爆発または衝突により発生する地震の規模について

The Scales of Earthquakes by Explosions or Collisions

武藤大介1

Daisuke MUTO¹

(Received December 5, 2016: Accepted March 13, 2017)

1 はじめに

地震計で観測される震動は、自然地震によるもの のみならず、人工的な爆発及び衝突(以下、爆発等 という)によるものも含まれる.人工的な爆発地震 の中でも、核実験によるものは、米ソ冷戦時代に盛 んに研究されており、例えば、ボルト(1986)に詳 しい.一方、核実験よりも小規模な爆発等による地 震については、理学的な研究対象になりにくく、社 会的な要請もあまり無いと考えられる.そのため、 地震観測を行う上で頻繁に記録される発破を除き、 これまで十分な整理がなされていない.

しかしながら、気象庁業務に即して述べると、核 実験に比べて相対的に規模の小さな爆発等であって も、近傍の観測点で検知され、誤って緊急地震速報 や震度速報が発表される危険について、しばしば考 慮の対象となる.そこで、これら規模の小さな爆発 等によって引き起こされた地震の規模について、過 去の事例を整理することにした.ここでは、過去の 事例を網羅的に収集することはしないが、様々なタ イプの事例を収集することに留意した.これにより、 自然地震以外の要因で発生する震動源の規模(エネ ルギー)と、それを地震波の振幅等から計算される マグニチュードに換算した場合の大まかな対応関係 を示し、今後の業務の参考とすることとした.

2 調査方法

爆発等そのものの規模と,地震波の振幅等から計 算されるマグニチュードの関係を調査した.ここで 「規模」とは,例えば爆薬量から計算される爆発エ ネルギーや,衝突物体の運動エネルギー等を指し, 地震波から計算される「マグニチュード」とは区別 する.

気象庁では、爆発等の規模及びマグニチュードを カタログ等で整理しているわけではないので、基本 的に文献からの引用に依ることとした.また、一部 の事例については、筆者が試算した.引用資料、筆 者の試算とも、十分な精度のないものが多数含まれ る.また、マグニチュード種別は、本論中で一貫し たものとはしていない(ただし、文献上その種類が 明記されているものについては本論でも付記する). したがって、本論で示す数字は、厳密な議論に耐え るものでないことをあらかじめお断りしておく.

なお,様々な種類の文献を引用する都合上,SI単 位系以外の単位を使う場合があるので,念のためこ こに換算式を掲げる.

(エネルギーを TNT 爆薬換算する場合) トン = $4.184 \times 10^9 \text{ J}$ キロトン = $4.184 \times 10^{12} \text{ J}$ メガトン = $4.184 \times 10^{15} \text{ J}$ (地震計記録の振幅に言及する場合)

3 各事例

3.1 核実験

核実験については、包括的核実験禁止条約機構 (CTBTO)等において多くの事例が詳細に解析され 整理されているが、詳細には立ち入らない.ここで は、実験に用いた核爆弾のTNT 当量が明らかにされ ている米国の実験を2例のみ挙げる.

1962年に米国ネバダ州で行われた地下核実験(セ

¹ 地震火山部管理課, Administration Division, Seismology and Volcanology Department

ダン実験)は、米国で最も大きな人工クレーターを 作った核実験である(CTBTO). この実験の核出力 は 104 キロトン、マグニチュードは 4.75 であった (National Nuclear Security Administration, 2015).

1971 年に米国アラスカ州アムチトカ島で行われ た地下核実験(グロメット作戦カニキン実験)は, これまで米国内で行われた最大規模の地下核実験で ある.実験には5メガトン近い核弾頭が使用された

(U.S. Congress, Office of Technology Assessment, 1989). この実験で生じた地震の実体波マグニチュードは 6.9 とされている (USGS).

3.2 大規模爆発事故等

1949 年にドイツの Heligoland 島において, イギリ ス海軍によって 6,700 トンの爆発が行われた (Spiegel Online, 2007). この爆発による震動が,約 330km 離 れたドイツの Göttingen 観測点のウィーヘルト地震 計で記録されている (Reich et al., 1951). この記録 の P 波上下動の最大振幅は約 0.22 μ (周期約 2.5 秒) と読み取ることができる. ここから,Gutenberg (1945)による実体波マグニチュードを計算すると, 4.6 となる.

1959年に神奈川県横浜市の第二京浜国道で,TNT 火薬 4×10³ (kg)を搭載したトラックが別のトラッ クと衝突し,大規模な爆発を起こした(衆議院,1959). この時の震動が,現場から約5km離れた横浜地方気 象台のウィーヘルト地震計で捉えられており,最大 振幅は,当時の検測者の読み取りによれば,南北成 分14 μ ,東西成分5 μ であった.この記録から坪井 (1954)のマグニチュードを計算する.例えば勝間 田 (2004)で示唆されている通り,坪井(1954)は, 震央距離数 10km より近距離での適用はふさわしく ないが,この事例について試みにマグニチュードを 計算すると 1.6 となる.

1988 年に米国ネバダ州の The Pacific Engineering Production Company of Nevada の工場で火災が発生 し,その後2回の大規模な爆発に至った.この爆発 で,マグニチュード3.0と3.5の地震が観測された (Routley, 1988).一連の火災と爆発で4×10⁶ (kg) の過塩素酸アンモニウムが失われた.最大の爆発で は,空中爆発のTNTに換算し1キロトン相当のエネ ルギーが放出されたと推定されている(Reed, 1988).

2015 年に中国天津市で発生した化学薬品保管庫

の爆発では、2回の爆発が発生した.報道によれば 爆発の規模はTNT 火薬換算で3トンと21トンに相 当し、中国地震台によればマグニチュード2.3と2.9 の地震を観測した(鈴木, 2015).

3.3 航空機の墜落・衝突

3.3.1 日本航空ジャンボ機墜落事故(1985年)

1985 年に群馬県に日本航空のジャンボ機が墜落 する事故が発生した.この事故により,東京大学地 震研究所の川上観測点で震動を記録した.

運輸省航空事故調査委員会(1987)によれば,同 観測点で8月12日18時56分32.7秒頃に記録され た波を,「事故機が地面に激突したときのものとみら れ」るとしている.この時刻以降, 震動は約20秒継 続している.そこで,これを震動継続時間(F-P時 間)と見なす.津村(1967)が求めたF-P時間(F-P) とマグニチュード M との関係式

$$M = -2.36 + 2.85 \log(F - P)$$
(1)

を用いると、マグニチュードは 1.3 と求められる. なお, F-P 時間は地震計の特性に大きく左右される ため,こうしたマグニチュードの計算には地震計を 指定しなければ意味がないとの指摘もある(宇津, 1999).しかし、本事故と同じ時期(1985~1986年) に,川上観測点と同じく東京大学地震研究所が所有 する長野県の丸子町御岳堂臨時観測点や, 伊豆半島 の箒山観測点(すなわち、地震計特性が似通ってい る可能性が高い)のデータに対して、それぞれ佃・ 他(1988)及び吉田・他(1988)は、津村(1967) と同じ式を用いていることから,本論での試算にお いても、津村(1967)を用いることは妥当であると 考えた.また、試みに、神奈川県温泉地学研究所の 各観測点に関する同様の関係式(棚田・田中, 1999) に適用してマグニチュードを求めても、多くの場合 は、マグニチュードは1.2-1.8の間に求められること から、少なくともマグニチュード1台である可能性 は高いであろう.ちなみに,運輸省航空事故調査委 員会(1987)では「その後の震動波は事故機の激突 時に派生した衝撃の反射及び散乱波と推定」してお り、激突の衝撃自体が数秒以上にわたったとはして いないため, F-P 時間は, 激突自体の継続時間の影 響は受けていないと考えられる.

運輸省航空事故調査委員会(1987)では,機体重 量 2.39×10⁵(kg),衝突速度 136m/s としており,こ こから計算される衝突時の運動エネルギーは 2.2× 10⁹(J)と見積もられる.

3.3.2 ニューヨーク航空機突入テロ事件(2001年)

2001 年に米国ニューヨーク州で発生した世界貿 易センタービルで発生したテロ事件では、2 度にわ たり航空機がビルへ衝突した.この際, Lamont Doherty 観測所で地震動が記録されており、菊地・ 山中(2001)は、神林・市川(1977)により、マグ ニチュードをそれぞれ 1.0 及び 0.9 と求めている.

衝突した 2 機はいずれもボーイング 767-200ER 型 機であり、その重量(最大離陸重量)は、おおよそ 1.8×10^5 (kg)程度である(National Transportation Safety Board).また航空機は、それぞれ 208m/s 及び 264m/s で衝突したと報告されている(Gann et al., 2005).これらの値から、衝突時の運動エネルギーは、 それぞれ 3.9×10^9 (J)及び 6.3×10^9 (J)と見積もら れる.

3.3.3 航空大学校帯広分校の航空機事故(2011年)

2011 年に航空大学校帯広分校所属の小型機が北 海道河西郡芽室町の山腹に衝突する事故が発生した. 運輸安全委員会(2013)によれば,機体重量約 1.6 ×10³(kg),衝突速度は約 50m/s であった.衝突時 の運動エネルギーは約 2×10⁶(J) と見積もられる.

衝突地点から約 5km 北西に,防災科学技術研究所 の高感度地震計(Hi-net)清水観測点が存在する. しかし,衝突時刻の前後で航空機の衝突によるもの と思われる震動は観測されていなかった.当時の清 水観測点のノイズレベルのおよそ3倍以上の振幅が あれば検知可能と考えると,衝突によりマグニチュ ード-1.2以上の地震が発生したとは考えづらい.

3.4 制御人工地震(発破)

垣見・他(1977)は、構造探査の際に発生させる 人工地震の爆破地震動について解説している.この 中で、「500kgのダイナマイトの爆発による振動エネ ルギーは M2 よりやや小さい程度である」と解説し ている.ここではごく大雑把に、TNT0.5トンの爆薬 により、マグニチュード2の地震が起きると考える こととする.

3.5 大砲射撃

山内(1970)は、樽前山に設置された 62E 型電磁 地震計で、陸上自衛隊が演習として行った大砲射撃 が捉えられたと報告している.同報告によれば、り ゅう弾砲及びカノン砲の衝突エネルギーはそれぞれ、 4.5×10⁶(J)及び 2.2×10⁶(J)である.また、りゅ う弾砲及びカノン砲内の火薬量は、それぞれ 16.670kg及び 9.233kgとされているので、火薬 1g当 たりのエネルギー4.2×10³(J)を乗じると、その爆 発エネルギーは、それぞれ 7.0×10⁷(J)及び 3.9× 10⁷(J)である.ゆえに、着弾(衝突)と火薬の爆 発によるエネルギーの和は、りゅう弾砲及びカノン 砲について、それぞれ、7.5×10⁷(J)及び 4.1×10⁷ (J)と求められる.

一方,山内(1970)では、マグニチュードを計算 するための振幅を、りゅう弾砲及びカノン砲で、そ れぞれ1.3µ及び1.2µとしているが、その根拠が明 らかでない、そこで同論に示されている「最大振幅 の度数分布」をもとに、それぞれ0.58µ及び0.48µ に修正したい、これをもとに坪井(1954)のマグニ チュードを再計算すると、それぞれ1.2及び1.1と なる.

3.6 人力により引き起こされた極微小地震

筆者は学生時代に,以下の実験を行ったため,そ の結果を援用することとしたい.

筆者ら8人(全員20代の男性)は、大学の実習の 一環として、2007年に、防災科学技術研究所のHi-net 豊橋北観測点(地表から地震計までの距離は約 200m)の直上で一斉に跳躍したところ、同観測点に おいて、2.0×10⁻⁶(m/s)程度の震動が記録されてい ることが判明した. 震源距離約 200mの場合に渡辺 (1971)を適用することが妥当かどうかは別途検証 の必要があるが、試みにマグニチュードを求めたと ころ、-2.8 であった. なお、跳躍した8人の平均体 重を65kg、跳躍した高さを30cmと仮定すると、地 表への衝突時の運動エネルギーは約 1.5×10³(J)と 見積もられる.

4 結果と考察

4.1 爆発または衝突のエネルギーとマグニチュー ドの関係

3で示した各事例を図1にまとめた. 爆発等のエ

図1 爆発または衝突のエネルギーと地震波の振幅等から計算される地震としてのマグニチュードの関係
 爆発事例を●で、衝突事例を▲で、両方の要素を含む大砲射撃を×で表示.エネルギーまたはマグニチュードの推定精度に問題があると思われる場合は白抜きとした.地下爆発は●の色で,地表または地上の構造物等での爆発は●の色で示した.破線は爆発または衝突のエネルギーが100%、10%、1%、0.1%の効率で地震波に変換されたと仮定した場合の関係式である.

ネルギーとマグニチュードの間には、一見して相関 があることが分かる. 図中に、爆発等のエネルギー が 100%, 10%, 1%, 0.1%の効率で地震動に変換さ れた場合に期待されるマグニチュードを破線で示し た.

2001年の米国での航空機突入事件は、変換効率が 小さい.これは、航空機が高層ビルの高層階に衝突 し、そのエネルギーが高層ビルの振動や破壊に消費 されたためと考えられる.同様に、1959年のトラッ クの爆発事故も、爆薬(トラックの荷台)が地表に 接していない状態で爆発したと考えられることから、 地震波への変換効率が小さくなった可能性が考えら れる.2011年の航空大学校帯広分校の航空機事故も、 現場は雑木林であり、衝突エネルギーの多くが立木 に吸収された可能性が考えられる.

これら、変換効率が小さいことについて定性的な 説明ができるものを除けば、本論で取り上げた事例 については、爆発等の規模によらず、変換効率は 0.1%~10%の範囲に入る.

4.2 核実験等の知見との関係

前述のボルト(1986)は、地下核爆発の放射化学 的規模(換算薬量)と地震学的規模とを換算する係 数、すなわち効率を示している.これによれば、地 下核実験の場合、花崗岩中で1%、岩塩中で0.8%、 凝灰岩中で0.3%、沖積層中で0.2%とされている. また、通常爆薬による砕石爆破については、概ね 0.1%としている.一方、山内(1970)も、「一般に、 火薬を爆発させたとき地震波の energy になるのは 1/100以下といわれている」と指摘している.

菊地(2003)は、遠地実体波を用いたモーメント
 テンソル解析の観点から、核実験のTNT 火薬相当量
 W(キロトン)とモーメントテンソルの等方成分 I
 (10¹⁵Nm)について、

$$W = 4I \tag{2}$$

の関係式を示している.この関係式は、爆発エネル ギーの地震波への変換効率が約 0.3%であることを 示している. 本論で示した事例の変換効率は、オーダーとして、 過去の核実験等の知見から得られた変換効率と整合 している.

4.3 気象庁業務への応用の可能性と限界

本論での整理について、気象庁業務への応用の可 能性を検討する.

例えば、不発弾処理(爆破処理)により発生する 地震により、周辺の震度計で震度を観測することが 懸念される.そこで、不発弾の爆発により発生する 地震のマグニチュードを概算してみる.第二次世界 大戦で我が国に投下された爆弾は、その規模もまち まちであるが、比較的大型のもので900kg程度(い わゆる1トン爆弾)となる.通常、爆薬は爆弾の総 重量の半分弱であるから400kgとし、爆薬の性能を TNTと同程度と仮定すると、変換効率0.1%の場合と 10%の場合で、それぞれ発生する地震のマグニチュ ードは1.0または2.3と求められる.したがって、 マグニチュードは1.0-2.3程度になると予想できる.

なお、本論では水中の事例を取り上げていない. ボルト(1986)によれば、核実験の場合、同じ爆発 規模でも水中の場合は陸上に比べてマグニチュード が大きくなる.そのため、本論の結果を海水に対す る爆発等(エアガン等)にそのまま適用することは 適切でないと考えられる.

4.4 今後に向けて

本論では、様々なタイプの事例を収集することに 主眼を置いたため、既に多くの事例が報告されてい る核実験と発破については深く立ち入っていない.

例えば,我が国では鉱業や土木事業等のため,日 常的に発破が行われ,その震動が気象庁等の地震計 で多数記録されている(例えば,西脇・他(1988), 小林(1996),福田・他(2007)).また,やや古い記 録ではあるが,米国内では毎年万単位の発破が行わ れ,使用される爆薬の総量は 2.2 メガトンになる

(Richards et al., 1992). さらに, 地震波を用いた構 造探査においても, 爆薬量を含む震源の情報と震動 記録のデータセットが多数生産されている(例えば, 吉井, 1994).こうした発破について調査を進めれば, 少なくとも爆発地震について,より精度の高い議論 ができるであろう.

謝辞

日本航空ジャンボ機墜落事故時の川上観測点の波 形は,東京大学地震研究所の酒井慎一教授に提供い ただいた.一部の事例のマグニチュードの計算には, 国立研究開発法人防災科学技術研究所の高感度地震 観測網(Hi-net)のデータを使用した.筆者の学生 時代の実験は,当時の教員の丁寧なご指導のもとに 行なわれた.また,匿名の査読者には,有益なご指 摘,助言を多数いただいた.記して感謝の意を表す る.

文献

宇津徳治 (1999): 地震活動総説,東京大学出版会,876pp. 運輸安全委員会 (2013): 航空事故調査報告書一独立

- 行政法人航空大学校帯広分校所属ビーチクラフト 式 A36 型 JA4215 山腹への衝突.
- 運輸省航空事故調査委員会 (1987): 航空事故調査報告
 書一日本航空株式会社所属ボーイング式 747SR-100
 型JA8119 群馬県多野郡上野村山中 昭和60年8月12
 日.
- 垣見俊弘・市川金徳・正井義郎 (1977): 爆破地震動, 地 質ニュース, 272, 1-8.
- 勝間田明男 (2004): 気象庁変位マグニチュードの改訂, 験震時報, 67, 1-10.
- 神林幸夫・市川政治 (1977): 気象庁 67 型地震計記録に よる近地浅発地震の規模決定について, 験震時報, 41, 57-61.
- 菊地正幸・山中佳子 (2001): 2001 年 9 月 11 日世界貿易 センターの衝撃, EIC 地震学ノート.

http://www.eic.eri.u-tokyo.ac.jp/sanchu/Seismo_Note/EIC News/010911.html, (参照 2016-09-27).

- 菊地正幸 (2003): リアルタイム地震学,東京大学出版会, 133-135.
- 小林昭夫 (1996): 松代群列地震観測システムで観測さ れた発破について,気象庁精密地震観測室技術報告, 13,47-52.
- 衆議院 (1959): 第33回国会地方行政委員会第10号議事 録.
- 鈴木拓人 (2015): 天津爆発事故の状況, 損保ジャパン日本興亜 RM レポート, 137, 11pp.
- 棚田俊収・田中丈博 (1999): 温泉地学研究所の地震観測 網におけるマグニチュードの算出式,神奈川県温泉地 学研究所報告, 29, 41-46.

- (田為成・酒井要・橋本信一・羽田敏夫・小林勝 (1988):長 野県東部の地震(1986年, M4.9)及びそれに伴った 地震群の活動特性とそのテクトニクス的意味,東京大 学地震研究所彙報, 63, 237-272.
- 坪井忠二 (1954): 地震動の最大振幅から地震の規模 M を求めることについて, 地震 2, 7, 185-193.
- 津村建四朗 (1967): 振動継続時間による地震のマグニ チュードの決定, 地震 2, 20, 30-40.
- 西脇誠・柿下毅・流精樹 (1988): 松代で観測された発破 の識別と削除,気象庁地震観測所技術報告,9,29-35.
- 福田信夫・春原美幸・伊藤優 (2007): 松代地震と発破に ついて, 気象庁精密地震観測室技術報告, 24, 77-82.
- ブルース・A・ボルト著(小林芳正監訳) (1986): 地下 核実験探知, 古今書院, 442pp.
- 山内義敬 (1970): 樽前山の電磁地震計に記録された大 砲の震動, 験震時報, 35, 37-40.
- 吉井敏尅 (1994): 人工地震による日本列島の地殻構造, 地 震2, 46, 479-491.
- 吉田満・溝上恵・千葉平八郎・萩原弘子 (1988): 伊豆半 島東岸付近の小地震の P 波震源スペクトルと震源パ ラメータ,東京大学地震研究所彙報, 63, 99-113.
- 渡辺晃 (1971): 近地地震のマグニチュード,地震2,24, 189-200.
- CTBTO, The United States' Nuclear Testing Programme, https://www.ctbto.org/nuclear-testing/the-effects-of-nucle ar-testing/the-united-states-nuclear-testing-programme/, (参照 2017-01-19).
- Gann, R. G., A. Hamins, K. B. McGrattan, G. W. Mulholland, H. E. Nelson, T. J. Ohlemiller, W. M. Pitts, and K. R. Prasad (2005): Reconstruction of the fires in the World Trade Center Towers, Final Reports from the NIST World Trade Center Disaster Investigation.
- Gutenberg, B. (1945): Amplitudes of P, PP, and S and magnitude of shallow earthquakes, Bull. Seism. Soc. Am., 35, 57-69.
- National Nuclear Security Administration, U.S. Department of Energy (2015): Sedan Tested use of nuclear explosives to move Earth,

http://www.nv.doe.gov/library/publications/newsviews/se dan.aspx, (参照 2016-09-27).

National Transportation Safety Board: Aviation accident database,

https://www.ntsb.gov/_layouts/ntsb.aviation/index.as

px, (参照 2017-01-26).

- Reed, J. W. (1988): Analysis of the accidental explosion at Pepcon, Henderson, Nevada, May 4, 1988, Sandia Report SAND88-2902, Sandia National Laboratories.
- Reich, H., O. Foertsch, and G. A. Schulze (1951): Results of seismic observations in Germany on the Heligoland Explosion of April 18, 1947, J. Geophys. Res., 56, 147-156.
- Richards, P. G., D. A. Anderson, and D. W. Simpson (1992):A survey of blasting activity in the United States, Bull.Seism. Soc. Am., 82, 1416-1433.
- Routley, J. G. (1988): Fire and explosions at rocket fuel plant Henderson, Nevada, Technical Report 021, Federal Emergency Management Agency.
- Spiegel Online (2007): Der tag, an dem Helgoland der megabombe trotzte,

http://www.spiegel.de/panorama/zeitgeschichte/weltkriegs relikte-der-tag-an-dem-helgoland-der-megabombe-trotztea-477076.html,(参照 2016-11-09).

U.S. Congress, Office of Technology Assessment (1989): The containment of underground nuclear explosions, 80pp.

USGS, Can nuclear explosions cause earthquakes?,

https://www2.usgs.gov/faq/node/3339,(参照 2016-11-02).

(編集担当 鎌谷紀子)