Himawari Differential Water Capor Quick Guide

Differential Water Vapor RGB imagery and related interpretation (03:00 UTC, 7 September 2018)

- A \square : clouds with high-level top
- B 🔲 : high-level moisture

C 📃 : dryness in the high-level

atmosphere and moisture in the mid-level atmosphere

D l : dryness in the mid-/high-level atmosphere

Main applications : Analysis of high-/mid-level atmospheric water vapor distribution

Benefits:

- Color-component provision of sterically valid features on lower- and upper-level atmospheric water vapor distribution and depth of upper-level moist/dry layers
- Applicability to analysis of water vapor distribution for different layers such as troughs, ridges and areas of darkening
- Applicability day and night thanks to infrared image composition

Limitations :

- Color shading effects from satellite viewing angle, particularly in limb areas (limb cooling effect)
- Lack of clarity in features such as low-level cloud/fog
- Orange color with yellowish tone occasionally obscuring moisture layer clarity, causing a need for special care in interpretation

Polar vortex associated with a low-pressure system around the Sea of Japan (04:00 UTC, 4 May 2016)

Upper-air flow can be seen in the water-vapor image (left). Moisture and dry-area differences are also visible in three-dimensional RGB imagery (right).

A 🔲 : dryness in the high-level atmosphere and moisture in the mid-level atmosphere

- B 🔲 : high-level moisture
- $C \square$:clouds with high-level top
- D : dryness in the mid-/high-level atmosphere

RGB composition with recommended thresholds and related specifications for Differential Water Vapor RGB

Color	AHI bands	Central wave length [µm]	Min [K]	Max [K]	Gamma	Physical relation to	Smaller contribution to signal of	Larger contribution to signal of
Red	B10-B08	7.3-6.2	-3.0K	30.0K	3.5	Vertical water vapor distribution Mid-/high-level clouds	Mid-level humidity Mid-level clouds	Dry upper levels High-level clouds
Green	B10	7.3	213.2K	278.2K	2.5	Water vapor distribution at mid-level	Dry mid-levels Warm brightness temperatures	Moist mid-levels Cold brightness temperatures
Blue	B08	6.2	208.5K	243.9K	2.5	Water vapor distribution in upper level High clouds	Dry upper levels Warm brightness temperatures	Moist upper levels Cold brightness temperatures

Meteorological Satellite Center (MSC) of JMA

Himawari Differential Water Vapor Quick Guide

Developing low around the Korean Peninsula (21:00 UTC, 16 April 2016)

The dark-orange streak (indicated by the black arrow) to the vortex shaped-cloud with the developing low system appears to be dry intrusion.

A 🗌 : clouds with high-level top

B 📃 : dryness in the high-level atmosphere and moisture in the mid-level atmosphere

- C 📕 : dryness in the mid-/high-level atmosphere
- D 🔲 : high-level moisture

Color interpretation for Differential Water Vapor RGB

Color	Interpretation
	Clouds with high-level top
	High-level moisture
	Dryness in the high-level atmosphere and moisture in the mid-level atmosphere
	Dryness in the mid-/high-level atmosphere

Color interpretation may be developed in future work to enhance distinguishability.