霧島山新燃岳 2011 年 2 月の放熱率と H₂O 放出率

Heat and H₂O Discharge Rate at the Shinmoedake Volcano in February 2011

福井敬一¹, 寺田暁彦² Keiichi FUKUI¹ and Akihiko TERADA²

(Received July 23, 2012: Accepted September 10, 2013)

ABSTRACT: The heat discharge rate (Q) and H_2O discharge rate (W) at Shinmoedake, the Kirishimayama volcano group in February 2011 was evaluated using the plume rise method from the image data of a monitoring video camera. On February 1, Q and W were 16 GW and 3.4×10^5 ton/day, respectively. These values are as large as the values measured at the beginning of the gigantic degassing stage of the 2000 Miyakejima eruption. Q and W rapidly decreased, and on February 26 they were 43 MW and 900 ton/day. The weight ratio of H_2O/SO_2 decreased from 40 to 1 in this period. This change was possibly caused by the disappearance of the aquifer due to the large thermal activity.

1 はじめに

霧島山は鹿児島,宮崎県境に位置する 20 数個の火 山からなる火山群で,有史後は主に御鉢と新燃岳で 噴火を繰り返しており,気象庁が常時火山観測を開 始した 1962 年より,地震観測や噴煙の観測等を実施 している火山である.1994 年 2 月には新燃岳の南約 7.6km の猪子石(いのこいし)に高感度カラービデ オカメラが設置され,御鉢および新燃岳両火山の観 測が行われるようになった.2010 年 3 月には猪子石 のカメラは 2 台に増設され,新燃岳,御鉢各々別個 に常時観測できる体制となった(Fig.1).

新燃岳では 1991 年のごく小規模な噴火の後,火山 活動は比較的静穏に経過していたが,2005 年頃から 山頂部での膨張変動(気象研究所地震火山研究部, 2008;高木・他,2011),2006 年 2 月 1 日に傾斜変 動を伴う火山性微動が観測され(福井,2010),そ の後,2008 年 8 月,2010 年 3~7 月に新燃岳で水蒸 気噴火を繰り返し,2011 年 1 月には約300 年ぶりと なるマグマ噴火を開始した(福岡管区気象台・鹿児 島地方気象台,2013; Kato and Yamasato,2013).

2011年1月19日に小規模なマグマ水蒸気噴火が

発生し、1月26日から27日まではほぼ連続的に火 山灰を放出する準プリニー式噴火を発生させた.1 月28日には新燃岳火口中央に溶岩が出現している のが確認され、2月1日頃まで溶岩蓄積が継続し火 口を満たすまでになった.1月28日から3月1日の

Fig. 1 Topographic map of the Kirishimayama volcano group. The star symbol indicates the monitoring video camera site at Inokoishi. Yunono is one of the acoustic stations.

¹ 地磁気観測所観測課, Observations Division, Kakioka Magnetic Observatory

² 東京工業大学火山流体研究センター草津白根火山観測所, Kusatsu-Shirane Volcano Observatory, Volcanic Fluid Research Center, Tokyo Institute of Technology

期間には爆発的噴火も起こした. その後, 2011 年 9 月まで,噴火を繰り返した(福岡管区気象台・鹿児 島地方気象台, 2013; Kato and Yamasato, 2013).

前述した猪子石に設置された2台のビデオカメラ のうち,御鉢用のカメラ(以下,御鉢カメラ)は2011 年1月26日の噴火開始以降,広角の映像を取得でき るように画角等の設定が変更され,高さ4000m程度 までの噴煙を観測できるようになった.さらに,新 燃岳の南西約21kmの鹿児島航空測候所にも超高感 度カラーカメラが設置され,高さ20km程度までの 噴煙の全体像を観測できるよう監視体制が強化され た.これら以外にも霧島山東北東方向の高原町,北 北東方向の小林市にも監視カメラが設置され,韓国 岳山頂には新燃岳火口を監視するためのカメラも設 置された.

ここでは御鉢カメラ映像から求めた 2011年2月に 新燃岳の噴煙活動によって放出された熱エネルギー と H₂O 量について報告する. Fig. 2 に噴煙活動と噴 火活動の時間推移を示したが,今回解析対象とした 期間は爆発的噴火を繰り返していた期間に当たる. なお,この図では白色もしくは乳白色の噴煙の高さ を灰色の棒グラフで,有色噴煙の高さを黒色の棒グ ラフで示している.図上部の灰色の三角印は噴火

(2011年1月26日から3月は噴煙高度が概ね1000m 以上のもの)を,赤色の三角印は爆発的噴火(爆発 地震を伴い,新燃岳の南西約2.8kmの湯之野におけ

Photo 1 An example of an analyzed image from the Ohachi camera (13:29:34 (JST), February 1, 2011).

る空振計で20Pa以上の空振を観測した噴火)を示している.

2 観測データと解析方法

御鉢カメラで2秒毎に取得された映像データのうち白色の噴煙に対し,Briggs (1969)による煙の上昇形態と浮力との関係式を応用した鍵山(1978)の方法(plume rise 法)を適用し,火山ガスとして放出されている熱量を見積もった.なお,1月26日から31日にかけての噴煙活動については火山灰が含まれた有色噴煙として観測されており,火山ガスとし

Fig. 2 Temporal change of the volcanic plume height of Shinmoedake (according to observations by Kagoshima Local Meteorological Observatory and Fukuoka District Meteorological Observatory). Black and gray bars respectively indicate the height of colored plumes from the eruption and white or light white plumes. Triangles indicate the occurrence of explosions (▲) and eruptions (▲).

て放出される量(H₂O放出率)の評価ができないため解析対象としなかった.

Plume rise 法によると, 風速 *u* の時, 噴出口から の水平距離 *x* における噴煙の中心の高さが *h* であっ た場合, 放熱率 *Q* は

$$Q = 2.8 \times 10^4 h^3 u^3 / x^2 \tag{1}$$

から求められる. 噴煙が噴出されてからの時間 t を用いると,風速が一定ならx = ut であるから,

$$Q = 2.8 \times 10^4 \, h^3 u \, / \, t^2 \tag{2}$$

となる. 今回の解析では $h \ge t$ の関係を計測し, (2) 式から放熱率を求めた. 風速uは時間差 Δt の二枚の 画像において噴煙上の特徴的な点を追跡し, その水 平移動距離 Δx を計測することで求めた.

$$u = \Delta x / \Delta t \tag{3}$$

噴煙の上昇形態や風速の計測において噴煙の流向 の影響を避けるため,監視カメラの視線方向と直交 する西風または東風の日を解析対象とし,噴煙の色 が識別できる日中,概ね1時間ごとに3つの噴煙を 選んで計測した. Photo 1 に解析した画像例を示す. 3 2011年2月の噴煙活動による放熱率の時間変化

Fig. 3, Table 1 に解析結果を示す. H₂O 放出率 W は,

$$W = Q / H \tag{4}$$

で求めた.ここで, Hは1気圧, 800℃における過熱 蒸気のエンタルピー (4.16MJ/kg) である.東宮・他 (2011)によると1月26~27日の準プリニー式噴火 前に高温マグマが混合し950~1030℃のマグマ温度 となったが,2月の噴火では高温マグマの注入はな く,約880℃の低温マグマのみが関与した噴火であ った.このことから,ここでは過熱蒸気のエンタル ピーとして800℃における値を用いた.

2月1日の日平均放熱率は16GW(最大58GW)に 達した.この値は三宅島2000年噴火の大量脱ガス活 動初期における放熱率(2000年9月26日の日平均 放熱率24GW(福井,2006))に匹敵する大変大きな 値である.この後,放熱率は減少し2月5日以降, 1GW前後で推移した.その後,18日以降は衰退傾 向が顕著となり,26日には日平均43MWまで減少 した.三宅島2000年噴火では,最初の1年間で約 10GWから1GWへと1桁減少した(福井,2006). また,有珠山2000年噴火では,マグマ供給が停止し たとされるまでの最初の1ヶ月間で約2GWから約 0.4GWへと約1/5に減少した(福井,2003),一方,

Fig. 3 Temporal variation of heat discharge rate (Q) and H₂O discharge rate (W) at Shinmoedake in February 2011. W was calculated from Q and the enthalpy of superheated water vapor at 1 atm., 800 °C (4.16MJ/kg).

Date	Q (mean) [GW]	Q (max) [GW]	Q (min) [GW]	W (mean) [kton/day]	Number of Data
Feb. 2011					
1	16.2	57.8	2.0	337	23
3	4.2	8.2	1.2	87	10
4	6.1	21.9	0.26	127	29
5	2.5	6.6	0.67	52	18
9	1.4	2.0	0.90	29	2
13	1.8	4.0	0.54	37	12
18	0.25	0.36	0.12	5.2	6
21	0.15	0.22	0.073	3.1	6
26	0.043	0.058	0.030	0.9	5

Table 1 Heat discharge rate (Q) and H₂O discharge rate (W) at Shinmoedake estimated by the plume rise method.

Fig. 4 Temporal variation of heat discharge rate Q (solid circles) and volcanic plume height (bars) at Shinmoedake on February 3 and 4, 2011. Gray and light gray bars respectively indicate the height of grayish white plumes and white or light white plumes.

今回の新燃岳の活動では1ヶ月間で2桁も放熱率が 減少し,噴煙活動の低下率が大変大きかった.この 大きな変動は、4章で述べるように、初期の活発な 火山活動によって帯水層がなくなり、H₂O放出率が 大きく減少したことに関係していると考えられる.2 月5日頃に放熱率の減少傾向が低下した時は、爆発 的噴火の発生頻度が減少し、ハーモニック微動の発 生がおさまった時期(福岡管区気象台・鹿児島地方 気象台,2013; Kato and Yamasato, 2013)に対応してい る.2月中旬に放熱率の減少傾向が顕著になった時 期に対応しては、他の観測データに特段変化は認め られない.

2月1日から5日の噴気活動は数時間程度の時間 スケールで大きく変動している,その変動幅は1~2 桁に及んだ.Fig.4に2月3日,4日の詳細な時間変 化を示す.2月3日12h15mの噴火の前,11h頃から 放熱率が減少しているが,この変化の様子は森・鹿 児島地方気象台(2011)が報告した噴火前のSO2放

Date	H ₂ O discharge rate [kton/day]	SO ₂ discharge rate [kton/day] ^{*1}	H ₂ O/SO ₂ (weight ratio)	SO ₂ /H ₂ S (weight ratio) * ²
Feb. 1	340	8.8	38	
late Feb.	0.89	0.77 - 1.3	0.7 - 1.2	
Mar. 15		0.48		15 ± 3
May 18		0.2	$160 ~\pm~ 60 ~^{*2}$	1.5 ± 0.2

Table 2 Summary of temporal change of discharge rates and components of volcanic gases in 2011.

^{*1} after Mori and Kato (2013), ^{*2} calculated from Shinohara (2013)

出率の減衰の様子と一致している.また,2月4日 の8h20m頃や,11h頃,15h頃の放熱率の変化を見 ると,顕著な火山灰放出があった頃に増大している ようにも見えるが,放熱率を計測できたケースが限 られており,はっきりとしたことは分からない.今 後,映像データを精査した上で,放熱率の計測例を 増やし,森・鹿児島地方気象台(2011)が示した, 噴火前の火山ガス放出活動の減衰との対応を含め, 放熱率の時間変化と火山活動との関係を検討する必 要がある.

4 H₂0/SO₂比と帯水層

2月1日のH₂O放出率は34万トン/日であったが、 この日,東京大学によって測定された SO₂ 放出率は 8800 トン/日 (Mori and Kato, 2013) であり, H₂O/SO₂ 重量比は約40(モル比では約160)となる.この値 は三宅島 2000 年噴火時の H₂O/SO₂ 重量比,約 3~10 (Matsushima, 2005; 福井, 2006) と比べ大きな値と なっている.一方,2月下旬から3月初めにかけて は気象庁により SO2 放出率として 1000 トン/日前後 の値が得られており、この時期のH2O/SO2重量比は 1 程度の値となる. Shinohara (2013) が無人飛行機に よって 2011 年 5 月 18 日に観測した火山ガス組成か らH₂O/SO₂重量比を求めると160±60となり、今回 の結果と比べ1~2桁大きな値となっている.この日 の SO₂/H₂S 比はモル比で 0.8, 一方, 3 月 15 日の測 定によると SO₂/H₂S 比は 8 であった(この日, H₂O は計測できず).3月から5月にかけてのSO₂/H₂S比 の減少は火山活動の低下に伴い SO2量が減少したた めであり、この期間のH₂O/SO₂比が増大した一因と 考えられる.

活動初期に H_2O/SO_2 が大きく,その後小さくなる 時間変化の様子は三宅島 2000 年噴火に伴う大量脱 ガスの際にも観測されている(福井,2006).新燃岳 においても三宅島と同様に,活動初期の段階では帯 水層が存在し、 H_2O 放出率が高かったが、その後、 活発な噴火活動により帯水層がなくなり噴煙中の地 下水起源の水が減ったことにより H_2O/SO_2 比が小さ くなったと考えられる.火山灰の分析によって 6 月 には帯水層が回復したと考えられている(Suzuki et al., 2013)が、3 月から 5 月にかけ H_2O/SO_2 比が増大 したことには SO_2 量の減少のみならず、このことも 関係していると考えられる.

5 まとめ

2011 年霧島山新燃岳噴火活動初期 2011 年 2 月の 噴煙活動による放熱率と H₂O 放出率を, 気象庁監視 カメラ映像データから Plume rise 法により求めた. 2月1日の放熱率は16GW, H₂O 放出率は約34万ト ン/日と 2000 年三宅島噴火の大量脱ガス活動初期の 値に匹敵するものであった.2月26日の放熱率は 43MW, H₂O 放出率は 900 トン/日と1ヶ月で2 桁も 減少した. 2000 年三宅島噴火活動では放熱率は 1 年をかけ1桁減少し、2000年有珠山噴火活動では1 ヶ月で1/5になったが、今回の放熱率の減衰の仕方 はこれらのケースと比較し、非常に大きい. H₂O 放 出率と気象庁および東京大学大学院理学研究科が測 定した SO₂ 放出率から H₂O/SO₂ 重量比を求めると, 2月1日は約40で、2月下旬には1程度にまで減少 した. この期間の H₂O 放出率や H₂O/SO₂比の減少は 活発な噴火活動により帯水層がなくなり、噴煙中の 地下水起源の水が減ったことによると考えられる.

放熱率は数時間のうちに 1~2 桁変動することが あり、この変動の様子は噴火などの火山灰放出活動 と関係しているように見えるが、今後、放熱率の計 測事例を増やし、火山活動との対応関係を調査する 必要がある.

長い期間の放熱率,H₂O 放出率の時間推移を求め, SO₂ など他の火山ガス成分の時間変動の様子と対比 させることにより,新燃岳の脱ガス活動について理 解を深めるとともに,2000 年有珠山噴火や2000 年 三宅島噴火等の脱ガス活動との比較研究を進めるこ とにより,脱ガス活動の変動要因を解明し,推移予 測へと発展させることができるであろう.

謝辞

監視カメラ映像データの利用に際しては福岡管区 気象台火山監視・情報センターの協力を頂きました. 札幌管区気象台宮村淳一氏と一名の匿名の査読者, 内藤宏人編集長からの適切なご指摘は,本稿を改善 する上で大変有益でした.記して感謝の意を表しま す.

文献

- 鍵山恒臣 (1978):火山からの噴気による熱エネルギー とH₂Oの放出量-Plume riseからの推定-,火山,23, 183-197.
- 気象研究所地震火山研究部 (2008): 霧島山における GPS 観測, 気象研究所技術報告第 53 号「火山活動評 価手法の開発研究」, 144-154.
- 高木朗充・福井敬一・鬼澤真也・山本哲也・加藤幸司・ 近澤 心・藤原健治・坂井孝行 (2011): 2011 年霧島山 新燃岳噴火前の山頂地殻変動,日本火山学会講演予稿 集 2011 年度秋季大会予稿集, 119.
- 東宮昭彦・斉藤元治・下司信夫・宮城磯治 (2011):新燃 岳 2011 年噴火直前の高温マグマ注入過程:磁鉄鉱に 着目した解析,日本火山学会講演予稿集 2011 年度秋 季大会予稿集,31.
- 福井敬一 (2003): 噴煙活動の解析. 気象庁技術報告第 124 号「平成12 年 (2000 年) 有珠山噴火調査報告」, 32, 37-44.
- 福井敬一 (2006): 放熱量観測. 気象庁技術報告第 128 号 「平成 12 年 (2000 年) 三宅島噴火及び新島・神津島 近海の地震活動調査報告」, 115-121.
- 福井敬一 (2010): 2006 年1月1日07 時44 分霧島山新燃

岳で発生した火山性微動に対応した傾斜変動,火山噴 火予知連絡会会報,100,122-125.

- 福岡管区気象台・鹿児島地方気象台 (2013): 2011 年霧島 山新燃岳の噴火活動, 験震時報, 77, 65-96.
- 森 俊哉・鹿児島地方気象台 (2011):新燃岳 2011 年噴 火における二酸化硫黄放出率の推移,日本地球惑星 科学連合 2011 年大会予稿集, SVC070-P14.
- Briggs, G. A. (1969): Plume Rise, USAEC Critical Review Series, TID-25075, National Technical Information Service, Springfield, VA., 81pp.
- Kato, K. and H. Yamasato (2013): The 2011 eruptive activity of Shinmoedake volcano, Kirishimayama, Kyushu, Japan -Overview of activity and Volcanic Alert Level of the Japan Meteorological Agency-, Earth Planets Space, 65, 489-504.
- Matsushima, N. (2005): H₂O emission rate by the volcanic plume during the 2000–2002 Miyakejima volcanic activity, Geophys. Res. Lett., **32**, L14307, doi:10.1029/2005GL023217.
- Mori, T. and K. Kato (2013): Sulfur dioxide emissions during the 2011 eruption of Shinmoedake volcano, Japan, Japan. Earth Planets Space, 65, 573-580.
- Shinohara, H. (2013): Composition of volcanic gases emitted during repeating Vulcanian eruption stage of Shinmoedake, Kirishima volcano, Japan. Earth Planets Space, 65, 667-675.
- Suzuki, Y., M. Nagai, F. Maeno, A. Yasuda, N. Hokanishi, T. Shimano, M. Ichihara, T. Kaneko, and S. Nakada (2013): Precursory activity and evolution of the 2011 eruption of Shinmoe-dake in Kirishima volcano—insights from ash samples, Earth Planets Space, 65, 591-607.

(編集担当 坂井孝行・長岡 優)