km 毎 の水平格子間隔で間引いて利用している。比較しやす いように (b), (c) も同じ水平格子間隔で間引いた図と した。

- (a) メソ解析で実際に利用された GSM 用 CSR データ (バンド 8 の晴天率が 90 %以上かつバンド 13 の 晴天率が 55 %以上)
- (b) 晴天域の(晴天と判別された)全てのピクセル輝 度温度データ
- (c) バンド8の晴天率が0より大きい全ての GSM 用 CSR データ

2019 年 12 月現在、GSM 用 CSR データとピクセル 輝度温度データでは、別の手法で算出された晴天判別 の結果が格納されているため、図 4.5.4 の (b) と (c) で分布に差が見られる。GSM 用 CSR データでは、雲 マスク (Imai and Yoshida 2016) の結果、雲域と判定 されたピクセルにおいて、バンド毎に大気の透過率を 計算し、衛星から雲頂高度 (Mouri et al. 2016) までの 透過率が0.0001より小さい場合は晴れとする「晴れ復 活処理」が適用されている。一方、ピクセル輝度温度 データでは、雲マスクの結果がそのまま格納されてい るため、GSM 用 CSR データより晴天域が狭い⁶。ま た、ピクセル輝度温度データには「晴天率」という概 念がなく、品質管理では、晴れ又は曇りのいずれかの 雲マスクの結果を用いるしかないため、ピクセル輝度 温度データに適した観測誤差を設定するなどの対応が 必要である。GSM 用 CSR データと比較して観測誤差 は、雲域の誤混入の確率が高くなる点では、より大き くなるはずだが、水平誤差相関は、より小さくなると考 えられる。水平間引き距離も適切に決める必要がある。 以上の課題をクリアした上でピクセル輝度温度データ の利用に期待されることとしては、高解像度できめ細 かな観測情報を得られる点である。図 4.5.5 に、ある1 時刻分のGSM用CSRの入電データのプロット図と、 メソ解析のインナーモデル解像度に合わせて 15 km の 水平格子間隔に内挿したピクセル輝度温度データの分 布図を示す。後者の方が、きめ細かい分布の情報を持 つことが一目瞭然である。

(2) 雲域除去手法

GSM 用 CSR データの品質管理手法では、雲域の誤 混入データを除去する目的で、同化する水蒸気バンドの 晴天率 90 %未満、または、窓バンド (バンド 13)の晴 天率がバンド 8 の場合は 55 %未満、バンド 9 は 60 %未 満、バンド 10 は 65 %未満で、それぞれの水蒸気バン

図 4.5.4 観測時刻 2019 年 11 月 7 日 00UTC のひまわり 8 号バンド 8 の GSM 用 CSR またはピクセル輝度温度デー タの観測値と第一推定値の差 [K]。 (a) メソ解析で利用さ れた GSM 用 CSR データ、 (b) 晴天域のピクセル輝度温 度データ、 (c) バンド 8 の晴天率が 0 より大きい地点の GSM 用 CSR データ。

ド CSR データを除去している。図 4.5.6 にメソ解析で 利用された 2018 年 7 月 1 日 00UTC のバンド 8 の CSR データ分布図を示す。三陸沖からオホーツク海にかけ ては殆どデータが使われていない。図 4.5.7 に同時刻

⁶ 将来的にはピクセル輝度温度データにも晴れ復活処理が適 用される予定である。

220
 230
 240
 250
 260
 270
 280
 290
 図 4.5.5
 観測時刻
 2019 年 11 月 7 日 00UTC の (a) ひまわり8 号バンド8のGSM 用 CSRの入電データと (b) 同観測時刻のピクセル輝度温度データを水平格子間隔 15 kmでプロットした輝度温度 [K]。

のバンド8とバンド13の晴天率を示す。前述の利用 データがない領域では、バンド8の晴天率が100%に 近い領域もあるが、バンド13の晴天率が品質管理の閾 値以下となっていたため除去された。このように、下 層雲域ではバンド8では雲頂が見えない(雲の影響を 受けていない)にも拘らずバンド 13 の晴天率による品 質管理で除去されることにより利用されない場合があ り、再考の余地がある。しかし、安易にバンド13の晴 天率による品質管理を廃止したり、その閾値を下げた りすれば、品質管理後のバンド8の CSR データに雲 域が誤混入する可能性が高まりかねない。雲域が混入 した CSR データは、同じ大気プロファイルの時に観測 されるはずの雲域の誤混入がない CSR データよりも、 輝度温度が低くなる。そのため、その CSR データを晴 天域で観測された輝度温度として同化すると、初期値 に誤った情報を与えることになる。そのため、雲域除 去手法については、十分に調査し、慎重にその手法の 改良を検討する必要がある。この課題は全球・局地解 析にも同様に当てはまる。

図 4.5.6 観測時刻 2018 年7月1日 00UTC のひまわり8号 バンド8の CSR データのメソ解析での利用状況。青点が 利用された地点、赤点が窓バンドの晴天率による品質管理 により不使用となった地点、灰色点はその他の品質管理条 件で不使用となった地点。

図 4.5.7 図 4.5.6 と同時刻のひまわり 8 号 CSR の (a) バン ド 8 及び (b) バンド 13 の晴天率 [%] (Clear rate)。ただ し、メソ解析に利用されなかった地点も含む。

付録 4.5.A リトリーブ地表面温度の算出

手順は以下①~③のとおり。

- 地表面温度 *T_S* の誤差(変化率)による輝度温度 *T_B* の誤差(変化率)を求める。
- ② 窓バンドの観測輝度温度と第一推定値の大気プロ ファイルからリトリーブされた地表面温度を求め る。
- ②で求めたリトリーブ地表面温度を用いて計算輝 度温度 T_B'を求める。
- 地表面温度 *T_S* の誤差(変化率)による輝度温度 *T_B* の誤差(変化率)を求める。

$$P_1 = 2hc^2 N_u^3 \quad [mkgs^{-3}]$$

$$P_2 = \frac{ch}{k} N_u \approx 1.438775 \times N_u \quad [K]$$

とおく。hはプランク定数、kはボルツマン定数、cは 光速度、 N_u は波数。ある波数の分光放射輝度 Bと、そ れが黒体放射と仮定して算出した気温つまり輝度温度 T_B は以下のプランクの法則が成り立つ。

$$B(N_u, T_B) = \frac{P_1}{\exp\left(\frac{P_2}{T_B}\right) - 1}$$
(4.5.1)

また、ある大気プロファイル・地表面データから求 める、ある波数 N_u の分光放射輝度 L は、

$$L(N_u) = \tau_s \varepsilon_s B(N_u, T_S) + \int_{\tau_s}^1 B(N_u, T) d\tau + (1 - \varepsilon_s) \tau_s^2 \int_{\tau_s}^1 \frac{B(N_u, T)}{\tau^2} d\tau$$
(4.5.2)

 τ はある大気高度から衛星までの透過率、 τ_s は地表 面から衛星までの全層透過率。 ε_s は、地表面射出率。 第一項が地表面からの放射項、第二項が大気からの放 射項、第三項が反射項。 $L(N_u)$ に対する輝度温度 T_B は定義より、

$$L(N_u) = \frac{P_1}{\exp\left(\frac{P_2}{T_B}\right) - 1}$$
(4.5.3)

が成り立つので、(4.5.1), (4.5.2), (4.5.3) から、

$$\frac{P_1}{\exp\left(\frac{P_2}{T_B}\right) - 1} = \tau_s \varepsilon_s \frac{P_1}{\exp\left(\frac{P_2}{T_S}\right) - 1}$$

$$+\int_{\tau_s}^1 B(N_u, T)d\tau$$
$$+(1-\varepsilon_s)\tau_s^2\int_{\tau_s}^1 \frac{B(N_u, T)}{\tau^2}d\tau$$
(4.5.4)

ここで、 T_S のみ変化した際の T_B の変化量を見積も りたいので、右辺は T_S のみの関数(T_S のみ変化する) とする。水蒸気チャンネルでは第三項(反射項)は他の 項に比べて十分小さいため無視する。また、第二項は T_S に依らないので、定数Cとおく。すると(4.5.4)は、

$$\frac{P_1}{\exp\left(\frac{P_2}{T_B}\right) - 1} \approx \tau_s \varepsilon_s \frac{P_1}{\exp\left(\frac{P_2}{T_S}\right) - 1} + C$$
(4.5.5)

 $a \gg b$ のとき、 $\frac{1}{\exp\left(\frac{a}{b}\right)-1} \approx \exp\left(-\frac{a}{b}\right)$ である。赤外の 場合 $\frac{P_2}{T_B} \gg 1$ なので、この関係が成り立ち、(4.5.5) は、

$$P_1 \exp\left(-\frac{P_2}{T_B}\right) \approx \tau_s \varepsilon_s P_1 \exp\left(-\frac{P_2}{T_S}\right) + C$$

$$(4.5.6)$$

両辺を全微分すると、

$$P_1 P_2 \frac{1}{T_B{}^2} \exp\left(-\frac{P_2}{T_B}\right) dT_B$$
$$\approx \tau_s \varepsilon_s P_1 P_2 \frac{1}{T_S{}^2} \exp\left(-\frac{P_2}{T_S}\right) dT_S$$

式を変形して、

$$dT_B \approx \tau_s \varepsilon_s \frac{T_B^2}{T_S^2} \exp\left(\frac{P_2}{T_B} - \frac{P_2}{T_S}\right) dT_S \qquad (4.5.7)$$

② 窓バンドの観測輝度温度と第一推定値の大気プロ ファイルから地表面温度をリトリーブするための 式を求める。

$$\frac{P_1}{\exp\left(\frac{P_2}{T_B}\right) - 1} = \tau_s \varepsilon_s \frac{P_1}{\exp\left(\frac{P_2}{T_S}\right) - 1} + \int_{\tau_s}^1 B(N_u, T) d\tau + (1 - \varepsilon_s) \tau_s^2 \int_{\tau_s}^1 \frac{B(N_u, T)}{\tau^2} d\tau$$
(4.5.4)

ここで、右辺の第二項+第三項の値を *L^{atm}* とおく。 リトリーブの精度を高めるためには、第二、第三項に
代入する T にも実況値を代入することが望ましいが、 現実には得られないため、第一推定値を用いる。窓バ ンドの晴天域の場合、そもそも第二、第三項は第一項 に比べて小さいため、実況値と第一推定値の差に起因 する誤差も、第一項のそれより十分小さい。観測輝度 温度 $T_{B_{13}}$ を T_B に代入、リトリーブ地表面温度を T_S ° と置いて T_S に代入し、

$$\frac{P_1}{\exp\left(\frac{P_2}{T_B_{13}^o}\right) - 1} \approx \tau_s \varepsilon_s \frac{P_1}{\exp\left(\frac{P_2}{T_S^o}\right) - 1} + L^{atm}$$

$$(4.5.8)$$

また、バンド 13 の計算輝度温度を $T_{B_{13}}^{b}$ 、第一推定 値の地表面温度を T_{S}^{b} として、(4.5.8) との差をとると、 L^{atm} は消えて、

$$\frac{P_{1}}{\exp\left(\frac{P_{2}}{T_{B_{13}}^{o}}\right)-1} - \frac{P_{1}}{\exp\left(\frac{P_{2}}{T_{B_{13}}^{b}}\right)-1}$$

$$\approx \tau_{s}\varepsilon_{s}\frac{P_{1}}{\exp\left(\frac{P_{2}}{T_{S}^{o}}\right)-1} - \tau_{s}\varepsilon_{s}\frac{P_{1}}{\exp\left(\frac{P_{2}}{T_{S}^{b}}\right)-1}$$

$$\exp\left(-\frac{P_{2}}{T_{B_{13}}^{o}}\right) - \exp\left(-\frac{P_{2}}{T_{B_{13}}^{b}}\right)$$

$$\approx \tau_{s}\varepsilon_{s}\exp\left(-\frac{P_{2}}{T_{S}^{o}}\right) - \tau_{s}\varepsilon_{s}\exp\left(-\frac{P_{2}}{T_{S}^{b}}\right)$$

$$\exp\left(-\frac{P_{2}}{T_{S}^{o}}\right)$$

$$\exp\left(-\frac{P_{2}}{T_{S}^{o}}\right)$$

$$\approx \exp\left(-\frac{P_{2}}{T_{S}^{b}}\right)$$

$$+\frac{1}{\tau_{s}\varepsilon_{s}}\left(\exp\left(-\frac{P_{2}}{T_{B_{13}}^{b}}\right) - \exp\left(-\frac{P_{2}}{T_{B_{13}}^{b}}\right)\right)$$

$$(4.5.9)$$

ここで、(4.5.9)の右辺を A と定義すると、

$$T_S{}^o \approx -\frac{P_2}{\log A} \tag{4.5.10}$$

(4.5.10) より、 T_S^o を、 $T_{B_{13}}^o$ と第一推定値の値 ($T_{B_{13}}^b$ 、 T_S^b)、プランク定数で表すことが出来る。

実際に観測しているセンサーは、中心波長の前後に ある程度広がりのある波長帯に感度を持つので、その 効果を補正する必要がある。数値予報システムで用い ている高速放射伝達モデル RTTOV では、衛星、セン サー毎に用意された定数ファイルに、そのための補正 係数(補正傾斜 bcs、補正切片 bco)が書かれている。 中心波長のみの理想的な計算値から補正値へは、以下 のような1次関数で変換している。

$$T_{B\,eff} = bcs \times T_B + bco \tag{4.5.11}$$

ただし、bcs はほぼ 1、bco は 0 に近い値になっている。つまり、 T_{Beff} と T_B はほぼ同じ値となる。(今回の変更では、 T_B に T_{Beff} を用いて考慮している。)

 ②で求めたリトリーブ地表面温度を用いて計算輝 度温度 T'_B を求める。

(4.5.7)を再掲。

$$dT_B \approx \tau_s \varepsilon_s \frac{T_B^2}{T_S^2} \exp\left(\frac{P_2}{T_B} - \frac{P_2}{T_S}\right) dT_S \qquad (4.5.7)$$

ここで
$$dT_S = T_S{}^b - T_S{}^o$$
 とすると、

$$dT_B \approx \tau_s \varepsilon_s \left(\frac{T_B^{\ b}}{T_S^{\ b}}\right)^2 \exp\left(\frac{P_2}{T_B^{\ b}} - \frac{P_2}{T_S^{\ b}}\right) \left(T_S^{\ b} - T_S^{\ o}\right)$$

$$(4.5.12)$$

よって、リトリーブ地表面温度を用いた計算輝度温 度 *T_B* ' は、

$$T_{B}' \approx T_{B} - dT_{B} \approx T_{B}^{b} \approx T_{s} \varepsilon_{s} \left(\frac{T_{B}^{b}}{T_{S}^{b}}\right)^{2} \exp\left(\frac{P_{2}}{T_{B}^{b}} - \frac{P_{2}}{T_{B}^{b}}\right) \left(T_{S}^{b} - T_{S}^{o}\right)$$

$$(4.5.13)$$

(4.5.13) により、リトリーブ地表面温度を用いた計 算輝度温度 T_B' が、第一推定値の地表面温度を用いた 計算輝度温度 T_B^b や、その他の第一推定値や定数など から得られるため、リトリーブ地表面温度を算出した 後に再度、放射伝達モデルを用いる必要はない。その ため、計算時間は殆ど増加しない。

参考文献

Bessho, K., K. Date, M. Hayashi, A. Ikeda, T. Imai, H. Inoue, Y. Kumagai, T. Miyakawa, H. Murata, T. Ohno, A. Okuyama, R. Oyama, Y. Sasaki, Y. Shimizu, K. Shimoji, Y. Sumida, M. Suzuki, H. Taniguchi, H. Tsuchiyama, D. Uesawa, H. Yokota, and R. Yoshida, 2016: An Introduction to Himawari-8/9 — Japan's New-Generation Geostationary Meteorological Satellites. J. Meteor. Soc. Japan, 94, 151–183.

- Borbas, E. E. and B. C. Ruston, 2010: The RTTOV Uwiremis IR land surface emissivity module. *Report NWPSAF-MO-VS-042, EUMETSAT*, 24pp.
- Burrows, C. P., 2018: Assimilation of radiances observations from geostationary satellites: first year report. EUMETSAT/ECMWF Fellowship Programme Research Report No. 47, 49pp.
- Harnisch, F., M. Weissmann, and Á. Periáñez, 2016: Error model for the assimilation of cloud-affected infrared satellite observations in an ensemble data assimilation system. Q. J. R. Meteorol. Soc., 142, 1797–1808, doi:https://doi.org/10.1002/qj.2776.
- Imai, T. and R. Yoshida, 2016: Algorithm Theoretical Basis for Himawari-8 Cloud Mask Product. Meteorological satellite Center Technical Note, 61, 1–17.
- Imai, T. and D. Uesawa, 2016: Clear Sky Radiance (CSR) product derived from Himawari-8 data. Meteorological Satellite Center Technical Note, 61, 53– 58.
- 石橋俊之, 上沢大作, 2007: 静止衛星イメージャ. 数値 予報課報告・別冊 53 号, 気象庁予報部, 106–120.
- Ishibashi, T., 2008: Assimilation of WV CSR from MTSAT-1R in the JMA global 4DVAR system. WGNE Blue Book, Res. Activ. Atmos. Oceanic Modell., 38, 1–9.
- 計盛正博, 岡本幸三, 2004: ATOVS 輝度温度の直接同 化. 数値予報課報告・別冊 50 号, 気象庁予報部, 93– 104.
- Kazumori, M., 2014: Satellite radiance assimilation in the JMA operational mesoscale 4DVAR system. *Mon. Wea. Rev.*, **142**, 1361–1381.
- 計盛正博, 2015: 静止気象衛星赤外イメージャ. 数値予 報課報告・別冊 61 号, 気象庁予報部, 55-60.
- 計盛正博,2016: ひまわり8号晴天放射輝度温度の利 用開始. 平成28年度数値予報研修テキスト,気象庁 予報部,46-49.
- Kazumori, M., 2018: Assimilation of Himawari-8 Clear Sky Radiance Data in JMA's Global and Mesoscale NWP System. J. Meteo. Soc. Japan, 96B, 173–192.
- Lupu, C. and A. P. McNally, 2012: Assimilation of cloud-affected radiances from Meteosat-9 at ECMWF. EUMETSAT/ECMWF Fellowship Programme Research Report, No. 25, 33pp.
- Mouri, K., H. Suzue, R. Yoshida, and T. Izumi, 2016: Algorithm Theoretical Basis Document of Cloud top height product. *Meteorological satellite Center Technical Note*, 61, 33–42.
- Munro, R., C. Köpken, G. Kelly, J.-N. Thépaut, and R. Saunders, 2004: Assimilation of Meteosat radi-

ance data within the 4D-Var system at ECMWF: Data quality monitoring, bias correction and single-cycle experiments. *Quart. J. Roy. Meteor. Soc.*, **130**, 2293–2313.

- 岡部いづみ、2019: ひまわり 8 号のバンド 9、10 及び
 Meteosat のチャンネル 6 の晴天放射輝度温度 (CSR: clear-sky radiance) データの追加利用. 令和元年度
 数値予報研修テキスト、気象庁予報部、56-57.
- Okamoto, K., 2013: Assimilation of overcast cloudy infrared radiances of the geostationary MTSAT-1R imager. Quart. J. Roy. Meteor. Soc., 139, 715–730.
- Okamoto, K., 2017: Evaluation of IR radiance simulation for all-sky assimilation of Himawari-8/AHI in a mesoscale NWP system. *Quart. J. Roy. Meteor.* Soc., 143, 1517–1527.
- 太田行哉, 岡部いづみ, 小屋松進, 西本秀祐, 谷寧人, 2019: メソ解析における観測データ利用の改良及び メソ数値予報システムにおける北西太平洋高解像度 日別海面水温解析の利用開始. 令和元年度数値予報 研修テキスト, 気象庁予報部, 61-67.
- Saunders, R., J. Hocking, E. Turner, P. Rayer, D. Rundle, P. Brunel, J. Vidot, P. Roquet, M. Matricardi, A. Geer, N. Bormann, and C. Lupu, 2018: An update on the RTTOV fast radiative transfer model (currently at version 12). *Geosci. Model Dev.*, **11**, 2717–2737, doi:https://doi.org/10.5194/ gmd-11-2717-2018.
- Stengel, M., P. Undén, M. Lindskog, P. Dahlgren, N. Gustafsson, and R. Bennartz, 2009: Assimilation of SEVIRI infrared radiances with HIRLAM 4D-Var. *Quart. J. Roy. Meteor. Soc.*, **135**, 2100– 2109.
- Szyndel, M. D. E., G. Kelly, and J. N. Thépaut, 2005: Evaluation of potential benefit of assimilation of SEVIRI water vapour radiance data from Meteosat-8 into global numerical weather prediction analyses. Atmos. Sci. Lett., 6, 105–111.
- Uesawa, D, 2009: Clear Sky Radiance (CSR) product from MTSAT-1R. Meteorological Satellite Center Technical Note, 52, 39–48.
- Velden, C. S., C. M. Hayden, S. J. W. Niemann, W. P. Menzel, S. Wanzong, and J. S. Goerss, 1997: Upper tropospheric winds derived from geostationary satellite water vapour observations. *Bull. Am. Meteorol. Soc.*, **78**, 173–196.
- Zhang, F., M. Minamide, and E. E. Clothiaux, 2016: Potential impacts of assimilating all-sky infrared satellite radiances from GOES-R on convectionpermitting analysis and prediction of tropical cyclones. *Geophys. Res. Lett.*, 43, 2954–2963, doi:

https://doi.org/10.1002/2016GL068468.

- Zou, X., Z. Qin, and F. Weng, 2011: Improved coastal precipitation forecasts with direct assimilation of GOES-11/12 imager radiances. *Mon. Wea. Rev.*, 139, 3711–3729.
- Zou, X., Z. Qin, and Y. Zheng, 2015: Improved tropical storm forecasts with GOES-13/15 imager radiance assimilation and asymmetric vortex initialization in HWRF. *Mon. Wea. Rev.*, 143, 2485–2505.

4.6.1 はじめに

航空機は安全な運航のために気圧や気温などを測定 し、周囲の環境を監視している。これらの観測値を数値 予報モデルの初期値作成に活かすことができれば、数値 予報の精度向上が期待できる。周囲の監視と同時に航空 機は、運航や航空管制に必要となる様々なデータを地上 との間で通信している。その一つとして WMO (World Meteorological Organization:世界気象機関)が主導し て発展させた AMDAR (Aircraft Meteorological Data Relav) と呼ばれる全球気象観測に資する国際的な枠組 みがある。AMDAR は、航空会社の協力に大きく依存 する枠組みのため、航空通信用の ACARS (Automatic Communications Addressing and Reporting System) と呼ばれる VHF 帯や衛星通信を用いて、観測データを 地上に送っている(ダウンリンク)。そのほかに、航空 管制用のシステムとして航空機の位置を監視する目的 で整備された SSR (Secondary Surveillance Radar:二 次監視レーダー)を利用する方法がある。旧来の SSR は航空機を区別しないことから航空機を特定できず、 気象データとしての利用は難しかった。最新型のモー ドSでは機体に固有のアドレスによる各航空機への個 別質問機能を用いて、パッケージ化した航空機の対気 速度や進行方向などを、地上局側からの要求でダウン リンクすることにより、個々の航空機のデータとして の利用が可能になった。モードSには航空機で観測し た風向・風速などを直接含む気象関係のパッケージも 存在しているが、現状では航空機への導入は進んでい ない。しかし、多くの航空機からダウンリンク可能な パッケージに含まれているマッハ数と航空機から見た 速度(真対気速度)から外気温を、航空機の対地速度 から真対気速度を差し引くことで水平風を推定するこ とが可能である (重冨ほか 2013)。

このモードSデータは数秒~10秒毎に得ることがで きるため、空港を離着陸する多くの航空機からの観測 値は、空港上空の水平風や気温の高解像度な鉛直プロ ファイルになる(図4.6.1、図4.6.2)。これらのデータ が全国の空港で得ることができれば、湿度情報はない ものの、大気の直接観測としてラジオゾンデ並みに貴 重なデータとなる可能性がある。一般的に水平風の鉛 直分布は降水系の構造や寿命に、温度の鉛直分布は不 安定度を通して対流の強さに大きく影響を与える。ま た、全国で水平風分布が与えられれば、水平風の収束 の位置が正しくなることにより豪雨の発生位置も実況 に近づくと考えられる。気象庁ではまだ、モードSに よる航空機データを定常的に入手できていないが、上 記の効果を期待して、これまでに欧州や日本では、こ のデータを AMDAR や数値予報センターの現業解析値

図 4.6.1 電子航法研究所の SSR モード S 実験局で得られた 2011 年 8 月 26 日 9 時から 21 時(日本時間)までの航空 機の位置。

図 4.6.2 電子航法研究所の SSR モード S 実験局で得られた 2011 年 8 月 26 日の航空機の高度時間分布。

図 4.6.3 2015 年 9 月の 1 か月分のモード S データとメソ解 析値との比較。橙色は RMSE、灰色はデータ数に 10⁻⁵ を 乗じたもの、青色はバイアスを示す。

と比較して品質評価するとともに、3次元変分法や局 所アンサンブル変換カルマンフィルタを用いた同化実 験が行われている (de Haan and Stoffelen 2012; 重冨 ほか 2013)。本節では、気象研究所と電子航法研究所 との共同研究で実施した「モードSデータと気象庁の メソ解析との比較」や、さらに気象研究所に移植した 「気象庁現業準拠のメソデータ同化実験システム(メ ソNAPEX)を用いた同化実験」の結果について報告 する。

¹ 瀬古 弘(気象研究所)、小泉 耕(気象研究所(現・総務 部))、瀬之口 敦(電子航法研究所)

図 4.6.4 同化実験に用いたモード S データの分布。高度毎に色を変えて描画している。

4.6.2 モードSデータとメソ解析との比較

モードSデータの特性を調べるために、3時間毎の メソ解析値から航空機の位置の値を算出して比較した。 モードSデータは調布市にある電子航法研究所の実験 局で取得したもので、比較期間は 2015 年 9 月の 1 か 月間である。モードSデータの高度情報は、観測した 気圧を ICAO(国際民間航空機関)の標準大気を用い て高度に変換して提供しているため、そのまま用いる と誤差を生じる。そのため、モードSデータの高度を 気圧に戻し、この気圧に基づいて特定した高度ごとに 比較を行った。データ数は2×10⁵以上あり十分に大き い。まず気温では、高度 3km よりも上層では –1℃ 程 度のバイアスがあり、特に下層 3 km 以下で RMSE や バイアスが大きくなっている(図 4.6.3)。バイアスの 大きさは RMSE に対する大きさで比較すると水平風 の方が小さく、気温で見られたような下層での大きな RMSE も見られなかった。

4.6.3 メソ NAPEX を用いたモード S データの同 化実験

ここでは、現業での利用を想定して気象庁現業で用 いられていた同化システムである「気象研究所に移植 したメソNAPEX(2016年3月時点の現業システム)」 を使用した。予報・解析サイクルの期間は2015年8月 14日3時から3時間毎の5サイクルである。モードS データは、高度10km以下の正時から10分までの10 秒毎に観測されたものを正時の観測値として利用し、1 時間毎に同化した。モードSデータの気温はバイアス が大きいため高度3kmよりも低いものは用いず、そ れ以上の高度のものは+1℃の補正を行って同化した。 予報・解析サイクルの期間に同化実験で使われたモー ドSデータの位置を確認すると、羽田空港と成田空港 を中心に離着陸している多くの航空機からのものであ ることがわかる(図 4.6.4)。このモードSデータを気 象庁の現業データに加えた実験と加えない実験を行い、 得られた解析値からの予報と観測とを比較することで、 モードSデータの効果を調べた。

実験に適用した事例は2015年8月14日に発生した 局地的大雨で、発達した積乱雲が19~21時(日本時 間)に羽田空港や成田空港を通過した。予報結果につ いては、風向変化が航空機の空港への進入方向に大き く影響を及ぼすので、大雨に加えて強い積乱雲の通過 に伴う水平風の風向変化にも注目する。

解析値からの予報の結果を図 4.6.5 に示す。解析から 1 時間後の 19 時では、モード S データを利用すると、 降水域の位置が観測に比べてやや南側にずれているも のの、発達した積乱雲の位置や降水強度をよく再現し ている。また、19 時頃の羽田付近の東風から北風への 風向の変化を伴うシアーの通過も再現していることが わかる。1 時間後の 20 時も、モード S データを同化し た方が実況により近く、また東風と北東風のシアライ ン(青色の破線)の位置もより実況に近かった。さら に 1 時間後の 21 時になると、モード S データを同化 した方が千葉県北部を通過する積乱雲の位置をよく再 現している。モード S データを同化しないと、房総半 島上の北風が再現されず東風になっていて、観測から 大きく異なっている。

最後にこの改善が何によるものかを考察する。初期 時刻である18時の水平風のシアラインに着目すると、 羽田付近に東西にのびる南風と北寄りの風のシアライ ン(赤色の破線)があった。モードSあり、なしの実 験ともに、再現されたシアラインは羽田付近で北側へ のふくらみが小さいため、羽田空港で観測された南風

2 4 8 12 16 24 32 40 48 56 64 80 7-9 7.497. 9.8 (C)

図 4.6.5 同化実験結果。予報時間 1 時間から 3 時間までの モード S データの同化なしとありで得られた 1 時間降水量 と対応する時刻のレーダーで観測した降水強度を示す。矢 羽根と実線はモデル最下層の水平風とアメダスの地上風、 海面更正気圧である。赤色と青色の実線の矢印は関東平野 内の主な気流を示す。赤色の破線は南寄りの気流とその北 側の北風と東風とのシアラインを、青色の破線は北風と東 風とのシアライン、白抜きの赤い矢印は羽田空港での風向 を示す。

は再現できていない。その一方、モードSデータを利 用すると、北側の北寄りの風と北東風によるシアライ ン(青色の破線)の位置が実況に近くなっていた。こ のシアラインに沿って積乱雲が発達していたことから、 このシアラインの再現の改善が、この後の東京湾北側 の実況に近い水平風の再現、降水の強化に繋がったと 考えられる(図 4.6.6)。さらに用いた観測データまで 遡ってみてみると、モードSでは個々の航空機を追跡 するために、データは高度をかえながら連続した線状 に分布し、これまでの AMDAR と比較して鉛直方向 により高分解能で、下層のデータ数も多かったことが わかる。この下層に多い鉛直プロファイルのデータが、 その後の地上の水平風分布に影響を与えた可能性があ る(図 4.6.7)。

4.6.4 まとめ

モード S データについて、気象庁のメソ解析と比較 を行い、データ同化に利用するためのデータの利用可

図 4.6.6 初期時刻の 18 時における水平風分布と同時刻の レーダーで観測した降水強度を示す。赤色と青色の破線、 実線の矢印は図 4.6.5 と同じ。白抜きの赤い矢印は羽田空 港付近での風向を示す。

図 4.6.7 羽田付近の 15 時から 18 時の AMDAR とモード S データの分布。高度の配色は図 4.6.4 と同じ。モード S データの方が飛行経路に沿って連続的に分布し、下層にも 多くのデータがあることがわかる。

能高度やバイアスなどの品質管理の情報を得た。2015 年8月14日の局地的大雨の事例については、気象庁現 業と同じ同化システムを用いてモードSデータを同化 すると、航空機の安全運航に影響を及ぼす「発達した 積乱雲」や「下層の水平風シアー」の再現が改善した。 今後、引き続き、数値予報で利用するモードSデータ の品質確保に関する調査を継続し、複数の事例でモー ドSデータのインパクトの確認に取り組む。

参考文献

- de Haan, S. and A. Stoffelen, 2012: Assimilation of High-Resolution Mode-S Wind and Temperature Observations in a Regional NWP model for Nowcasting Applications. Weather and Forecasting, 27, 918–937.
- 重冨貞成, 小塚智之, 宮沢与和, 十時寛典, M. Brown, 福田豊, 2013: SSR モード S 監視データを用いた気 象予報データの評価解析. 第 51 回飛行機シンポジウ ム, 2013 年 11 月.

4.7 観測誤差相関を考慮した変分法によるドップ ラー速度データ同化の検討¹

4.7.1 はじめに

近年の観測技術の進歩により、観測データの高頻度・ 高密度化が急速に進んでおり、時間・空間解像度の高い 膨大な観測データによる大気の詳細な情報がリアルタ イムに得られるようになってきている。これらを数値 予報モデルの初期値作成に利用できれば、顕著現象を はじめとする気象予測の精度向上に寄与することが期 待される。一方、初期値作成を行うデータ同化におい て、高頻度・高密度観測の活用法は十分に確立されて おらず、特に、観測誤差相関が強くなることが大きな 問題となる。従来の多くのデータ同化システムは、観 測誤差相関を無視できると仮定した単純で計算コスト も低い実装となっている。この仮定を損なわないよう に、観測誤差相関があると推測される観測データは大 きく間引かれ、数値予報における利用は一部に限られ るため、観測データの持つ多くの情報は十分に活用さ れていない (Hólm et al. 2018 など)。

本稿では、高頻度・高密度観測データの同化手法の 高度化に向けて、気象庁現業メソ解析に基づく変分法 データ同化における観測誤差の時間・空間相関の扱い について行った調査を報告する。高頻度・高密度観測 データとして、現業数値予報での利用実績があり観測 データが蓄積してある気象レーダーのドップラー速度 を取り上げ、観測誤差相関の特性を統計的手法により 調査し、これをいくつかの変分法データ同化手法に組 み込んで効果を調べる。

4.7.2 メソ解析におけるドップラー速度の利用

気象庁は 1995 年よりドップラーレーダーの整備を進 め、現在、全国に 20 の一般気象ドップラーレーダー、 9 の空港気象ドップラーレーダーを展開している。メ ソ解析においては、2005 年よりドップラー速度の同化 を開始し、ドップラーレーダーの整備拡張とともにそ の利用を拡大してきた (石川 2007, 2015)。

(1) メソ解析におけるドップラー速度の扱い

メソ解析では、高頻度・高密度のドップラー速度配 信データ²を方位角 5.625°、動径 5 km のボリュームで 平均化して用いる。平均化した観測データには、まず 以下のような品質管理を適用し、品質の悪いデータを 除外する (小泉 2004; Seko et al. 2004; 石川 2015)。

ボリューム内のサンプルの統計:サンプル数 10 個
 未満、標準偏差 10 m/s 以上、最大値と最小値の
 差 10 m/s 以上を棄却

図 4.7.1 メソ解析で用いる、札幌レーダーのサイトからの 距離と各仰角のビームの高度の関係。仰角 0.1°(赤)、1.1° (緑)、2.6°(青)、4.3°(黒)。

- 第一推定値との差: 10 m/s 以上を棄却
- レーダーからの距離: 10 km 以内を棄却
- 仰角: 5.9°以上を棄却
- ドップラー速度の大きさ: 5 m/s 以下を棄却

• 周囲のデータの平均値との差: 10 m/s 以上を棄却 さらに、毎正時のデータのみを用い、空間的にも 20 km 間隔での水平間引きを適用する。

品質管理を経た観測データを 4D-Var により同化す る。同化においては、観測演算子で数値予報の格子点 値から観測相当量を算出し、観測値と比較しつつ最適 化を行う。ドップラー速度の観測演算子 (小泉 2004) で は、以下のような処理が行われる。

- 観測点の周囲4点における水平風をビーム鉛直幅 で重み付き平均する。
- 観測地点に水平内挿する。
- レーダーサイトの方向の成分を算出する。

ここで、ビームの鉛直幅は0.3°とし、ビーム強度はビーム中心からガウス型で減衰すると仮定する。また、観 測データの高度は、仰角、動径距離に応じて算出される。この際、レーダーサイトの高度のほか、地球の曲率や大気の屈折率の効果を考慮して求める (Doviak and Zrnić 1993)。図 4.7.1 に例を示すように、レーダーの ビームはこれらの効果によって曲率をもって伝搬する。

(2) ドップラー速度の観測誤差

一般に、観測誤差は、測器の限界による測定誤差の ほか、数値予報で解像できないスケールによる誤差(代 表性誤差)³、観測演算子⁴の誤差、品質管理の誤差⁵等 からの寄与を持つ (Janjić et al. 2018)。ドップラー速

¹ 藤田 匡 (気象研究所)

² 方位角方向 0.703°、動径方向 250 m (一般気象ドップラー レーダー) または 150 m (空港気象ドップラーレーダー)、 時間間隔 10 分 (一般気象ドップラーレーダー) または 6 分 (空港気象ドップラーレーダー)。

³ 離散化により大気場や地形などが粗視化されることによる 誤差や、数値予報モデルでパラメタライズされ直接表現でき ない過程に伴う誤差など。

⁴ 4D-Var においては時間発展演算子も寄与する。

⁵ 数値予報で解像できないスケールによる誤差に加えて、観 測演算子の誤差、品質管理の誤差も代表性誤差に含める文献 も見られる (Janjić et al. 2018)。

度では、品質管理で除去しきれなかった品質の悪い観 測による誤差のほか、観測演算子における以下のよう な近似や簡略化による誤差が、観測誤差の要因となり 得ると考えられる。

- 高度算出の際のビームの屈折の評価は、標準大気に基づく水平一様を仮定したものであり、屈折率の変動は考慮していない。
- ビーム幅の重みはガウス型を仮定しており、反射 強度を直接考慮したものではない (Waller et al. 2016b)。
- 観測値の平均化を行うボリュームの大きさはレー ダーサイトから離れるにつれて大きくなり、サイ トからの距離に応じて観測データの持つ空間代表 性は変化する。一方、観測演算子ではこれを考慮 していない。なお、鉛直方向については、上述の ようにビーム幅を考慮している。
- 鉛直速度や反射体となる降水粒子の落下速度を考 慮していない。ただし、これについては、上述の 品質管理において高仰角の観測データを使用しな いことで影響を軽減している。

4.7.3 観測誤差特性の調査

本項では、札幌一般気象ドップラーレーダー (43.14°N, 141.01°E; 以下、札幌レーダー)のドッ プラー速度観測について、観測誤差共分散 **R** を Desroziers et al. (2005)の手法により推定した結果に ついて述べる。

(1) Desroziers et al. (2005) の手法

Desroziers et al. (2005) の手法では、D 値⁶**d**_b = **y** – $H(\mathbf{x}_{b})$ と解析残差⁷**d**_a = **y** – $H(\mathbf{x}_{a})$ の積の統計により **R**を推定する。ここで、**y**は観測値、 \mathbf{x}_{b} は第一推定値、 \mathbf{x}_{a} は解析値、H は観測演算子である。すなわち、H が線形と仮定すると、H の接線形演算子を**H**(一定)として、

$$\mathbf{x}_{\mathrm{a}} = \mathbf{x}_{\mathrm{b}} + \mathbf{B}\mathbf{H}^{\mathrm{T}}(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}} + \mathbf{R})^{-1}\mathbf{d}_{\mathrm{b}}$$

と書ける (露木 1997 など) ことを用いて、

$$\begin{split} \langle \mathbf{d}_{\mathbf{a}}\mathbf{d}_{\mathbf{b}}^{\mathrm{T}} \rangle &= & \mathbf{R}(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}}+\mathbf{R})^{-1}(\mathbf{H}\mathbf{B}^{*}\mathbf{H}^{\mathrm{T}}+\mathbf{R}^{*}) \\ &= & \tilde{\mathbf{R}} \end{split}$$

のように観測誤差共分散の推定値 R を得る⁸。

本手法では、解析で用いる観測誤差共分散 R、背景 誤差共分散 B が、それぞれの真の値 R*, B* と等しい ことを仮定している。しかし、一般にはこの仮定は成 り立たない。Desroziers et al. (2005) では、統計によ る R の推定と、推定された R を用いた解析予報サイ クルによる統計サンプルの再生成を繰り返すことで収 束解を得る手法が提案されている。また、真値と異な る R、Bを用いて推定した場合の影響などについて、 多くの文献で議論されている(Waller et al. 2016a な ど)。このような制限があり、得られた結果をそのまま 定量的な誤差の値と解釈することは必ずしもできない ものの、この手法は R の定性的な特性の理解を得る簡 便な手法として広く用いられており、本調査でもこれ を用いる。

また、メソ解析においては、ボリューム平均の観測 データに間引きを適用し、さらに正時のみのデータを 用いている。一方、本推定では観測誤差共分散の詳細 な特性を得るために、間引きは適用せず、動径5km× 方位角 5.625°、10 分間隔の観測データをすべて統計サ ンプルとして用いる⁹。ただし、第一推定値、解析値を 作成する解析予報サイクルでは、メソ解析と同様、間 引きを適用する。

(2) ドップラー速度観測誤差特性の統計推定

2018 年7月 1~8 日の期間の解析予報サイクルによ り作成した54の初期値の統計から、動径・方位角・仰 角・時間方向の観測誤差相関の構造を調べた。この期 間は、前線が北海道付近に停滞するなど札幌レーダー 周辺では降水が続き、ドップラー速度データが概ね継 続的に得られている(図4.7.2,図4.7.3)。統計サンプ ルは、気象庁現業メソ解析 JNoVA(Honda et al. 2005; JMA 2019)に基づく実験システムによる同化ウィンド ウ3時間の4D-Var 解析予報サイクル(アウター水平 格子間隔5 km、鉛直48層、インナー水平格子間隔15 km、鉛直38層)で作成した。

図 4.7.4 に、統計によって得られた仰角ごとの観測 誤差標準偏差の変動を、高度(図 4.7.4(a))¹⁰、及び、 レーダーサイトからの距離(図 4.7.4(b))について示 す¹¹。高度による変動(図 4.7.4(a))については、異な る仰角の間で類似した振る舞いが見られた。仰角 4.3° で、サンプル数が少なくノイズが卓越するおおよそ 8 kmを超える高度を除くと、誤差標準偏差は 1.5 – 2.5 m/s 程度であり、メソ解析で設定している観測誤差の 約3 m/sより小さめの値である。高度 2 km 以下では、 低い高度での誤差が大きく、細かい変動がみられるも のの概ね高度とともに誤差が減少している。地表に近 い高度ではグランドクラッターなどのノイズが混入し やすく、また、サイト近くでは平均化ボリュームやビー

⁶ 観測値 – 第一推定值。

⁷ 観測值 – 解析值。

⁸ T, -1 はそれぞれ転置及び逆を、() は統計平均を示す。

⁹ このため、本推定では、時間・空間間引きによる観測デー タの選択が適切に行われ、解析予報サイクルにおいて観測の 情報が損なわれていないことを仮定している。前述と同様に、 **R**の推定と、推定された**R**を用い、さらに、間引きを適用 しない解析予報サイクルの繰り返しで、推定精度を高める手 法が考えられる。

¹⁰ 高度割付は、図 4.7.1 によって行った。

¹¹ 各仰角とも、レーダーサイト近くのデータは品質管理で除 外される。また、本事例において、仰角 4.3°では、レーダー サイトの最遠方に近い位置には統計サンプルが存在しなかっ た。図 4.7.4 では、これらの位置は表示対象外となる。

図 4.7.2 2018 年 7 月 4 日 00UTC の日本域地上天気図(気 象庁天気図)。

図 4.7.3 統計サンプルを生成した解析予報サイクルから得 た 2018 年 7 月 3 日 03UTC 初期値からの 9 時間予報値。 色は前 3 時間降水量 [mm/3h]、等値線は 1 hPa 間隔の海 面更正気圧を示す。

図 4.7.4 札幌レーダーによるドップラー速度の動径方向の 観測誤差標準偏差。(a):高度についてプロット。(b):サ イトからの距離についてプロット。仰角 0.1°(赤)、1.1° (緑)、2.6°(青)、4.3°(黒)。方位角、同化ウィンドウ後 半(90-180分)について平均化した。統計期間 2018 年 7月1日 00UTC~7月8日 00UTC。

ム幅が小さいため観測値の代表するスケールも小さく ノイズの平均化の効果も小さくなる。このようなこと が影響し得るものと考えられる。高度2-8 km では、 誤差は振動しており増減がみられ、仰角によっては明 瞭でないものの、全体的に見ると高度とともに緩やか に増加する傾向を示している。特に 2-5 km 付近で 増大の勾配が大きい。高度に伴う風速の強まりのほか、 水蒸気量の多い下層側では高度割付の際の大気の屈折 率の近似などの影響を受けやすくビーム伝搬に伴って 誤差が蓄積し得る。また、高度4-5km付近において は、データが存在する仰角 0.1°、2.6°、4.3° ともに誤差 が増大している。この高度は、本事例において、おおよ そ気温が0℃となる高度と対応が良い。Waller et al. (2016b) では、ドップラー速度の観測演算子に、ビー ム幅及び反射強度による重みづけ¹²を導入する改良に より、観測誤差が減少することを報告しており、この ような寄与も影響し得ると考えられる。一方、サイト からの距離(動径距離からのずれは小さい。)による変 動(図 4.7.4(b))は、仰角ごとに異なった振る舞いを 示しており、動径距離で定まる平均化のボリュームの スケールやビーム幅のみでは必ずしも誤差特性は定ま らず、他の要因からの寄与の影響も大きいことが示唆 される。

観測誤差相関を図 4.7.5 に示す¹³。仰角 1.1° におけ る動径相関(図 4.7.5(a))の半値幅(半値半幅)はお およそ 10 - 20 km 程度であり、Waller et al. (2016b) と同様、サイトからの距離とともに増加する傾向がみ られた。サイトから離れるにしたがって、観測データ の平均化のボリュームや観測演算子で積算するビーム 幅が大きくなる。観測データや観測相当量の代表する スケールはビームに沿って連続的に変化しており、そ のずれはビームの方向に相関を持つ可能性がある。ま た、遠距離においては高度割付のビーム屈折の近似精 度の低下も相関を持った誤差をもたらし得ると考えら れる。時間相関(図 4.7.5(b))は半値幅 30 - 60 分程度 で、予報時間とともに増加する傾向である。このよう に、観測誤差相関には、ビームの伝搬距離や時間発展 への依存性が見られ、観測演算子や数値予報モデルに 関連する誤差も寄与を持つことが示唆される (Waller et al. 2016b, 2019; Janjić et al. 2018)。この誤差相関 幅のサイトからの距離、予報時間に伴う増大は、低仰 角において顕著にみられた。また、仰角 1.1° における 方位角相関の半値幅は、おおよそ15 km 程度であった (図 4.7.5 (c))。一方、仰角相関は、レーダーサイト付

¹² ビームの広がりが融解層にかかる場合、ビーム反射体から の反射波の強まりに対応して、融解層内に位置する鉛直層か らのドップラー速度への寄与の重みを大きくする効果を持つ。 なお、Waller et al. (2016b) では、ビーム幅及び反射強度に よる重みづけの両者を合わせた効果を調査している。

¹³ 本調査で用いた Desroziers et al. (2005) の手法により得 られる観測誤差相関は対称とならず、同化での利用の際には 対称化が必要となる。

図 4.7.5 札幌レーダーによるドップラー速度の観測誤差相関。統計期間 2018 年 7 月 1 日 00UTC~7 月 8 日 00UTC。(a) 動 径相関。仰角 1.1°。方位角、同化ウィンドウ後半(90-180分)について平均化した。(b)時間相関。仰角 1.1°。方位角、サイトからの距離 47.5 – 97.5 km について平均化した。(c)方位角相関。仰角 1.1°。同化ウィンドウ最後の時刻(180分)。(d) 仰角相関。サイトからの距離 97.5 km。仰角 0.1°(赤)、1.1°(緑)、2.6°(青)、4.3°(黒)と各仰角の間の誤差相関を示す。同化ウィンドウ後半(90-180分)で平均化した。(a),(b),(c)の等値線は、相関=0.2,0.5を示す。

近を除き小さい。図 4.7.5 (d) に示すように、レーダー サイトから約 100 km における隣接する仰角との相関 は、0.2 未満である。同化に使用するデータの仰角は、 0.1、1.1、2.6、4.3°と、間隔が観測演算子のビーム幅 0.3°と比較して広く、これが影響しているものと考え られる。

4.7.4 変分法データ同化による観測誤差相関の効果 (1) 観測誤差相関行列の構成

第4.7.3 項の統計で得られた観測誤差相関特性に基づいて、変分法データ同化で用いる観測誤差共分散行列 **R**を

$\mathbf{R} = \mathbf{H} \mathbf{D} \mathbf{C} \mathbf{D} \mathbf{H}^{\mathrm{T}}$

のように構成する (Fisher 2005; Michel 2018)。ここ で、C は観測データのボリュームが配置される空間上 での観測誤差相関、D は観測誤差標準偏差を対角要素 に持つ対角行列、H は観測空間への内挿の演算子であ る。すなわち、ドップラー速度観測データが配置され る方位角 5.625°× 動径 5 km × 時間 10 分の格子空間 全体で相関構造を指定し、そこから実際に入電した観 測に対応する行列要素を抽出する。C はガウス関数で 近似する。また、動径方向、方位角方向、時間方向に ついての相関を考え、仰角相関は無視する。ガウス関 数の幅は、第4.7.3項の統計を参考におおよその値を定 めた。動径相関及び時間相関の幅は格子空間内で一様 とし、方位角相関の幅は物理的距離を一定とした(格 子空間では、動径距離に反比例するとした)。

変分法によるデータ同化においては、**R**の逆行列計 算が必要となる。運用にあたっては、入電する観測デー タの配置は一回ごとに異なるため、**R**⁻¹の計算を毎回 実行する必要がある。一方、一回の解析の中では定数 となるため、変分法の実行前に**R**⁻¹を計算することは 可能である。ここでは、ボリュームでの平均化、仰角 相関の無視によって自由度は減り、計算量が抑えられ ている。なお、観測誤差相関をガウス型で近似すると、 微小な固有値の固有モードによるノイズが卓越し、逆 行列の計算が困難となる。そこで、本調査では、大き い固有値から積算が trace の 99%までの固有モードの みを考慮した¹⁴。

¹⁴ 観測誤差相関の近似に指数関数を用いると (Simonin et al. 2019)、本項 (2) の例及び第 4.7.5 項の例で **R**⁻¹ の計算においてすべての固有モードを保持することが可能であった。一方、予測を含めた初期段階の試行では必ずしも高い性能につながらなかった。データ同化で用いる観測誤差相関の最適なモデリングの検討は今後の課題である。

図 4.7.6 2D-Var(動径方向×方位角方向の2次元)によるドップラー速度同化のインクリメント、D値。観測データのボリュームが配置される動径方向30 格子×方位角方向64 格子での値を示す。(a):D値(間引き無し)。(b):相関を考慮した Rを用いた場合のインクリメント。(c):対角のR(観測誤差相関を無視)を用いた場合のインクリメント。(d):誤差標準偏差を3 倍とした対角のR(観測誤差相関を無視)を用いた場合のインクリメント。(e):動径方向、方位角方向ともに1/3 に間引いたD値。(f):対角のR(観測誤差相関を無視)を用い、動径方向、方位角方向ともに1/3 に間引いたD値(e)を同化した場合のインクリメント。(g):メソ解析の20 km間隔の間引きを適用したD値。(h):対角のR(観測誤差相関を無視)を用 い、メソ解析の20 km間隔の間引き(g)を適用した場合のインクリメント。

(2) 簡易な 2D-Var における観測誤差相関の効果

簡易な変分法に観測誤差相関を組み込み、観測誤差 相関のデータ同化における効果を調査した。動径方向、 方位角方向の二次元の領域を考え、動径 5 km、方位角 5.625°間隔で平均化した観測の格子をそのまま解析格 子とした(30×64 格子)。観測演算子は 1 とし、観測 誤差分散、背景誤差分散はともに 1 (m/s)² とした。観 測誤差の相関幅(相関が $e^{-0.5}$ となる幅)は、動径方 向は 15 km、方位角方向は約 15 km とし¹⁵、背景誤差 の相関距離は、動径方向 10 km、方位角方向約 15 km とした¹⁶。D 値としては、2018 年 7 月 3 日 06UTC の 札幌レーダー、仰角 1.1°のドップラー速度のものを使 用した(図 4.7.6(a))。

図 4.7.6 に結果を示す。観測誤差相関を考慮した同化 (図 4.7.6 (b))では、D 値(図 4.7.6 (a))の詳細な構造 まで偏りなく反映したインクリメントが得られた。一 方、観測誤差共分散行列の非対角要素をゼロとし、観 測誤差相関を無視すると(図 4.7.6 (c))、D 値の詳細 な構造はインクリメントに反映されるものの、同符号 のD 値が広がって分布する領域では、観測に強く寄る 結果となった(図 4.7.6 (c) 黒楕円領域)。このように、 (b) においては、密な観測データの誤差相関を考慮し た結果、観測値の情報に重複が大きい領域でのインク リメントが、(c) と比較して適切に抑えられているこ とが分かる。

観測誤差相関が無いと仮定したデータ同化システム においては、この仮定を保持するための観測の間引き、 また、過大なインクリメントを回避するための観測誤 差膨張の適用が一般的に良く行われている。観測誤差 標準偏差を3倍とした場合の結果(図4.7.6(d))では、 過大なインクリメントは緩和されるものの、構造は平 滑化され、観測の持つ詳細な情報は解析場に反映され にくくなる。また、観測データを動径方向、方位角方 向とも、一律に 1/3 に間引いた場合(図 4.7.6 (e)) に ついても同様に、過度なインクリメントは緩和される ものの、詳細な情報は失われる(図 4.7.6 (f))。メソ解 析においては、各観測値について周囲 20km にある観 測値を探索し、逐次的に間引きを行っている(図 4.7.6 (g))。インクリメント(図 4.7.6 (h))の分布は、図 4.7.6 (b) よりは平滑であるものの、孤立した観測データに 対応する構造が見られ、サイトから遠方の物理的に距 離が大きいところではより細かい構造が反映されるな ど、図 4.7.6 (d), (f) と比較するとより多くの情報が保 持されている (図 4.7.6 (h) 黒楕円領域)。観測誤差膨

¹⁵ 方位角方向の相関幅は、物理的距離を一定とするため、解 析格子空間では動径距離に反比例するとした。

¹⁶ 動径方向がより短く、仰角 1.1°の平均的なビーム勾配で、 背景誤差鉛直相関幅おおよそ 350 m に相当する。

図 4.7.7 EDA の構成の模式図 (PO は Perturbed Observations を示す)。

張、間引きの適用にあたっては、情報の損失を抑える ための設計の検討が重要となる。

4.7.5 高度化した背景誤差の下での観測誤差相関の 効果

前項では、観測誤差相関を考慮することが、高密度 観測の持つ詳細な情報を解析値に反映させるのに有効 であることを示す結果が得られた。一方、予測精度向 上のためには、さらにこれらの観測を数値予報モデル の時間発展に即して同化することが重要となる。本項 では、時間発展を考慮した同化に着目し、気象庁現業 メソ解析の JNoVA に基づく 4D-Var にドップラー速 度の観測誤差相関を適用する。変分法同化システムに ドップラー速度の観測誤差相関を適用した調査として は、Simonin et al. (2019) で英国気象局の現業 3D-Var への空間相関の適用が報告されている。ここでは時間 発展を考慮する 4D-Var への適用を行うため、空間相関 のみではなく時間相関についても考慮する。また、高 頻度・高密度の観測データからより多くの有効な情報 を抽出し解析値に反映するためには、背景誤差の高度 化も重要となる。ここでは、さらに高度化した背景誤 差の下での観測誤差相関の効果を見るために、4D-Var に加え、ハイブリッド 4D-Var へのドップラー速度の 観測誤差相関の適用実験も行う。

(1) 実験の設定

本項で比較を行うハイブリッド 4D-Var、及び、4D-Var の実験の設定を表 4.7.1 にまとめる。観測誤差相関 は第 4.7.4 項 (1) の構成に基づき、相関のスケール(相 関が $e^{-0.5}$ となる幅)は、第 4.7.3 項 (2) の統計を参考 におおよその値を用い、動径方向 15 km、方位角方向 約 15 km、時間方向 45 分とした。一方、観測誤差標準 偏差については、気象庁現業メソ解析で用いている設 定の約 3 m/s をそのまま用いた。

4D-Varに比べて背景誤差を高度化したハイブリッド

4D-Var では、制御変数の拡張 (Buehner 2005) を行っ て、アンサンブルによる流れへの依存性を組み込んだ。 ここで用いたアンサンブルは、観測値に、観測誤差に 対応するランダムな摂動を加えた複数の 4D-Var 解析 予報サイクルから成るデータ同化アンサンブル (EDA: Isaksen et al. 2010) により生成した (図 4.7.7)。EDA のメンバー数は6とし、各メンバーの4D-Var 解析予 報サイクルは、メソ解析と同じ解像度(アウター水平 格子間隔5km、鉛直48層、インナー水平格子間隔15 km、鉛直38層)で気象庁現業メソ解析で同化される 観測データをすべて同化した。ハイブリッド 4D-Var で用いるアンサンブル摂動は、EDA の直近9初期値 (FT=0~24) から成る 54 メンバーで構成した。制御変 数の拡張による流れへの依存性の組み込みにあたって は、アンサンブルによる背景誤差と気候学的背景誤差 の比重は、各50%と等しくした。また、局所化にはガ ウス関数を用い、局所化のスケール(e^{-0.5} となる距 離)は水平 75 km、鉛直 10 層とした。

以上のような設定の下で、2018 年 7 月 3 日 06UTC の解析において、札幌レーダー 1 サイトによる 03 – 06UTC のドップラー速度観測(サイトから約 150 km まで、4 仰角)のみを、同化ウィンドウ 3 時間で同化し た(ただし、同化ウィンドウ最初の時刻 03:00 UTC の 観測データは除く)。第一推定値は、2018 年 7 月 1 日 00 UTC からの 4D-Var 解析予報サイクルにより、メ ソ解析で用いるすべての観測データを同化して生成し た。また、アンサンブル摂動生成のための EDA 解析 予報サイクルも 7 月 1 日 00 UTC から開始した。

本実験では、観測誤差の時空間相関を組み込んだ 4D-Var、ハイブリッド 4D-Var の比較を行い、特に高頻度 観測の同化による効果に着目して、ドップラー速度を 従来と同様 60 分間隔で同化した場合と、10 分間隔で 同化した場合の比較を行った¹⁷。

なお、4D-Var、及び、ハイブリッド 4D-Var のアウ ター時間積分に続き、予測においても気象庁非静力学 モデル(JMA-NHM; Saito et al. 2006)を用いた。

(2) インクリメントの分布の比較

図 4.7.8 に、850hPa における東西風インクリメント の分布の推移について、ハイブリッド 4D-Var((a), (b)) と 4D-Var((c), (d)) による結果の比較、及び、観測の 同化頻度を 10 分とした場合((a), (c)) と 60 分とした場 合((b), (d)) の比較を示す。インクリメントのパター ンを見ると、ハイブリッド 4D-Var(図 4.7.8(a), (b))、 従来の 4D-Var(図 4.7.8((c),(d)) ともに、同化ウィンド ウから FT=4 までを通して時間発展に連続性がみられ るが、ハイブリッド 4D-Var のインクリメントのほう がより詳細な構造を持つ。このことは、ハイブリッド 4D-Var の方が、観測データの持つ情報を、各時刻にお ける気象状況にとどまらず一連の時間発展の情報とし

¹⁷ なお、空間間引きは適用しない。

同化手法	ハイブリッド 4D-Var		4D-Var	
観測時間間隔	10分	分 60分		60 分
観測誤差相関スケール	動径方向 15 km、方位角方向約 15 km、時間方向 45 分			
観測誤差標準偏差	約3 m/s (気象庁現業メソ解析と同じ)			
	気候学的背景誤差 50%		気候学的背景	景誤差 100%
	+ 流れ依存背景誤差 50%			
背景誤差	アンサンブル	摂動 54 メンバー		
	(EDA 6 メンバー ×9 初期値)			
	局所化スケール オ	<平 75km、鉛直 10 層		
水平格子間隔・鉛直層数	アウター 5km・48 層、インナー 15km・38 層			
同化ウィンドウ	3 時間			

(a)ハイブリッド 4D-Var 観測10分毎

図 4.7.8 4D-Var、ハイブリッド 4D-Var による 2018 年 7 月 3 日 06UTC の解析の 850hPa 東西風インクリメント。同化ウィ ンドウの最初 (FT=-3) から最後 (FT=0) まで 1 時間毎の値と、1 時間予報値 (FT=1)、及び、4 時間予報値 (FT=4) を示 す。(a): ハイブリッド 4D-Var 観測時間間隔 10 分。(b): ハイブリッド 4D-Var 観測時間間隔 60 分。(c): 4D-Var 観測時間 間隔 10 分。(d): 4D-Var 観測時間間隔 60 分。

て抽出する能力が高く、より多くの情報が数値予報モ デルのバランスに即して解析値に反映されていること を示唆している。

観測の時間間隔に着目すると、4D-Var(図 4.7.8(c) と(d))、ハイブリッド 4D-Var(図 4.7.8(a) と(b))い ずれも、10 分間隔と 60 分間隔の同化によるインクリ メントの全体的な振幅には大きな違いはない。観測誤 差相関を考慮することにより、観測密度が増えても第 4.7.4 項(2)で観測誤差相関を無視した場合のような過 度なインクリメント(図 4.7.6(c))は入りにくくなって いるものとみられる。全体的に、観測の時間間隔によ る差は、同化手法(ハイブリッド 4D-Var、4D-Var)に よる差よりも小さい。しかし、観測時間間隔による差 は、ハイブリッド 4D-Var のほうがより大きく、高頻度 観測の情報により高い感度を示している。ハイブリッ ド 4D-Var における観測時間間隔による差(図 4.7.8(a) と (b) の差)は、主にインクリメントの南東の部分に 見られ、同化ウィンドウから FT=4 にわたって伝搬し ている(図 4.7.8(a), (b) 黒楕円領域)。

(3) 同化手法とインクリメントの時間発展

図 4.7.9 に、札幌レーダーの方位角 81.6°(おおよそ 東方)、仰角 1.1° のビーム伝搬経路に沿った、ドップ

図 4.7.9 方位角 81.6°におけるドップラー速度の D 値とイ ンクリメントの同化ウィンドウ内(-180-0分、2018年7 月 3 日 03-06UTC)の時間発展。札幌レーダー仰角 1.1° のビーム伝搬経路に沿った値(サイトからの距離 0-150 km)。(a): 10 分間隔の D 値。(b): 60 分間隔の D 値。(c): 簡易変分法(動径×方位角×時間の三次元。仰角 1.1°の データのみ同化。詳しくは本文参照。)観測時間間隔 10 分 のインクリメント。(d): 簡易変分法(動径×方位角×時 間の三次元。仰角 1.1°のデータのみ同化。詳しくは本文参 照。)観測時間間隔 60 分のインクリメント。(e): 4D-Var 観測時間間隔 10 分のインクリメント。(f): 4D-Var 観測時 間間隔 60 分のインクリメント。(g): ハイブリッド 4D-Var 観測時間間隔 10 分のインクリメント。(h): ハイブリッド 4D-Var 観測時間間隔 60 分のインクリメント。

ラー速度のインクリメントの時間発展を示す。観測時 間間隔 10 分、60 分の D 値((a),(b))、4D-Var インク リメント((e),(f))、ハイブリッド 4D-Var インクリメ ント((g),(h))のほか、第 4.7.4 項(2)の簡易な変分法 を動径方向×方位角方向×時間方向の 3 次元に拡張 した結果((c),(d))も示す。

簡易変分法は、第 4.7.4 項 (2) に沿ったものであり、 その設定はハイブリッド 4D-Var、4D-Var のものとは 異なる。すなわち、観測のボリュームが配置される動 径 30 格子 × 方位角 64 格子 × 時間 19 格子¹⁸をそのま ま解析格子にとり、仰角 1.1°の観測データのみを同化 する。また、観測演算子は1、観測誤差分散、背景誤差 分散はともに1 (m/s)² とする。観測誤差相関の相関幅 は、動径方向15 km、方位角方向約15 km、時間方向 45 分とし、背景誤差相関の相関幅は、動径方向10 km、 方位角方向約15 km、時間方向60分とした¹⁹。各観測 を解析格子内の座標位置(動径、方位角、時間)で同 化し、時間発展演算子は考えない。なお、簡易変分法 においては同化ウィンドウ最初(-180分)における観 測値も同化した。

簡易変分法の結果 (図 4.7.9 (c), (d)) を見ると、概ね D 値 ((a), (b)) を反映した分布を示している。60 分毎 の同化 (d) では、空間的にはすべてのデータを同化し ていることもあり、10 分毎の同化 (c) と概ね対応した インクリメントが得られているが、時間方向には D 値 (b) が疎であるためとらえきれていない部分もある。ま た、簡易変分法では時間発展は反映されないため、(c), (d) ともインクリメントはおおよそ時間軸に沿った構 造を持っている。

4D-Var の結果 (図 4.7.9 (e), (f)) では、ドップラー 速度を得た降水域が全体的に東方に流れていくのに対 応して、インクリメントのパターンも時間とともに動 径が大きい方 (東方) に移動している。時間発展演算 子による拘束が強く働いていることが示唆される。一 方、4D-Var では 10 分毎の同化 (e) と 60 分毎の同化 (f) ともに、同化ウィンドウの前半においてはインク リメントは詳細な構造を持っていない。4D-Var では、 同化ウィンドウのはじめでは気候学的背景誤差を用い ている。このため、時間発展演算子の効果が卓越して、 流れへの依存性を十分に解析に反映できるようになる までには、時間が必要となる。同化ウィンドウの後半 で 10 分毎の同化 (e) の方がややより細かい構造をもっ ているものの、(e) と (f) の差はあまり大きくない。

ハイブリッド 4D-Var(図 4.7.9 (g), (h)) では、ドッ プラー速度を得た降水域の東方への流れがインクリメ ントのパターンに反映されているのに加え、背景誤差 の流れへの依存性の効果により、同化ウィンドウの前 半からより流れに沿った構造がみられる。また、10 分 毎の同化 (g) のほうが、60 分毎の同化 (h) と比較し て、同化ウィンドウ前半から連続した上流からの流れ の伝搬がより明瞭である。ハイブリッド 4D-Var では、 4D-Var よりも高頻度観測データの持つ流れの伝搬に関 する情報を有効に抽出して解析値に反映する性能が高 いことが示唆される。

(4) ドップラー速度観測による予測検証

図 4.7.10 に、札幌レーダー (a)、及び、釧路一般気象 ドップラーレーダー (以下、釧路レーダー) (b) のドッ プラー速度に対する RMSE の時系列を示す。釧路のサ

¹⁸ 格子間隔 5 km×5.625°×10 分。

¹⁹ 観測誤差、背景誤差は、方位角方向の相関幅については、 物理的距離を一定とするため、解析格子上では動径距離に反 比例するとした。一方、動径相関、時間相関は一様等方であ る。

図 4.7.10 ドップラー速度観測に対する RMSE (a) 札幌レーダー、(b) 釧路レーダー。赤:4D-Var。青: ハイブリッド 4D-Var。 濃: 観測 10 分間隔同化。淡:60 分間隔同化。黒:第一推定値。灰色: 観測数(右縦軸)。

イト (42.96°N, 144.52°E) は、札幌のサイト (43.14°N, 141.01°E) の東約 280 km に位置しており、本事例で は、停滞する前線に伴う降水がこの付近に分布し、両 サイトのドップラー速度データが継続して得られてい る (図 4.7.3)。釧路レーダーによるデータは同化に用い ておらず、同化ウィンドウ内の独立検証データとなっ ている。また、釧路レーダーは、札幌レーダーからみ て東方への流れの下流にあたり、予測において同化の 影響が移流していく位置にある。

同化に用いた札幌レーダーについて(図4.7.10(a))、 同化ウィンドウにあたる FT=-3~0 において、ハイ ブリッド 4D-Var の RMSE は同化ウィンドウ後半で若 干小さいものの、4D-Var、ハイブリッド 4D-Var によ る RMSE はおおよそ同程度である。予測においては、 4D-Var、ハイブリッド 4D-Var とも、主なインパクト は札幌レーダーでは FT=6 程度、より下流に位置する 釧路レーダーでは FT=8 程度まで持続している。ハイ ブリッド 4D-Var は、4D-Var よりも小さい RMSE を与 えており、流れに依存する背景誤差の効果により、観 測データの持つ大気の時間発展に関する情報を数値予 報モデルのバランスに即して抽出する性能がより高い ことが、ここでも示唆される。また、観測頻度による 違い(濃淡の線の差)は、4D-Var よりもハイブリッド 4D-Var で大きい。ハイブリッド 4D-Var により、高頻 度観測の情報によるインパクトをより引き出し得るこ

とが期待される²⁰。

一方、図 4.7.10 において、釧路 (b) の同化ウィンド ウ内 (FT=-3~0) や予報後半 (FT=8~11)、及び、札 幌 (a) の予報後半 (FT=6~9) では、観測時間間隔 10 分 または 60 分のハイブリッド 4D-Var において、4D-Var よりも大きい RMSE がみられる。これらは、直接同化 した札幌サイトの観測データの分布からは離れた位置 のインクリメントが伝搬してくることによる影響を受 けやすい位置、時間帯に対応しているとみられる。遠 方におけるアンサンブル摂動による背景誤差共分散に 改善の余地がある可能性が示唆される。アンサンブル のメンバー数、局所化、アンサンブルによる背景誤差の 重みをはじめ、データ同化に最適な流れへの依存性を 与えるアンサンブルの構成の検討は今後の課題である。

²⁰ EDA では観測値にランダムな摂動を加えており、結果に 不確実性がある。ハイブリッド 4D-Var で用いる 54 メンバー (6メンバー EDA×9 初期値)の摂動生成を 5 回試行して、結 果のばらつきを調査した(図略)。図 4.7.10 で示した、ドップ ラー速度の RMSE における、4D-Var に対するハイブリッド 4D-Var の優位性、観測頻度への感度(観測時間間隔 10 分と 60 分の実験による RMSE の差の大きさ)に着目した。試行 間のばらつきは大きく、試行平均ではハイブリッド 4D-Var による RMSE の全体的傾向(札幌: FT=4 付近を中心に 4D-Var から改善、釧路: FT=5 付近を中心に改善、同化ウィ ンドウと予報後半で悪化)は変わらないものの、4D-Var に 対する優位性は小さくなった。また、観測頻度への感度は、 試行平均では図 4.7.10 と同様、4D-Var よりもハイブリッド 4D-Var で大きかった。

4.7.6 まとめ

高頻度・高密度観測の利用の高度化に向けて、ドッ プラーレーダーによるドップラー速度の観測誤差相関 とその変分法データ同化システムにおける効果につい て検討した。

ドップラー速度の観測誤差相関の特性をD値と解析 残差の積の統計により推定した。統計から得られた観 測誤差には、時間、空間ともに相関構造がみられた。動 径相関の幅についてはビームの伝搬距離に伴って増大 する傾向がみられ、また、時間相関も予報時間に伴っ て幅が増大する傾向がみられた。観測演算子や数値予 報モデルにかかわる誤差が相関特性に寄与しているこ とが示唆された。

統計に基づいて観測誤差相関をモデル化し、簡易な 2D-Varに組み込んで、データ同化における観測誤差相 関の効果について調査を行った。観測誤差相関を考慮 することにより、高密度の観測値の持つ詳細な情報が 均等に解析値に反映された。単純に観測誤差相関を無 視すると、同符号のD値が広がって分布する領域にお いて過度なインクリメントがもたらされた。観測誤差 の膨張、単純な間引きを適用すると過度なインクリメ ントは緩和されたものの、インクリメントの詳細な構 造は失われた。一方、間引きに工夫を施すと構造が回 復する傾向もみられ、誤差膨張、間引きの適用にあたっ ては、観測データの情報の損失を抑えるための設計の 検討が重要となることが示された。

メソ解析に基づく 4D-Var、また、EDA による背景 誤差の流れへの依存性を導入したハイブリッド 4D-Var において、観測誤差相関を組み込んだ効果を調査した。 ハイブリッド 4D-Var の結果においては、EDA の構成 (少数メンバー、複数初期値使用、観測値のランダム摂 動など)による不確実性が含まれることに留意が必要 であるものの、1 サイトのドップラー速度を同化した 事例実験において、4D-Var との比較、観測頻度への依 存性について以下のような結果が得られた。

- FT=6~8 でハイブリッド 4D-Var により、4D-Var より高い精度の結果が得られた。インクリメント のパターンにおいても、ハイブリッド 4D-Var で 時間的に連続性のあるより詳細な構造が反映され ており、観測データから一連の時間発展として情 報を抽出する性能がより高いことが示唆された。
- 観測時間間隔を60分から10分に高頻度化すると、 ハイブリッド4D-Varでは、4D-Varよりも高い感 度を示した。また、インクリメントのパターンの 時間発展においても、ハイブリッド4D-Varにお いて、同化ウィンドウの最初から流れへの依存性 がより強く反映された。ハイブリッド4D-Varに より、高頻度観測の情報によるインパクトをより 引き出し得ることが期待される。

なお、今回の調査は、観測誤差相関の推定のための 統計期間は1週間程度と短く、また、1サイトのみを 対象としたものである。統計期間を増やして様々な気 象条件の多くの事例での特性を調査するとともに、他 のレーダーサイトの調査も行う必要がある。また、前 述のように、推定に用いた手法では、解析が真の背景 誤差及び観測誤差と合致していることを仮定している。 推定によって得られた観測誤差を用いた解析予報サイ クルによる再推定など、推定における本仮定の影響の 調査も課題である。ハイブリッド 4D-Var においては、 局所化やアンサンブルのメンバー数、アンサンブルに よる背景誤差の重みをはじめ、密な観測データの情報 を抽出するのに最適な、流れへの依存性を与えるアン サンブルの構成の検討も重要な課題である。これらの 課題に取り組みつつ、高頻度・高密度観測データの利 用の高度化に向けたデータ同化手法の検討をさらに進 める予定である。

謝辞

本調査では気象庁予報部数値予報課が開発したメソ数 値予報システムの数値解析予報実験システム (NAPEX) を用いた。本調査の一部は、JST AIP JPMJCR19U2、 JSPS KAKENHI Grant Number JP 19K23467、及び ポスト「京」プロジェクト 重点課題4「観測ビッグデー タを活用した気象と地球環境の予測の高度化」(課題 ID: hp180194、hp190156)の支援を受けたものである。

参考文献

- Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting. *Quart. J. Roy. Meteor. Soc.*, **131**, 1013–1043.
- Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. *Quart. J. Roy. Meteor. Soc.*, **131**, 3385–3396.
- Doviak, R. J. and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.
- Fisher, M., 2005: Accounting for correlated observation error in the ECMWF analysis. ECMWF Tech. Memo., R48.3/MF/05106.
- Hólm, E. V., S. T. K. Lang, M. Fisher, T. Kral, and M. Bonavita, 2018: Distributed Observations in Meteorological Ensemble Data Assimilation and Forecasting. in Proceedings of the 21st International Conference on Information Fusion (FU-SION), Cambridge, United Kingdom, 10-13 July 2018., 92–99.
- Honda, Y., M. Nishijima, K. Koizumi, Y. Ohta,K. Tamiya, T. Kawabata, and T. Tsuyuki, 2005:A pre-operational variational data assimilation system for a non-hydrostatic model at the Japan Me-

teorological Agency: Formulation and preliminary results. *Quart. J. Roy. Meteor. Soc.*, **131**, 3465–3475.

- Isaksen, L., M. Bonavita, R. Buizza, M. Fisher, J. Haseler, M. Leutbecher, and L. Raynaud, 2010: Ensemble of Data Assimilations at ECMWF. *ECMWF Tech. Memo.*, 636.
- 石川宜広, 2007: ドップラーレーダーデータの利用. 平 成19年度数値予報研修テキスト, 気象庁予報部, 102– 103.
- 石川宜広, 2015: ドップラーレーダーのドップラー速度 データ の数値予報での利用. 数値予報課報告・別冊 第 61 号, 気象庁予報部, 29–35.
- Janjić, T., N. Bormann, M. Bocquet, J. A. Carton,
 S. E. Cohn, S. L. Dance, S. N. Losa, N. K. Nichols,
 R. Potthast, J. A. Waller, and P. Weston, 2018:
 On the representation error in data assimilation. *Quart. J. Roy. Meteor. Soc.*, 144, 1257–1278.
- JMA, 2019: Outline of the operational numerical weather prediction at the Japan Meteorological Agency. Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting System (GDPFS) and Numerical Weather Prediction (NWP) Research. Japan Meteorological Agency, Tokyo, Japan, 229 pp.
- 小泉耕,2004: メソ解析へのドップラーレーダー動径風 の利用. 平成 16 年度数値予報研修テキスト,気象庁 予報部,71-74.
- Michel, Y., 2018: Revisiting Fisher's approach to the handling of horizontal spatial correlations of observation errors in a variational framework. Quart. J. Roy. Meteor. Soc., 144, 2011–2025.
- Saito, K., T. Fujita, Y. Yamada, J. Ishida, Y. Kumagai, K. Aranami, S. Ohmori, R. Nagasawa, S. Kumagai, C. Muroi, T. Kato, H. Eito, and Y. Yamazaki, 2006: The Operational JMA Nonhydrostatic Mesoscale Model. *Mon. Wea. Rev.*, **134**, 1266–1298.
- Seko, H., T. Kawabata, T. Tsuyuki, H. Nakamura, K. Koizumi, and T. Iwabuchi, 2004: Impacts of GPS-derived Water Vapor and Radial Wind Measured by Doppler Radar on Numerical Prediction of Precipitation. J. Meteor. Soc. Japan, 82, 473–489.
- Simonin, D., J. A. Waller, S. P. Ballard, S. L. Dance, and N. K. Nichols, 2019: A pragmatic strategy for implementing spatially correlated observation errors in an operational system: an application to Doppler radial winds. *Quart. J. Roy. Meteor. Soc.*, 145, 2772–2790.
- 露木義, 1997: 変分法によるデータ同化. 数値予報課報

告·別冊第43号, 気象庁予報部, 102-165.

- Waller, J. A., E. Bauernschubert, S. L. Dance, N. K. Nichols, R. Potthast, and D. Simonin, 2019: Observation Error Statistics for Doppler Radar Radial Wind Superobservations Assimilated into the DWD COSMO-KENDA System. *Mon. Wea. Rev.*, 147, 3351–3364.
- Waller, J. A., S. L. Dance, and N. K. Nichols, 2016a: Theoretical insight into diagnosing observation error correlations using observation-minusbackground and observation-minus-analysis statistics. *Quart. J. Roy. Meteor. Soc.*, **142**, 418–431.
- Waller, J. A., D. Simonin, S. L. Dance, N. K. Nichols, and S. P. Ballard, 2016b: Diagnosing Observation Error Correlations for Doppler Radar Radial Winds in the Met Office UKV Model Using Observation-Minus-Background and Observation-Minus-Analysis Statistics. Mon. Wea. Rev., 144, 3533–3551.

付録A 略語表*

略語	原語	訳または意味
2D-Var	2 Dimensional Variational method	2 次元変分法
3D-Var	3 Dimensional Variational method	3次元変分法
4D-Var	4 Dimensional Variational method	4次元変分法
ACARS	Automatic Communications Addressing and Re-	データ通信により航空機と地上管制機関との間で情
	porting System	報交換を行うシステム
ADEOS	ADvanced Earth Observing Satellite	地球観測プラットフォーム技術衛星「みどり」
AHI	Advanced Himawari Imager	ひまわり8号 9号に搭載されていろイメージャ
AIREP	AIBcraft BEPorts	前空機実況気象通報
AMDAR	Aircraft Meteorological DAta Belay	航空機観測データ中継装置
AMSR2	Advanced Microwave Scanning Badiometer-2	高性能マイクロ波放射計9
AMSR F	Advanced Microwave Scanning Radiometer-2	高仕能、「シロ波放射計 2 喜桃能マイクロ波放射計 (A ong 衛星に 抜載)
AMDIC-D	FOS	同任化、「ノロ彼族計冊(Aqua 南至に指戰)
AMSUA	Advanced Microwaya Sounding Unit A	- 故自刑マイクロ波気温サウンダ(NOAA Aqua
AM50-A	Advanced Microwave Sounding Chit-A	Moton 衛星に搭載)
AMX	Atmospheric Motion Vector	大与追跡風
	All Nippon Airways	八风垣砌風
	Advenged Decearch WPF	王口平工制
ARW	Advanced Research WRF	本国人XUM先センターが力子コノを開発している WDF
ASCAT	Advanced SCATteremeter	W 氏F 故 白 刑 勘 利 卦
ASCAL	Advanced SCATterometer	以及生取癿同
asuca	Asuca is a System based on a Unified Concept	気象月の伏世代非前月子モナル
aguas ADVan	for Atmosphere	
asuca-4D var	asuca Four-Dimensional variational data assimi-	asuca に基フト 4 八九変力伝 アータ 向化 システム
	auton system	に其づく本八注ゴーカ目ルシュニノ
asuca-var	A descent TIPOS Or susting a Vertical Course der	asucaに基づく変力伝アータ回化システム
ATOVS	Advanced TIROS Operational Vertical Sounder	「 超旦リリンダ
B08RDP	Beijing 2008 Olympics Research and Develop-	北京オリンビック 2008 研究開発ノロシェクト
DI	Discourse and the second	バノマフフラマ
BI	Blas score	ハイノススコノ
BSS	Brier Skill Score	唯学了側に関りる私計指標の一 フ 火団上に頂面に火力。のコミュニニュ上に上紙漂エ
CAM	Community Atmosphere Model	米国大気研究センターのコミュニティ大気大値境モ デル
CAPE	Convective Available Potential Energy	対流有効位置エネルギー
CERES	Clouds and the Earth's Radiant Energy System	地球放射収支計(TRMM 衛星などに搭載)
CERES-EBAF	CERES-Energy Balanced And Filled	CERES によるフラックスデータセット
CFL 条件	Courant-Friedrichs-Lewy 条件	数値予報モデルを安定に積分するための時間間隔を
		決定するときに考慮すべき一つの条件
Coriolis	Coriolis	米国の極軌道衛星。海上風観測を目的とする。
COSMO	COnsortium for Small-scale MOdeling	ドイツ気象局を中心とする欧州気象機関のコミュニ
000000		ティ領域モデル及びコンソーシアム
CSR	Clear Sky Radiance	晴天放射輝度温度
DMSP	Defense Meteorological Satellite Program	米空軍の軍事気象衛星
DPR	Dual-frequency Precipitation Radar	二周波降水レーダー
EARS	EUMETSAT Advanced Retransmission Service	EUMETSAT 拡張再配信サービス。元々は EU-
		METSAT ATOVS Retransmission Service の略で
		あったが、対象データの拡張に伴い名称が改められ
		ten
ECMWF	European Centre for Medium-Range Weather	欧州中期予報センター
	Forecasts	
EDA	Ensemble of Data Assimilations	データ同化アンサンブル
EnKF	Ensemble Kalman Filter	アンサンブルカルマンフィルタ
EPS	Ensemble Prediction System	アンサンブル予報システム
ESFT 法	the Exponential Sum Fitting of Transmission	
	function 法	
ETS	Equitable Threat Score	エクイタブルスレットスコア
~	-1	

* 嶋田 充宏

略語	原語	訳または意味
EUMETSAT	EUropean organisation for the exploitation of	欧州気象衛星開発機構
	METeorological SATellites	
FT	Forecast Time	予報時間
FY-3C	Feng Yun 3C	中国の気象衛星「風雲3」シリーズの3機目の衛星
GCOM-W	Global Change Observation Mission-Water	 地球環境変動観測ミッション計画において、水循環 変動に関する観測を担当する衛星
GEPS	Global Ensemble Prediction System	気象庁の全球アンサンブル予報システム
GLCC	Global Land Cover Characterization	全球土地被覆分類
GMI	GPM Microwave Imager	GPM マイクロ波イメージャ
GNSS	Global Navigation Satellite System	全球航法衛星システム
GEONET	GNSS Earth Observation NETwork system	GNSS 連続観測システム
GPM	Global Precipitation Measurement	全球降水観測計画
GPS	Global Positioning System	(米国の)全球測位システム
GSM	Global Spectral Model	気象庁の全球スペクトルモデル
GSV	Global SV	全球 SV
HWSD	Harmonized World Soil Database	調和的世界土壌データベース
ICAO	International Civil Aviation Organization	国際民間航空機関
IFS	Integrated Forecast System	欧州中期予報センターの全球数値予報システム
ILU 分解	Incomplete LU 分解	不完全 LU 分解
JAL	Japan AirLines	日本航空
JMA	Japan Meteorological Agency	気象庁
JMA-NHM	JMA Non-Hydrostatic Model	気象庁非静力学モデル
JNoVA	JMA Non-hydrostatic model based Variational	気象庁非静力学モデルに基づいた変分法データ同化
	data Assimilation system	システム
JST	Japan Standard Time	日本標準時
KiD	Kinematic Driver	↓ 鉛直1次元モデルによる雲微物理過程の評価パッ ケージ
KNMI	Koninklijk Nederlands Meteorologisch Instituut (オランダ語)	オランダ王立気象研究所
LAF 法	Lagged Average Forecast 法	時間ずらし平均法
LCL	Lifting Condensation Level	持ち上げ凝結高度
LEPS	Local Ensemble Prediction System	開発中の気象庁の局地アンサンブル予報システム
LETKF	Local Ensemble Transform Kalman Filter	局所アンサンブル変換カルマンフィルタ
LFM	Local Forecast Model	気象庁の局地モデル
ME	Mean Error	平均誤差
MEPS	Meso-scale Ensemble Prediction System	気象庁のメソアンサンブル予報システム
Metop	Meteorological operational satellite	EUMETSAT の極軌道気象現業衛星
Météo France	Météo France(フランス語)	フランス気象局
MHS	Microwave Humidity Sounder	│ マイクロ波水蒸気サウンダ(NOAA, Metop 衛星に │ 搭載)
MODIS	MODerate resolution Imaging Spectroradiometer	中分解能撮像分光放射計(Aqua, Terra 衛星に搭載)
MOGREPS	Met Office Global and Regional Ensemble Pre- diction System	英国気象局の全球・領域アンサンブル予報システム
MSC	Meteorological Service of Canada	カナダ気象局
MSM	Meso-Scale Model	気象庁のメソモデル
MSV	Meso-scale SV	メソSV
MTSAT	Multi-functional Transport SATellite	(日本の)運輸多目的衛星
MWRI	Micro-Wave Radiation Imager	中国の FY-3 シリーズに搭載されたマイクロ波イ メージャ
NAPEX	Numerical Analysis and Prediction EXperiment system	数値解析予報実験システム
NCAR	National Center for Atmospheric Research	米国大気研究センター
NCEP	National Centers for Environmental Prediction	米国環境予測センター
NIMBUS	NIMBUS	アメリカの気象衛星シリーズ。NIMBUS とは「雨 雲」を意味するラテン語。
NLM	Non-Linear Model	非線形モデル
NOAA	National Oceanic and Atmospheric Administra- tion	米国海洋大気庁
OAFlux	Objectively Analyzed air-sea Fluxes	│ 全球の大気・海洋フラックスについての研究開発フ ロジェクトによる解析プロダクト

略語	原語	訳または意味
OLR	Outgoing Longwave Radiation	大気上端上向き長波放射
OSI SAF	Satellite Application Facility on Ocean and Sea Ice	海洋海氷に関する衛星観測データの利用についての EUMETSAT の研究開発機関
PDF	Probability Density Function	確率密度関数
QC	Quality Control	品質管理
RANS	Reynolds-Averaged Navier-Stokes Simulation	物理量のレイノルズ平均と呼ばれる平均量の時間発
		展を、Navier-Stokes 方程式から導出される方程式
5556		をもとに計算する数値シミュレーション手法
REPS	Regional Ensemble Prediction System	カナダ気象センターの領域アンサンブル予報システ
BMSE	Boot Mean Square Error	ム 一 垂 亚 均 亚 方 根 凯 美
ROCASS	Relative Operating Characteristic Area Skill	相対作用特性面積スキルスコア
1001100	Score	
RPF / RP 法	Random Parameter Field / Random Parameter 法	ランダムパラメータ法
RSM	Regional Spectral Model	気象庁の領域数値予報モデル(2007 年 11 月まで運 用)
RTTOV	Radiative Transfer for TOVS	高速放射伝達モデル
SKEBS / SKEB 法	Stochastic Kinetic Energy Backscatter Scheme / Stochastic Kinetic Energy Backscatter 法	確率的運動エネルギー後方散乱法
SPP	Stochastically Perturbed Parametrization	確率的物理過程摂動法
	(Physics) または Stochastic Perturbation of	
	Parametrization (Physics)	
SPPT	Stochastically Perturbed Parametrization	確率的物理過程時間変化率摂動法
	(Physics) Tendency $\sharp \hbar z \sharp Stochastic Perturba-$	
SDEE	Short Range Encomble Ecrocost	NCEP の短期アンサンブル圣想システム
SSMIS	Special Sensor Microwave Imager Sounder	マイクロ波イメージャの機能を持つチャンネルとサ
551115	special conservationate imager sounder	ウンダの機能を持つチャンネルを搭載した放射計
SSR	Secondary Surveillance Radar	二次監視レーダー
SSR モード S	Secondary Surveillance Radar Mode S	個々の航空機に割り当てられた航空機アドレスを使
		用して航空機に個別質問を行うことにより、目標検 出の精度及び信頼性を向上した新型 SSR
SST	Sea Surface Temperature	海面水温
SV	Singular Vector	特異ベクトル
SYNOP	surface SYNOPtic observations	地上実況気象通報式
TE	Total Energy	全エネルギー
TLM	Tangent Linear Model	接線形モデル
TMI	TRMM Microwave Imager	TRMM マイクロ波イメージャ(TRMM 衛星に搭 載)
TOMS	Total Ozone Mapping Spectrometer	オゾン全量分光計(ADEOS, NIMBUS 衛星に搭載)
TRMM	Tropical Rainfall Measuring Mission	熱帯降雨観測計画
UKMO	United Kingdom Met Office	英国気象局
UM	Unified Model	英国気象局の全球・領域統一モデル
USGS	United States Geological Survey	米国地質調査所
UTC	Coordinated Universal Time または Temps Uni-	協定世界時
	versel Coordonné(フランス語)	
VHF VM X+	Very High Frequency	超湿波
VM 法 WEDS	Variance Minimum 法 Washing Engemble Dradition Cont	ハリチンスミニマム法
WEPS WindSat	Wind Satellite	ス家月 の週间 テノリノノル 字報ン 人 テム 海上 届 測 完 田 の 冬 戸 油 マ ノ カ ロ 沖 ノ コ - ジュ
windSat WMO	World Mateorological Organization	一一四一四一四一四一四一四一四一四一四一四一四一四一四一四一四一四一四一四
WRF	Weather Research and Forecasting model	平介へ33700円 米国で開発されている非静力学コミュニティモデル
WWRP	World Weather Research Programme	
ZAMG	ZentralAnstalt für Meteorologie und Geody-	オーストリア気象地球力学中央研究所
	namik (ドイツ語)	

付録B 数値予報課報告・別冊で用いた表記と統計的検証に用いる代表的な指標*

本報告で使用した表記と統計的検証に用いる代表的な指標などについて以下に説明する。

B.1 数値予報課報告・別冊で用いた表記

B.1.1 GSM, MSM のバージョン名について

気象庁全球モデル (GSM) 及び気象庁メソモデル (MSM) のバージョン名は、GSM, MSM に改良が導 入された西暦の下二桁と月を「GSM」や「MSM」の 後ろに付けた形式で付けられている(例:GSM1705, MSM1702)。

B.1.2 分解能の表記について

本報告では、全球モデルの分解能について、xx を水 平方向の切断波数、yy を鉛直層数として、"TxxLyy"¹ と表記することがある。また、セミラグランジアンモデ ルで線形格子 (北川 2005)を用いる場合は"TLxxLyy"² と表記する。北緯 30 度において、TL959 は約 20 km 格子、TL479 は約 40 km 格子、TL319 は約 55 km 格 子、TL159 は約 110 km 格子、TL63 は約 270 km 格子 に相当する。

B.1.3 時刻の表記について

本報告では、時刻を表記する際に、通常国内で用い られている日本標準時 (JST: Japan Standard Time) のほかに、協定世界時 (UTC: Coordinated Universal Time)を用いている。数値予報では国際的な観測デー タの交換やプロダクトの利用などの利便を考慮して、 時刻はUTCで表記されることが多い。JST はUTC に 対して9時間進んでいる。また、単に「時」を用いる 場合は、日本標準時を意味する。

B.1.4 予測時間の表記について

数値予報では、統計的な検証や事例検証の結果を示 す際に、予報対象時刻のほかに、初期時刻からの経過 時間を予報時間 (FT: Forecast Time³) として表記し ている。

本報告では、予報時間を

「予報時間」=「予報対象時刻」-「初期時刻」 で定義し、例えば、6時間予報の場合、FT=6と表記 しており、時間の単位 [h] を省略している。

B.1.5 アンサンブル予報の表記について

アンサンブル予報では、複数の予測の集合(アンサ ンブル)を統計的に処理し、確率予測などの資料を作 成する。本報告では、予測の集合の平均を「アンサン

¹ T は三角形 (Triangular) 波数切断、L は層 (Level) を意味する。

ブル平均」、個々の予測を「メンバー」と呼ぶ。また、 摂動を加えているメンバーを「摂動ラン」、摂動を加え ていないメンバーを「コントロールラン」と呼ぶ。全 メンバーの数に対する、予測がある閾値を超える(ま たは下回る)メンバーの数の割合を超過確率と呼ぶ。

B.1.6 緯度、経度の表記について

本報告では、緯度、経度について、アルファベット を用いて例えば「北緯 40 度、東経 130 度」を「40°N, 130°E」、「南緯 40 度、西経 130 度」を「40°S, 130°W」 などと略記する。

B.2 統計的検証に用いる代表的な指標

B.2.1 平均誤差、二乗平均平方根誤差、誤差の標準 偏差、改善率

予測誤差を表す基本的な指標として、平均誤差(ME: Mean Error、バイアスと表記する場合もある)と二乗 平均平方根誤差 (RMSE: Root Mean Square Error) が ある。これらは次式で定義される。

$$ME \equiv \frac{1}{N} \sum_{i=1}^{N} (x_i - a_i)$$
 (B.2.1)

$$\text{RMSE} \equiv \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - a_i)^2}$$
(B.2.2)

ここで、N は標本数、x_i は予測値、a_i は実況値である。 ME は予測値の実況値からの偏りの平均であり、0 に近 いほど実況からのずれが小さいことを示す。RMSE は 最小値の0 に近いほど予測が実況に近いことを示す。 RMSE は ME の寄与とそれ以外を分離して、

$$RMSE^2 = ME^2 + \sigma_e^2 \tag{B.2.3}$$

$$\sigma_e^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - a_i - \text{ME})^2$$
(B.2.4)

と表すことができる。 σ_e は誤差の標準偏差である。

本報告では、予測に改良を加えた際の評価指標として、RMSEの改善率 (%)を用いる場合がある。RMSE の改善率は次式で定義される。

 $RMSE \: \red{eq:RMSE_cntl} = \frac{RMSE_{cntl} - RMSE_{test}}{RMSE_{cntl}} \times 100 \hspace{0.1 cm} (B.2.5)$

(RMSE 改善率 ≤ 100)

ここで、RMSE_{cntl} は基準となる予測の、RMSE_{test} は 改良を加えた予測の RMSE である。

^{*} 嶋田 充宏

² TL の L は線形 (Linear) 格子を意味する。

³ 英語圏では Forecast Range などと記述されることも多い。

B.2.2 スプレッド

スプレッドは、アンサンブル予報のメンバーの広が りを示す指標であり、次式で定義される。

スプレッド
$$\equiv \sqrt{\frac{1}{N} \sum_{n=1}^{N} \left(\frac{1}{M} \sum_{m=1}^{M} (x_{mn} - \overline{x_n})^2\right)}$$
(B.2.6)

ここで、Mはアンサンブル予報のメンバー数、Nは標本数、 x_{mn} はm番目のメンバーの予測値、 $\overline{x_n}$ は

$$\overline{x_n} \equiv \frac{1}{M} \sum_{m=1}^{M} x_{mn} \tag{B.2.7}$$

で定義されるアンサンブル平均である。

B.2.3 アノマリー相関係数

アノマリー相関係数 (ACC: Anomaly Correlation Coefficient)とは、予測値の基準値からの偏差(アノマ リー)と実況値の基準値からの偏差との相関係数であ り、次式で定義される。

$$ACC \equiv \frac{\sum_{i=1}^{N} (X_i - \overline{X}) (A_i - \overline{A})}{\sqrt{\sum_{i=1}^{N} (X_i - \overline{X})^2 \sum_{i=1}^{N} (A_i - \overline{A})^2}} (-1 \le ACC \le 1) \quad (B.2.8)$$

ただし、

$$X_i = x_i - c_i, \qquad \overline{X} = \frac{1}{N} \sum_{i=1}^N X_i$$
 (B.2.9)

$$A_i = a_i - c_i, \qquad \overline{A} = \frac{1}{N} \sum_{i=1}^N A_i$$
 (B.2.10)

である。ここで、N は標本数、x_i は予測値、a_i は実況 値、c_i は基準値である。基準値としては気候値を用い る場合が多い。アノマリー相関係数は予測と実況の基 準値からの偏差の相関を示し、基準値からの偏差の増 減のパターンが完全に一致している場合には最大値の 1をとり、相関が全くない場合には0をとり、逆に完 全にパターンが反転している場合には最小値の –1 を とる。なお、アノマリー相関係数や ME, RMSE の解 説は、梅津ほか (2013) に詳しい。

B.3 カテゴリー検証で用いる指標

カテゴリー検証では、まず、対象となる現象の有無 を予測と実況それぞれについて判定し、その結果によ り標本を分類する。そして、それぞれのカテゴリーに 分類された事例数を基に、予測の特性を検証するとい う手順を踏む。

B.3.1 分割表

分割表は、カテゴリー検証においてそれぞれのカテ ゴリーに分類された事例数を示す表(表 B.3.1)である。 付録 B.3.2 から B.3.12 に示す各スコアは、表 B.3.1 に 示される各区分の事例数を用いて定義される。また、以 下では全事例数を N=FO+FX+XO+XX、実況「現象 あり」の事例数を M=FO+XO、実況「現象なし」の 事例数を X=FX+XX と表す。

表 B.3.1 カテゴリー検証で用いる分割表。FO, FX, XO, XX はそれぞれの事例数を示す。

		実況		클ł-
		あり	なし	П
予測	あり	適中 (FO)	空振り (FX)	FO+FX
	なし	見逃し (XO)	適中 (XX)	XO+XX
	ł	M	X	N

B.3.2 適中率

適中率は、予測が適中した割合であり、次式で定義 される。

最大値の1に近いほど予測の精度が高いことを示す。

B.3.3 空振り率

空振り率は、予測「現象あり」の事例数に対する空 振り(予測「現象あり」かつ実況「現象なし」)の割合 であり、次式で定義される。

空振り率
$$\equiv \frac{FX}{FO + FX}$$
 (0 \leq 空振り率 \leq 1) (B.3.2)

最小値の0に近いほど空振り率が小さいことを示す。 本報告では分母を FO+FX としているが、代わりに *N* として定義する場合もある。

B.3.4 見逃し率

見逃し率は、実況「現象あり」の事例数に対する見 逃し(実況「現象あり」かつ予測「現象なし」)の割合 であり、次式で定義される。

見逃し率
$$\equiv \frac{\text{XO}}{M}$$
 (0 \leq 見逃し率 \leq 1) (B.3.3)

最小値の0に近いほど見逃し率が小さいことを示す。 本報告では分母を *M* としているが、代わりに *N* とし て定義する場合もある。

B.3.5 捕捉率

捕捉率 (H_r : Hit Rate、POD (Probability Of Detection) とも呼ばれる) は、実況「現象あり」のときに 予測が適中した割合であり、次式で定義される。

$$H_r \equiv \frac{\text{FO}}{M} \quad (0 \le H_r \le 1) \tag{B.3.4}$$

最大値の1に近いほど見逃し率が小さいことを示す。 捕捉率は、ROC曲線(付録 B.4.3)のプロットに用い られる。

B.3.6 体積率

体積率 (V_r : Volume Ratio) は、全事例のうち予測 の「現象あり」の事例の割合を示す。

$$V_r \equiv \frac{\rm FO + FX}{N} \tag{B.3.5}$$

複数の予測の捕捉率が等しい場合、体積率が小さい予 測ほど空振り率が小さい良い予測と言える。

B.3.7 誤検出率

誤検出率 (F_r : False Alarm Rate) は、実況「現象な し」のときに予測が外れた割合である。空振り率 (B.3.2) 式とは分母が異なり、次式で定義される。

$$F_r \equiv \frac{\mathrm{FX}}{X} \quad (0 \le F_r \le 1) \tag{B.3.6}$$

最小値の0に近いほど、空振り率が小さく予測の精 度が高いことを示す。誤検出率は捕捉率(付録 B.3.5) とともに ROC 曲線(付録 B.4.3)のプロットに用いら れる。

B.3.8 バイアススコア

バイアススコア (BI: Bias Score) は、実況「現象あ り」の事例数に対する予測「現象あり」の事例数の比 であり、次式で定義される。

$$BI \equiv \frac{FO + FX}{M} \quad (0 \le BI) \tag{B.3.7}$$

予測と実況で「現象あり」の事例数が一致する場合 に1となる。1より大きいほど予測の「現象あり」の 頻度が過大、1より小さいほど予測の「現象あり」の 頻度が過小であることを示す。

B.3.9 気候学的出現率

現象の気候学的出現率 *P_c* は、標本から見積もられる「現象あり」の平均的な出現確率であり、次式で定義される。

$$P_c \equiv \frac{M}{N} \quad (0 \le P_c \le 1) \tag{B.3.8}$$

この量は実況のみから決まり、予測の精度にはよら ない。予測の精度を評価する際の基準値の設定にしば しば用いられる。

B.3.10 スレットスコア

スレットスコア (TS: Threat Score) は、予測または 実況で「現象あり」の場合の予測適中事例数に着目し て予測精度を評価する指標であり、次式で定義される。

$$TS \equiv \frac{FO}{FO + FX + XO} \quad (0 \le TS \le 1) \qquad (B.3.9)$$

出現頻度の低い現象(N≫M、したがって、XX≫FO, FX, XO となって、予測「現象なし」による寄与だけ で適中率が1に近い現象)について XX の影響を除い て検証するのに有効である。本スコアは最大値の1に 近いほど予測の精度が高いことを示す。なお、スレッ トスコアは現象の気候学的出現率の影響を受けやすく、 異なる標本や出現率の異なる現象に対する予測の精度 を比較するのには適さない。この問題を緩和するため、 次項のエクイタブルスレットスコアなどが考案されて いる。

B.3.11 エクイタブルスレットスコア

エクイタブルスレットスコア (ETS: Equitable Threat Score) は、前項のスレットスコアが現象の気候 学的出現率の影響を受けやすいため、気候学的な確率 で「現象あり」が適中した頻度を除いて求めたスレッ トスコアであり、次式で定義される (Schaefer 1990)。

$$\text{ETS} \equiv \frac{\text{FO} - S_f}{\text{FO} + \text{FX} + \text{XO} - S_f} \quad \left(-\frac{1}{3} \le \text{ETS} \le 1\right)$$
(B.3.10)

ただし、

$$S_f = P_c(\mathrm{FO} + \mathrm{FX}) \tag{B.3.11}$$

である。ここで、 S_f は「現象あり」をランダムに FO+FX 回予測した場合(ランダム予測)の「現象あ り」の適中事例数である。本スコアは、最大値の1に 近いほど予測の精度が高いことを示す。また、ランダ ム予測で0となり、FO=XX=0, FX=XO=N/2の場 合に最小値 -1/3をとる。

B.3.12 スキルスコア

スキルスコア (Skill Score) は気候学的確率などによ る予測の難易を取り除いて、予測の技術力を評価する 指数であり、一般に次式のように定義される。

スキルスコア
$$\equiv \frac{S_{\text{fcst}} - S_{\text{ref}}}{S_{\text{pfct}} - S_{\text{ref}}}$$
 (B.3.12)

ここで、S_{fcst}, S_{pfct}, S_{ref}は、評価対象の予測・完全予 測・比較の基準となる予測(気候学的確率など)の各 スコア(適中率)である。本スコアは、最大値の1に 近いほど予測の精度が高いことを示し、比較の基準と なる予測よりも精度が劣る場合、負の値となる。

代表的なスキルスコアは Heidke のスキルスコア (HSS: Heidke Skill Score) で、気候学的な確率で「現 象あり」および「現象なし」が適中した頻度を除いて 求める適中率であり、次式で定義される。

$$HSS \equiv \frac{FO + XX - S}{N - S} \quad (-1 \le HSS \le 1) \quad (B.3.13)$$

$$S = P_c(\mathrm{FO} + \mathrm{FX}) + P_x(\mathrm{XO} + \mathrm{XX}).$$

$$P_x = \frac{X}{N} \tag{B.3.14}$$

である。ここで、 P_x は「現象なし」の気候学的出現 率、Sは「現象あり」をFO+FX回(すなわち、「現象 なし」を残りのXO+XX回)ランダムに予測した場合 (ランダム予測)の適中事例数である。HSSは、最大値 の1に近づくほど精度が高く、ランダム予測で0とな り、FO=XX=0, FX=XO=N/2の場合に最小値 -1を とる。前項のエクイタブルスレットスコアもスキルス コアの一つで、Gilbert Skill Score とも呼ばれている。

B.4 確率予測に関する指標など

B.4.1 ブライアスコア

ブライアスコア (BS: Brier Score) は、確率予測の統 計検証の基本的指標である。ある現象の出現確率を対 象とする予測について、次式で定義される。

$$BS \equiv \frac{1}{N} \sum_{i=1}^{N} (p_i - a_i)^2 \quad (0 \le BS \le 1) \quad (B.4.1)$$

ここで、 p_i は確率予測値 (0 から 1)、 a_i は実況値 (現象ありで 1、なしで 0)、N は標本数である。BS は 完全に適中する決定論的な ($p_i=0$ または 1 の)予測 (完全予測と呼ばれる)で最小値の 0 をとり、0 に近い ほど予測の精度が高いことを示す。また、現象の気候 学的出現率 P_c ((B.3.8) 式)を常に確率予測値とする 予測(気候値予測と呼ばれる)のブライアスコア BS_c は

$$BS_c \equiv P_c(1 - P_c) \tag{B.4.2}$$

となる。ブライアスコアは、現象の気候学的出現率の 影響を受けるため、異なる標本や出現率の異なる現象 に対する予測の精度を比較するのには適さない。例え ば上の BS_c は P_c 依存性を持ち、同じ予測手法(ここ では気候値予測)に対しても P_c の値に応じて異なる 値をとる (Stanski et al. 1989)。この問題を緩和するた め、次項のブライアスキルスコアが考案されている。

B.4.2 ブライアスキルスコア

ブライアスキルスコア (BSS: Brier Skill Score) は、 ブライアスコアに基づくスキルスコアであり、通常気 候値予測を基準とした予測の改善の度合いを示す。本 スコアは、ブライアスコア BS、気候値予測によるブラ イアスコア BS_c を用いて

$$BSS \equiv \frac{BS_c - BS}{BS_c} \quad (BSS \le 1) \tag{B.4.3}$$

で定義され、完全予測で1、気候値予測で0、気候値予 測より誤差が大きいと負となる。

B.4.3 ROC 曲線、ROC 面積、ROC 面積スキルス コア

現象の予測出現確率にある閾値を設定し、これを予 測の「現象あり」「現象なし」を判定する基準とするこ とが可能である。様々な閾値それぞれについて作成し た分割表を基に、閾値が変化したときの F_r - H_r 平面上 の軌跡をプロットしたものが ROC 曲線(ROC curve: Relative Operating Characteristic curve、相対作用特 性曲線)である(図 B.4.1 参照、高野 2002 などに詳し い)。平面内の左上方の領域では $H_r > F_r$ であり、平面 の左上側に膨らんだ ROC 曲線特性を持つ確率予測ほど 精度が高いものと見なせる。したがって、ROC 曲線から 下の領域(図 B.4.1 灰色の領域)の面積(ROCA: ROC Area、ROC 面積)は、情報価値の高い確率予測ほど 大きくなる。ROC 面積スキルスコア(ROCASS: ROC Area Skill Score)は、情報価値のない予測 ($H_r = F_r$) を基準として ROC 面積を評価するものであり、次式 で定義される。

$$\operatorname{ROCASS} \equiv 2(\operatorname{ROCA} - 0.5) \quad (-1 \le \operatorname{ROCASS} \le 1)$$

$$(B.4.4)$$

本スコアは、完全予測で最大値の1をとる。また、 情報価値のない予測(例えば、区間[0,1]から一様ラン ダムに抽出した値を確率予測値とする予測など)では 0となる。

図 B.4.1 ROC 曲線の模式図。横軸は F_r 、縦軸は H_r である。灰色の領域の面積が ROC 面積である。

参考文献

- 北川裕人, 2005: 全球・領域・台風モデル. 平成 17 年度 数値予報研修テキスト, 気象庁予報部, 38-43.
- Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570–575.
- Stanski, H. R., L. J. Wilson, and W. R. Burrows, 1989: Survey of common verification methods in

meteorology. *Research Rep.*, **89-5**, Forecast Research Division, Atmospheric Environment Service, Environment Canada, 114 pp.

- 高野清治, 2002: アンサンブル予報の利用技術. 気象研 究ノート, **201**, 73–103.
- 梅津浩典, 室井ちあし, 原旅人, 2013: 検証指標. 数値予 報課報告・別冊第 59 号, 気象庁予報部, 6–15.

付録C 電子計算室報告、同別冊、数值予報課報告·別冊 発行履歴

発行年月	発行号	表題
2020年(令和 2年)3月	数値予報課報告・別冊第66号	メソスケール気象予測の現状と展望
2019年(平成 31 年) 3 月	数値予報課報告・別冊第65号	全球モデルの改良と展望
2018年(平成 30年) 3月	数値予報課報告・別冊第64号	ガイダンスの解説
2017年(平成 29年) 3月	数値予報課報告・別冊第63号	数値予報モデル開発のための基盤整備および開発
		管理
2016年(平成 28年) 3月	数値予報課報告・別冊第62号	確率的な気象予測のためのアンサンブル予報の課 題と展望
2015年(平成 27年) 3月	数値予報課報告・別冊第61号	観測データ利用の現状と課題
2014年(平成 26年) 3月	数値予報課報告・別冊第60号	次世代非静力学モデル asuca
2013年(平成 25年) 3月	数値予報課報告・別冊第59号	物理過程の改善に向けて (II)
2012年(平成24年)3月	数値予報課報告・別冊第58号	物理過程の改善に向けて (I)
2011年(平成 23年) 3月	数値予報課報告・別冊第57号	データ同化の改善に向けて
2010年(平成 22 年) 3 月	数値予報課報告・別冊第56号	非静力学メソ4次元変分法
2009年(平成 21 年) 3 月	数値予報課報告・別冊第55号	全球モデルの課題と展望
2008年(平成 20年) 3月	数値予報課報告・別冊第54号	気象庁非静力学モデル II
		――現業利用の開始とその後の発展――
2007年(平成19年)3月	数値予報課報告・別冊第53号	数値予報と衛星データ ――同化の現状と課題――
2006年(平成18年)3月	数値予報課報告・別冊第52号	アンサンブル技術の短期・中期予報への利用
		――激しい気象現象の予測向上を目指して――
2005年(平成17年)3月	数値予報課報告・別冊第51号	全球モデル開発プロジェクト (II)
2004年(平成16年)3月	数値予報課報告・別冊第50号	全球モデル開発プロジェクト (I)
2003年(平成 15年) 3月	数値予報課報告・別冊第49号	気象庁非静力学モデル
2002年(平成14年)3月	数値予報課報告・別冊第48号	変分法データ同化システムの現業化
2000年(平成12年)10月	数値予報課報告・別冊第47号	新しい数値解析予報システム(数値予報解説資料
		(33) 平成 12 年度数値予報研修テキスト合併)
2000年(平成12年)3月	数値予報課報告・別冊第46号	全球モデル開発の現状と展望――気象業務の基幹
		モデルとして―
1999年(平成11年)3月	数値予報課報告・別冊第45号	数値予報のための衛星データ同化
1998年(平成10年)3月	数値予報課報告・別冊第44号	メソ数値予報の実用化に向けて
1997年(平成 9年)3月	数値予報課報告・別冊第43号	データ同化の現状と展望
1996年(平成 8年)3月	数値予報課報告・別冊第42号	一ヶ月予報に向けた全球モデルの開発 ――バイア
		スの小さな予報モデルを目指して――
1994年(平成 6年)9月	数値予報課報告・別冊第41号	数値予報の実際(数値予報解説資料 (27) 平成6年
		度数値予報研修テキスト合併)
1994年(平成 6年)3月	数値予報課報告・別冊第40号	気候監視のための海洋データ同化システム ――大
		気海洋結合モデルによる季節予報に向けて―
1993年(平成 5年)3月	数値予報課報告・別冊第39号	数値予報とリモートセンシング
1992年(平成 4年)3月	数値予報課報告・別冊第38号	力学的1ヶ月予報の課題と展望
1991年(平成 3年)3月	数値予報課報告・別冊第37号	狭領域モデルの課題と展望
1990年(平成 2年)3月	数値予報課報告・別冊第36号	気象データと客観解析
1989年(平成 元年) 3月	数値予報課報告・別冊第35号	力学的長期予報をめざして
1988年(昭和63年)3月	数値予報課報告・別冊第34号	数値予報モデルの物理過程
1987年(昭和62年)3月	数値予報課報告・別冊第33号	低緯度の数値予報
1986年(昭和 61 年) 3 月	数値予報課報告・別冊第32号	メソスケール現象と数値予報
1985年(昭和60年)3月	電子計算室報告・別冊第 31 号	延長予報に関する最近の話題

	発行年月		発行号	表題
1984 年	(昭和 59 年) :	3月	電子計算室報告・別冊第 30 号	ノーマル・モード・イニシャリゼーション
1983年	(昭和58年) 3	3月	電子計算室報告・別冊第 29 号	北半球およびファインメッシュ予報モデル(8L
				NHM および 10L FLM)と解析システム
1982年	(昭和 57 年) :	3月	電子計算室報告・別冊第28号	スペクトル法による数値予報(その原理と実際)
1981 年	(昭和 56 年) :	3月	電子計算室報告・別冊第 27 号	数値予報モデルの時間差分スキームと物理過程
1980年	(昭和 55 年) :	3月	電子計算室報告・別冊第26号	気象衛星資料と数値予報
1979年	(昭和54年):	3月	電子計算室報告·別冊第25号	4層北半球プリミティブ・モデルの改良について
1978年	(昭和 53 年) :	3月	電子計算室報告·別冊第24号	数値予報による延長予報
1977 年	(昭和 52 年) 3	3月	電子計算室報告·別冊第23号	数値予報と天気予報
1976 年	(昭和 51 年) 3	3月	電子計算室報告・別冊第 22 号	客観解析
1975 年	(昭和 50 年) :	3月	電子計算室報告・別冊第 21 号	4層北半球プリミティブ・モデルについて
1974 年	(昭和49年):	3月	電子計算室報告・別冊第20号	数値予報特別研修のまとめ
1973 年	(昭和48年)10	0月	電子計算室報告・別冊第 19 号	プリミティブ・モデルについて(数値予報解説資
				料(6)合併)
1973 年	(昭和48年) :	3月	電子計算室報告・別冊第18号	フリミティフ・モテルをめぐって
1972年	(昭和 47 年)10	0月	電子計算至報告別冊第17号	新しく予報を担当される方のための電計資料の見
10月1 左			ポフ引然合却化时回然 10 日	力(剱値才報辨説資料(5)台研)
1971年	(昭和46年)10	U月	電于訂昇至報告別冊弟 10 号	しょう乱の構造について(
1071 年	(四和46年) (пн	電乙計管安報生別冊第15 号	(力) 山間相増じょう11をめぐって
1971 平 1070 年)	(昭和40年):	9月 1日		中间风快しょう乱をめくうし
1970 平		ГЛ	电丁司异主报百加间第14万	北十が3層升地関風バリンス・モリル(数値」)報 解説資料(3)会併)
1969 年	(昭和44年)1(nд	雷子計篔室報告別冊第 13 号	北半球3層非地衡風バランス・モデル(数値予報
1000				解説資料 (2) 合併)
1969 年	(昭和44年) 9	9月	電子計算室報告別冊第12号	数値予報のはじめ(数値予報解説資料(1)合併)
1968 年	(昭和43年)10	0月	電子計算室報告別冊第11号	予報技術改善の方向
1968 年	(昭和43年) :	3月	電子計算室報告別冊第 10 号	数值予報
1966 年	(昭和 41 年) 10	0月	電子計算室報告別冊第9号	北半球 4 層傾圧予報について
1965 年	(昭和40年)11	1月	電子計算室報告別冊第8号	IUGG 大気科学委員会第一回活動概要報告
1964 年	(昭和 39 年) 2	2月	電子計算室報告 VIII	
1963 年	(昭和38年) 6	6月	電子計算室報告別冊第7号	バロクリニツク大気の性質
1963 年	(昭和38年) 6	6月	電子計算室報告別冊第6号	アジア地区のバロクリニツク予報
1962 年	(昭和37年) 7	7月	電子計算室報告別冊第5号	北半球バロトロピツク予報
1962年	(昭和37年)(6月	電子計算室報告別冊第4号	気象庁電子計算室におけるルーチン傾圧モデルの 概要
1961 年	(昭和 36 年) :	5月	電子計算室報告 別冊 No.3	500MB 面渦度及びその予報図の利用法
1961 年	(昭和 36 年) :	3月	電子計算室報告 VI VII	
1960 年	(昭和35年) 8	8月	電子計算室報告 別冊 No.2	機械でつくる天気図について
1960年	(昭和 35 年) 7	7月	電子計算室報告 V	
1960年	(昭和 35 年) 3	5月	電子計算室報告 別冊 No.1	渦度分布図の利用法並びに高層天気図の予報えの
				応用について、1 パラメーターモデルによる上昇速
				度とその利用法について
1960年	(昭和 35 年) 4	4月	電子計算室報告 IV	
1960年	(昭和 35 年) 1	1月	電子計算室報告 III	
1959 年	(昭和34年)10	0月	電子計算室報告 II	
1959 年	(昭和 34 年) 7	7月	電子計算室コータリーレポート	

メソスケール気象予測の現状と展望 数値予報課報告・別冊第66号 令和2年3月19日発行 編集気象庁予報部数値予報課

〒 100-8122 東京都千代田区大手町 1-3-4発 行 気象庁予報部

Copyright [©] 気象庁予報部 2020 Printed in Japan 著作権法で定める範囲を超えて、無断で転載または複写 することを禁止します。

