3.7 波浪アンサンブル予報システムのメンバー数 増強

3.7.1 はじめに

気象庁では、波浪の早期注意情報(警報級の可能性) で必要となる波浪の確率論的予測情報を提供するた め、波浪アンサンブル予報システム(Wave ENsemble prediction System, WENS)を運用している(高野 2016)。波浪アンサンブルの予測結果は、WMOの荒 天予測計画(Severe Weather Forecasting Programme, SWFP)を支援するための気象庁 SWFP ウェブサイト 上の波浪予測図 https://www.data.jma.go.jp/gmd/ waveinf/wens/wave.html 提供の用途でも活用されて いる。

2021 年 3 月 30 日には、第 3.3 節で報告されている 全球アンサンブル予報システム(全球 EPS)のアンサ ンブルメンバー数の 27 メンバーから 51 メンバーへの 増強に合わせて、波浪アンサンブルのアンサンブルメ ンバー数を 51 に増強した。本稿では、メンバー数増強 の予測精度の評価結果を報告する。

3.7.2 予測精度の検証

メンバー数増強の効果を確認するため、全球 EPS 51 メンバー予測結果を大気外力として用いた波浪アンサ ンブルの実験を実施した。実験期間は、暖候期 2019 年 6 月 20 日~10 月 21 日、寒候期 2019 年 11 月 20 日~ 2020 年 3 月 11 日である。比較対象とするコントロー ル実験(以下、CNTL)は当時の現業波浪アンサンブル (アンサンブルメンバー数 27)の予測結果である。有 義波高アンサンブル平均のバイアス、RMSE を図 3.7.1 に示した。バイアス、RMSE 共に、CNTL に対して 51 メンバー実験はほぼ中立という結果であった。また、 図 3.7.2 に示した信頼度曲線でも 51 メンバー実験と CNTL はほぼ同等であった。このように 51 メンバー 実験を実施した結果、概ね中立の結果が確認できたこ とから、2021 年 3 月に波浪アンサンブルのメンバー数 増強の現業化を行った。

参考文献

高野洋雄, 2016: 波浪アンサンブルシステムと週間波浪 ガイダンス. 量的予報技術資料(予報技術研修テキ スト), 79-84.

図 3.7.1 波浪アンサンブルでの有義波高アンサンブル平均 の対衛星観測検証結果。上段は暖候期、下段は寒候期、左 列がバイアス、右列が RMSE。緑線が CNTL(現業 27 メ ンバー)、赤が 51 メンバー実験の結果。

図 3.7.2 波浪アンサンブル 96 時間予測の信頼度曲線。上段 は暖候期、下段は寒候期、左列は波高 3 m 超過の確率予 測、右列は波高 6 m 超過の確率予測に対応する。緑線が CNTL (現業 27 メンバー)、赤が 51 メンバー実験の結果。

3.8 全球解析における全天同化マイクロ波水蒸気 サウンダデータ利用の拡充

3.8.1 はじめに

気象庁の全球解析では、衛星に搭載されたセンサー によって観測される様々な輝度温度データを利用して いる。輝度温度を観測するセンサーのうち、マイクロ波 イメージャやマイクロ波水蒸気サウンダに対し、2019 年12月11日に、晴天域に加え雲・降水域を含む観測 データの同化(全天同化)を導入した。これにより、 雲・降水域においても気温や水蒸気の情報が取り込ま れ、解析値や予測値において、特に水蒸気場の精度が 改善した(気象庁 2021a)。

マイクロ波水蒸気サウンダは、183GHz 帯の水蒸気 の吸収帯付近に複数のチャンネルを持ち、対流圏中上 層の水蒸気量に感度を持つセンサーである。いくつか のマイクロ波水蒸気サウンダについては、前述の全天 同化導入後も引き続き晴天域のみのデータの利用にと どまっていたが、その後全天同化での利用に向けた開 発を進めた (気象庁 2021b)。

ここでは、2021 年 6 月 29 日に現業化した、マイク ロ波水蒸気サウンダの全天同化への移行や新規衛星の 追加利用について述べる。

3.8.2 変更の概要

本変更で対象とした衛星/センサーは、Suomi-NPP,NOAA-20/ATMS、DMSP-F17,F18/SSMIS、

Megha-Tropiques/SAPHIR、FY-3C/MWHS-2 で、 いずれも水蒸気の吸収帯 183GHz 付近のチャンネルを 全天同化とする。このうち、FY-3C/MWHS-2 は晴天 域も含め新規に利用を開始するセンサーで、それ以外 のセンサーは、晴天域のデータのみの利用から全天同 化へと移行した。また、同化チャンネルには問題がな いものの、雲・降水の量を表すパラメータの算出に用 いるチャンネルの故障により利用できなくなっていた Metop-A/MHS について、別のチャンネルを用いた代 替的なパラメータ算出手法により、全天同化での利用 を再開した。本変更により、全球解析において利用中 の183GHz付近のチャンネルは、すべて全天同化によ り利用されることとなった。図 3.8.1 に、マイクロ波 水蒸気サウンダのカバレッジマップを示す。全天同化 への移行、新規センサーの利用 (MWHS-2)、品質管理 の変更により、利用できるデータが増加した。

これらのセンサーの観測データを全天同化するため に適用した、主な品質管理の変更を以下に示す。

(1) 観測誤差調整の変更

輝度温度の観測値 (O) と第一推定値からの計算値 (B) の差(O-B)の統計から得られた標準偏差を、品質管 理においては外れ値除去の閾値等の基準として、また 解析本体においては同化の際の観測誤差の基準として 用いている。解析本体での観測誤差はこの標準偏差を

図 3.8.1 マイクロ波水蒸気サウンダのカバレッジマップの変 化。上:変更前、下:変更後。2019 年 9 月 11 日 00UTC の 全球サイクル解析における分布。なお、品質管理により利 用されなかったデータや、同化せずにモニターのみ実施し ていたデータは、どの衛星も黒色のプロットで表示される。

そのまま用いるのではなく、観測誤差調整として定数 倍して用いている。これは、観測値が解析値に過剰に 影響を与えることや、他の観測データとのバランスを 考慮して設定されたものである。マイクロ波水蒸気サ ウンダの観測誤差調整は、輝度温度直接同化の導入時 に設定された 4.5 倍という値がそのまま用いられてき た (岡本 2007)。しかし、その後の他の利用データの増 加やシステムの更新に伴い、解析値への影響や他の観 測データとのバランスも変化していると考えられるこ とから、見直しが必要な値であった。本開発において、 Desroziers et al. (2005) による観測誤差の診断結果や、 LETKF による共分散膨張係数の値などを考慮した結 果、観測誤差調整の値をこれまでより小さく設定する ことが適切であると判断した。

本稿では、マイクロ波水蒸気サウンダの観測誤差調 整を4.5倍から4倍へと引き下げた結果を示す。なお現 業化の際にはさらに検討を行った結果を反映し、マイ クロ波水蒸気サウンダは3倍に引き下げ、マイクロ波 イメージャについても4倍から3倍へと引き下げた¹。 これにより、マイクロ波水蒸気サウンダやマイクロ波

¹ この引き下げを適用した結果には、マイクロ波水蒸気サウ ンダおよびマイクロ波イメージャの両方の効果が見られる。 本稿ではマイクロ波水蒸気サウンダの効果を示すことを目的 としているため、マイクロ波水蒸気サウンダのみの観測誤差 調整の結果を示した。

イメージャの観測情報が解析値により大きく反映され るようになった。

(2) SSMIS と MHS との衛星重なり間引きの廃止

品質管理においては、複数の同センサーが近い場所 をほぼ同時刻に観測した場合には、ひとつの衛星のデー タを残して他の衛星のデータは利用しないという間引 き処理(以下、「重なり間引き」と称する)が組み込ま れている(岡本 2007)。これは、複数の衛星に搭載され た同センサーが、特に極軌道衛星のデータが集中する 高緯度を中心に、過度に解析結果に影響を与えることを 避けるためである。これまで別センサーである SSMIS (183GHz チャンネル)と MHS との間にも重なり間引 きを適用していたが、複数の同センサーに適用すると いう扱いに一貫性を持たせるため、廃止することした。 その際、データが増えることにより過度に解析結果に 影響を与えるといった問題は見られなかった。

(3) 海上における可降水量を用いた品質管理の廃止

可降水量の少ない観測地点においては、マイクロ波 水蒸気サウンダは大気の透過率が高く、観測値は地表 面温度や射出率といった地表面の状態に大きく左右さ れる。そのため輝度温度の計算精度が低く、これまで 観測データを利用しない設定となっていた。本変更に おいても、射出率の推定精度が低い海氷上や陸上にお いては、可降水量が少ない場合には引き続き利用しな い設定としている。しかし、海上については海面水温 や射出率の推定精度が陸上よりも高いことから、輝度 温度の計算精度に実用上の問題がないことを確認し、 利用することとした。

(4) SAPHIR、SSMIS の陸上での利用

SAPHIR の利用開始 (計盛 2015) および SSMIS の 183GHz チャンネルの利用開始 (村上 2017) の際、これ らのセンサーでは、他のマイクロ波水蒸気サウンダに は搭載されている 90GHz 帯および 150GHz 帯のチャ ンネルが利用できず、これらのチャンネルを用いた地 表面の温度や射出率の精度評価が十分に行えないとし て、海上のデータのみを同化していた。

これらのセンサーの陸上での利用を検討したところ、 標高が低い場合や可降水量が多い場合などに、地表面 への感度が小さく問題なく利用できることが確認でき た。そこで、各チャンネルの感度高度と標高に応じた 判定を行い、利用することとした。

3.8.3 観測誤差の設定

気象庁 (2021a) で示した通り、全天同化においては、 雲・降水の量を表すパラメータと、O-B の標準偏差と の関係に基づき観測誤差を設定している。本変更で利 用を開始したそれぞれのセンサーについては、利用で きるチャンネルを用いて以下のように雲・降水の量を 表すパラメータを導出する。

(1) Suomi-NPP,NOAA-20/ATMS、FY-3C/MWHS-2

Suomi-NPP および NOAA-20 に搭載の ATMS、な らびに FY-3C に搭載の MWHS-2 については、90GHz 帯および 150GHz 帯のチャンネルが搭載されている。こ れらのチャンネルを用いて、気象庁 (2021a) の (2.2.5) 式²により散乱インデックスを算出し、雲・降水の量を 表すパラメータとして用いる。

(2) DMSP-F17,F18/SSMIS

DMSP-F17 に搭載の SSMIS については、90GHz 帯 や 150GHz 帯のチャンネルが搭載されていることから、 気象庁 (2021a) の (2.2.5) 式により散乱インデックスを 算出し、雲・降水の量を表すパラメータとして用いる。

DMSP-F18 に搭載の SSMIS においては、150GHz 帯のチャンネルが故障のため利用できない。一方で、 37GHz の垂直、水平偏波のチャンネルが利用できる³ ことから、気象庁 (2021a) の (2.2.3) 式⁴により、雲・降 水の影響を表すパラメータとして C_{37} を算出し用いる。 ただし、陸上では C_{37} を利用できないため、DMSP-F18 は海上のデータのみ利用する。

(3) Megha-Tropiques/SAPHIR

Megha-Tropiques に搭載の SAPHIR には、183GHz 帯に感度高度の異なる6チャンネルが搭載されている が、他の水蒸気サウンダに搭載されている 90GHz 帯 や150GHz帯のチャンネルはなく、これらを利用した 散乱インデックスを算出することができない。そこで、 6つのチャンネルのうち、最も透過率が高く下層に感 度のあるチャンネル6(183 ± 11 GHz)を利用する (Chambon and Geer 2017)。このチャンネルは透過率 が最も高いことから、雲・降水の有無による輝度温度 への影響は最も大きい。そのため、このチャンネルの 観測値や雲・降水の影響を考慮した計算値を、晴天と 仮定した場合の計算値と比較することで、雲・降水の 影響の程度を見積もることができる。観測における雲・ 降水の有無の影響を SIo、モデルにおける雲・降水の 有無の影響を SIb とし、両方を偏りなく考慮するため、 雲・降水の量を表すパラメータとして両者を平均した SI。を以下のように算出する。

$$SI_o = TB_{ch6}^{clr} - TB_{ch6}^o \tag{3.8.1}$$

$$SI_b = TB_{ch6}^{clr} - TB_{ch6}^{b} \tag{3.8.2}$$

$$SI_s = (SI_o + SI_b)/2$$
 (3.8.3)

² 90GHz より 150GHz で雲・降水粒子による散乱の効果が 大きいことを利用した指標。両チャンネルの輝度温度の差か ら、水蒸気の吸収の効果を差し引いた値。

³ SSMIS はチャンネルによって観測位置が異なるが、24 チャ ンネル全ての観測位置合わせ処理がされている UPP データ を使用している (村上 2017)。

⁴ 海面からのマイクロ波放射が偏光しているのに対し、雲・降水からのマイクロ波放射は非偏光であることを利用し、37GHzの垂直偏波と水平偏波の輝度温度の差から雲・降水の影響の程度を表した指標。

ここで、 TB_{ch6}^{ch} は晴天を仮定して計算した輝度温度、 TB_{ch6}^{o} は観測輝度温度、 TB_{ch6}^{b} は雲・降水を考慮した 全天計算輝度温度をそれぞれ表す。

(4) Metop-A/MHS

Metop に搭載の MHS には、90GHz 帯および 150GHz 帯のチャンネルが搭載されていることから、 これらを用いた散乱インデックスが雲・降水の量を表 すパラメータとして用いられている。しかし、Metop-A については 150GHz 帯のチャンネルが故障したため、 散乱インデックスが算出できず、同化する 183GHz 帯 のチャンネルには故障がないにもかかわらず利用でき なくなっていた。そこで、前述の SAPHIR と同手法を 適用する。MHS には 183GHz 帯に 3 つのチャンネル が搭載されているが、そのうち最も透過率が高く感度 高度の低いチャンネル5 (190.311 GHz)を用い、同様 に散乱インデックスを算出することとした。

この手法で作成された散乱インデックスを、150GHz 帯のチャンネルが故障する前の期間のデータを用い、 従来の手法(90GHz帯および150GHz帯のチャンネル を利用)と比較したところ、概ね分布が一致すること が確認できた。

3.8.4 性能評価試験

本変更の効果を確認するため、2020年10月時点の 現業全球数値予報システムと同等の対照実験(CNTL) と、これに全天同化センサー拡充の変更を加えた実験 (TEST)の比較を行った。実験期間は2019年7月10 日から9月11日(夏実験)、2019年12月10日から 2020年2月11日(冬実験)で、8月および1月のそ れぞれ1か月が検証対象期間である。

(1) 解析値・第一推定値の変化

平均解析場には、本変更による顕著な変化はみられ なかった。若干の変化として、850hPaにおいては熱帯 域を中心とした比湿の増減や全球的な気温の上昇が確 認された。この変化については、複数の海外数値予報セ ンターの解析値を用いて確認したところ、概ね CNTL における他センターとの差異が減少する方向の変化で あることが確認された。ECMWF などでは既に多くの センサーが全天同化で利用されているため、その解析 値に近づく変化は妥当であると考える。

解析に用いられた各種観測データについて、O-Bの 標準偏差や利用データ数の CNTL に対する TEST の 変化を確認した(図 3.8.2)。ここで示すデータはいず れも、今回の変更において直接利用方法に変更を加え ていない観測データである。(a) に示した静止衛星晴 天放射輝度温度(CSR)は、マイクロ波水蒸気サウン ダと同様に対流圏中上層の水蒸気量に感度のあるデー タである。O-B の標準偏差が減少した上で利用データ が増加するなど、第一推定値と観測値の整合性が向上 した特徴がみられ、マイクロ波水蒸気サウンダの持つ

図 3.8.2 TEST の CNTL に対する、様々な観測と第一推 定値との差 (O-B)の標準偏差の変化率(各観測データの 左列)および利用データ数変化率(右列)[%]。(a)静止 衛星晴天輝度温度、(b) ラジオゾンデ相対湿度、(c) ハイ パースペクトル赤外サウンダ CrIS、(d) GNSS 掩蔽、(e) Meteosat 大気追跡風。赤線が夏実験、緑線が冬実験を示 す。エラーバーと丸印はそれぞれ、95%信頼区間と、それ による変化率の正負が統計的に有意であることを示す。縦 軸は (a)(c) についてはチャンネル番号、(b)(e) について は気圧 (hPa)、(d) については高度 (km) を示す。

情報を取り込んだ直接的な効果として、第一推定値の 精度が向上したと考えられる。(b)で示したラジオゾン デ相対湿度においても、統計的な有意性は低いものの 500hPaより上層を中心に改善の傾向がみられ、(a)の 結果とも整合的である。また、気温に関する観測((c) ハイパースペクトル赤外サウンダ CrIS、(d) GNSS 掩 蔽)や風((e) Meteosat-8 大気追跡風)に関する観測 との整合性も向上していた。背景誤差相関やデータ同 化サイクルを通じて改善効果が伝搬し、水蒸気だけで なく気温や風についても第一推定値の精度が向上した と考えている。

(2) 予測値の変化

自分解析値およびラジオゾンデ観測値を参照とした 予測値の検証では、500hPa 高度場や 850hPa 気温など の代表的な要素に関し、概ね精度は中立であった。ただ し、本変更は解析値を変化させる変更であることから、

予測検証の参照値として自分解析値は最適ではない可 能性がある。また、衛星観測による効果はラジオゾンデ 観測の少ない海洋上で顕著であると考えられる。そこ で、本変更に対し独立で、分布に偏りのない参照値とし て、複数の海外数値予報センター(ECMWF、UKMO、 NCEP)の解析値や ECMWF の再解析 (ERA5)を用 いた検証を行った。ここでは、ERA5 を参照値とした 検証結果を示す(図3.8.3)。本変更の効果として、マ イクロ波水蒸気サウンダが感度を持つ対流圏中上層の 水蒸気量(比湿)の予測が、参照値に近づく変化が確 認できた。また、気温や風速、高度場についても同様 の変化が見られた。これらの特徴は、ERA5 だけでは なく複数の海外数値予報センターの解析値を参照値と した場合にも同様に見られた。複数の参照値に近づく 変化が整合的に見られたことから、この変化は予測の 改善を示すものと考える。この改善傾向は、予測初期 を中心に概ね2日先まで確認された。

3.8.5 まとめ

全球数値予報システムにおいて、複数のマイクロ波 水蒸気サウンダの利用に関し、全天同化への移行や新 規利用センサーの追加、品質管理の変更を行った。こ の変更の効果を性能評価試験により確認した結果、第 一推定値や予測値の精度向上が確認できた。このこと から、2021年6月29日に、全球解析において本変更 の現業システムへの適用を開始した。

参考文献

- Chambon, Philippe and Alan J. Geer, 2017: Allsky assimilation of Megha-Tropiques/SAPHIR radiances in ECMWF numerical weather prediction system. ECMWFTech. Memo., 802.
- Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis error statistics in observation space. *Quart.* J. Roy. Meteor. Soc., 131, 3385–3396.
- 計盛正博, 2015: マイクロ波水蒸気サウンダ SAPHIR 輝度温度データの利用開始.数値予報課報告・別冊 第 61 号, 気象庁予報部, 54–59.
- 岡本幸三, 2007: ATOVS 直接同化. 数値予報課報告・ 別冊第 53 号, 気象庁予報部, 58-70.
- 村上康隆, 2017: 全球解析における DMSP-F17、 F18/SSMIS 輝度温度データの利用開始. 平成 29 年 度数値予報研修テキスト, 気象庁予報部, 74-77.
- 気象庁, 2021a: マイクロ波輝度温度全天同化とアウター ループの全球解析への導入. 数値予報開発センター 年報(令和2年), 気象庁 数値予報開発センター, 23-28.
- 気象庁, 2021b: 全球解析におけるマイクロ波水蒸気サ ウンダの全天同化センサーの拡充. 数値予報開発セ ンター年報(令和2年), 気象庁 数値予報開発セン

図 3.8.3 ERA5 を参照値とした予報精度検証。上から (a) 比湿、(b) 気温、(c) 高度、(d) 東西風の1日後予測の帯状 平均の RMSE 改善率 [%] を示す。寒色は予報精度の改善、 暖色は改悪を示す。網掛けは信頼区間 95%で有意であるこ とを示す。統計期間は 2019 年 8 月1日~8 月 31 日。

ター, 104-105.