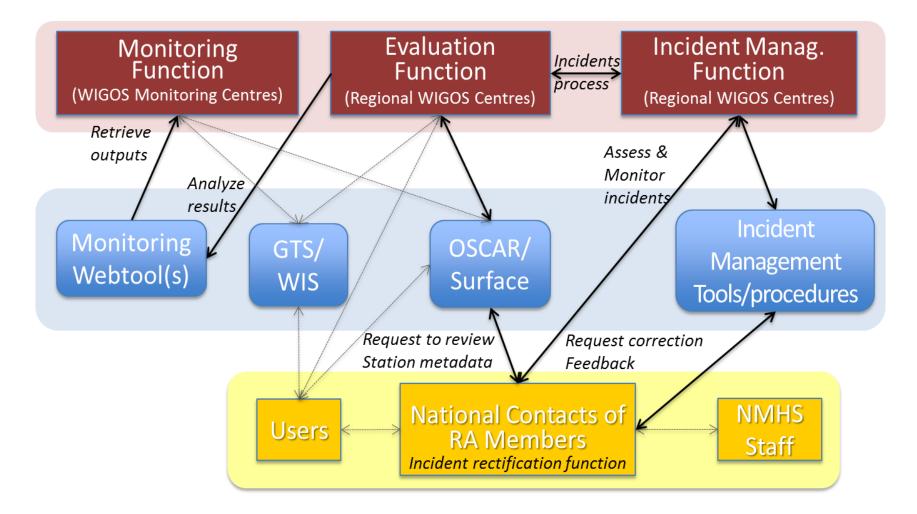
Mar. 6-9, 2019, Tokyo/Japan


# Session 3.3 the status and plans on RWC in RA II China

### Li Changxing Meteorological Observation Center China Meteorological Administration

Major contributor: Wu lei, Guo qiyun, Guo jinxia, Shi lijuan



# WMO WIGOS Data Quality Monitoring System (WDQMS)



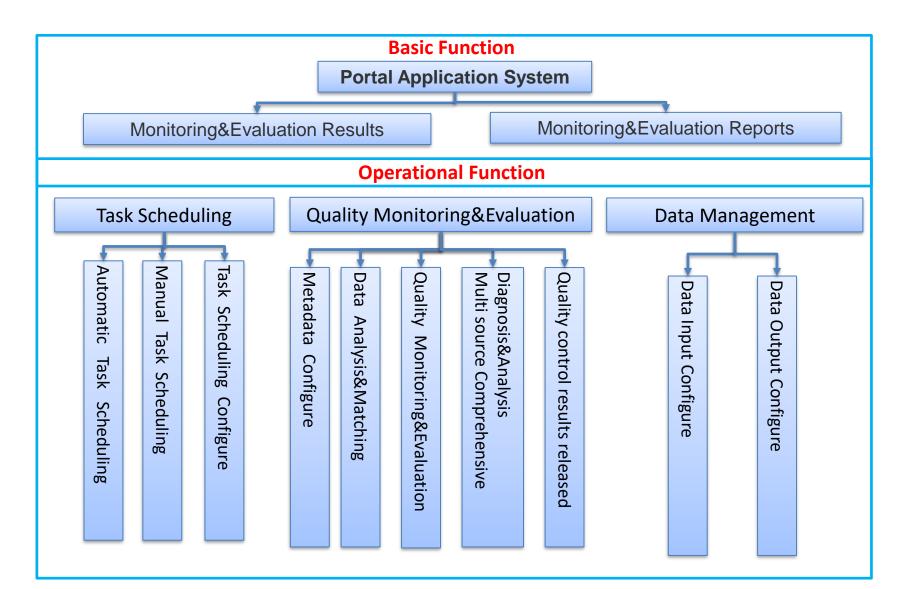
# **Implementation Plan of The RWC Pilot Project of CMA**

- Development of Regional WIGOS Center (RWC) Observation Data Quality Monitoring System
- Establishing the coordination mechanism for RA II observation data quality
- Establish a regular release mechanism for RA II observation data quality monitoring report

#### Work Goal :

To establish a mature operational observation data quality monitoring center in RA II region

#### Technical routes

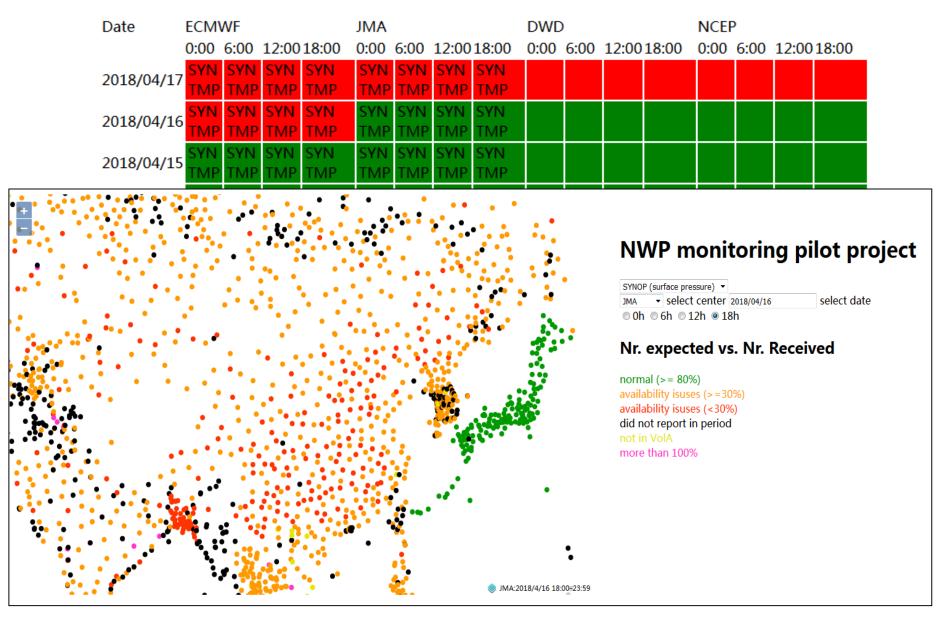

Based on CMA GRAPES Model Forecast Products, monitoring and ev aluation algorithms and systems which are consistent with WMO requirements,

Comprehensive diagnostic analysis of various means (WDQMS, OSCAR, etc.)

# **Overall Status of the implementation Plan**

- the land surface observation evaluation algorithms: Completed
- ➤ the upper-air sounding evaluation algorithms: Completed
- > the development of the RWC Quality Monitoring System: Completed
- ➤ the evaluation report of AWS in 2018: Completed

# **RA II Observation Monitoring & Analysis System**






- Four operational links: data acquisition, quality control, data examination and diagnosis analysis
- Objective evaluation indicators
- Data of surface observation and sounding have been monitored in the system

### List of the imported files since 2016

#### As per April 17, 2018, 8:22 a.m. reload



National Meteorological information Center Data collection, shared service and database operation, IT system maintenance



Meteorological Observation Center

Performance monitoring of observing system, Data quality control and assessment



#### National Meteorological Center:

Numerical forecast model operation,

Data assimilation

### Meteorological Observation Center/CMA

- Observation network design: surface, upper-air, radar and airborne obser.
- Observation system operation: centralized monitor and control of system status
- Logistics support and repair organization of nationwide observation equipment
- Life-cycle technical support for the Doppler Weather Radar network
- R &D of observation technology and methods
- Traceability, calibration and test of observation instruments
- Observation standard, guide and manual definition
- Observation data quality control
- Integrated and merged observation product application and services
- Bilateral cooperation and international duty on observation affairs

# Design of WIGOS Data Quality Monitoring System in CMA (WDQMS-CMA)

In order to get a high-quality observation data, we have to do:

### **Optimized and fit-for-purpose Observation Network**

- the Rolling Review of Requirements process(RRR)
- Observing Systems Capability Analysis and Review tool (OSCAR)

#### **Cost-effective instrument/observing system**

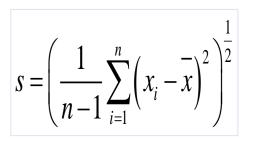
- R & D of the new technology
- Observing test and inter-comparison, improvement

#### **Quality Control and management**

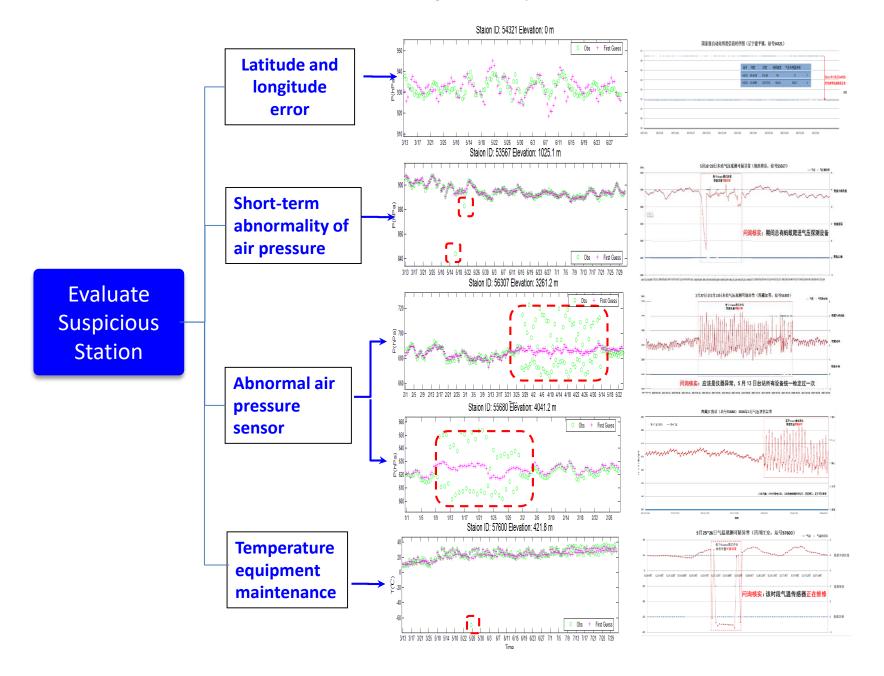
- Data QC & QA
- Metrology, calibration and validation
- Operation and maintenance
- Quality training

# I. Progress on the RWC Pilot Project

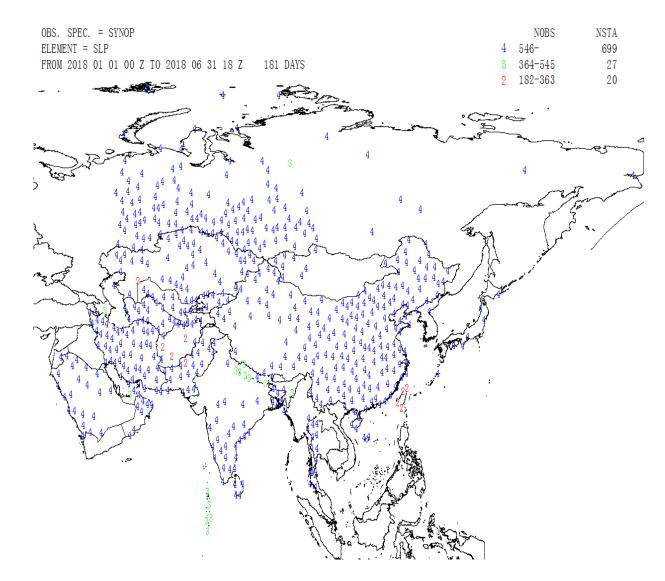
- 1. Surface observation
- 2. Upper-air sounding
- 3. Weather radar observation
- 4. OSCAR/surface
- 5. RRR practice


# (1) Surface Observation: data quality monitoring and assessment

To identify low-quality land surface problematic observation data on suspicious site, then to analyze, verify and trigger relevant quality improvement activities


To establish a closed loop of operational processes, timely discover and solve data quality problems from the source, and provide trusted data support for back-end applications

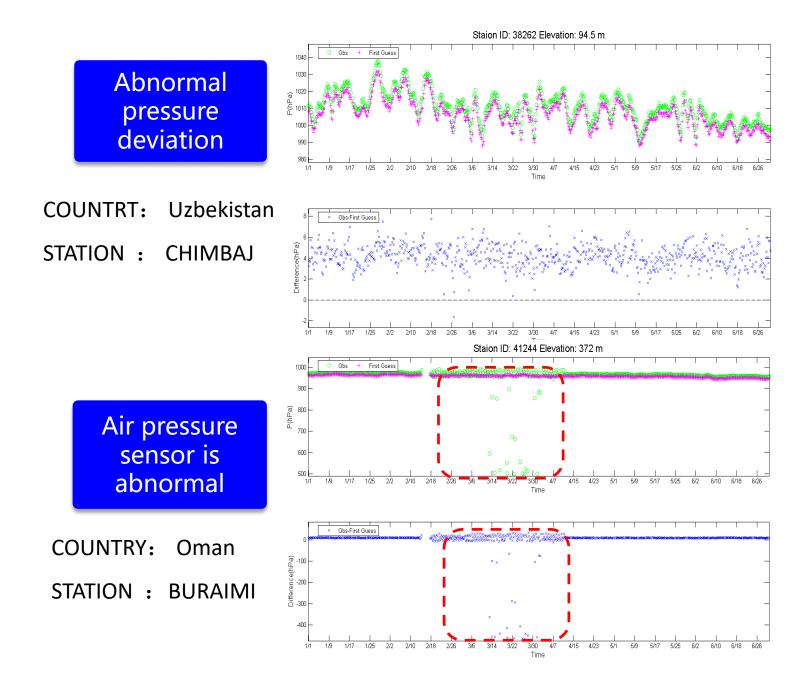
Using the WIGOS assessment technology method, to construct an observation and the GRAPES numerical forecasting model product deviation assessment model, and quantitatively monitor and evaluate the quality of surface data.

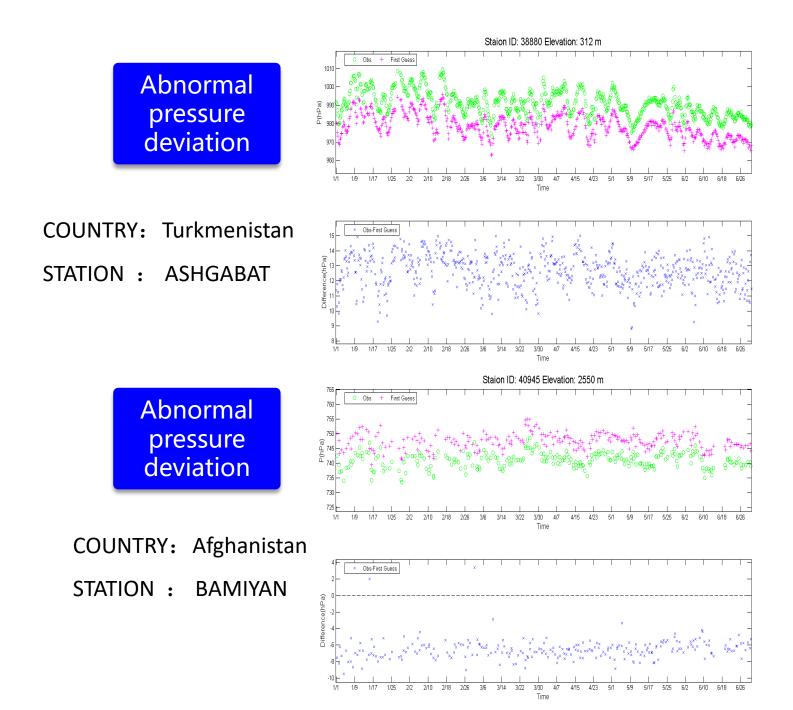





Standard :  $P \le 4 hPa, T \le 6 °C$ 




### The numbers of stations in Region II : 937




Location of all land surface stations reporting station level pressure (SLP) observations in Region II over the six-month period from January to June 2018

# The numbers of suspect stations : 12

| Table 4 List of suspect land surface stations during the period from January to June 2018 |            |            |          |           |      |            | 018      |      | - BIAS |       |       | AS  >= 3<br>AS  >= 3 |       |      |           | LP        |     |        |        |       |
|-------------------------------------------------------------------------------------------|------------|------------|----------|-----------|------|------------|----------|------|--------|-------|-------|----------------------|-------|------|-----------|-----------|-----|--------|--------|-------|
| WMO<br>IDENT                                                                              | LAT<br>(N) | LON<br>(E) | H<br>(m) | HM<br>(m) | ELEM | NUM<br>OBS | PGE<br>% | SD   | BIAS   | RMS   |       |                      |       |      | AS  >= 4  | •         |     |        |        |       |
| 38262                                                                                     | 42.95      | 59.8       | 94.5     | 53        | SLP  | 718        | 0        | 1.09 | 4.17   | 4.32  |       | 00                   |       | 0    |           | la far Cl | Dan |        | 1      |       |
|                                                                                           |            |            |          |           | MSLP | 718        | 0        | 1.15 | 0.66   | 1.32  |       | - SD                 |       |      | ) >= 5 hP |           |     | U WSLP |        |       |
| 38880                                                                                     | 37.98      | 58.35      | 312      | 522       | SLP  | 710        | 4        | 1.10 | 12.64  | 12.69 |       |                      |       |      | ) >= 40 g |           | GΖ  |        |        |       |
|                                                                                           |            |            |          |           | MSLP | 710        | 0        | 1.82 | -0.05  | 1.82  |       |                      |       | SL   | )>=6 ℃    | tor I     |     |        |        |       |
| 38944                                                                                     | 37.48      | 69.38      | 447      | 448       | SLP  | 720        | 0        | 1.68 | -5.68  | E 00  |       |                      |       |      |           |           |     |        |        |       |
|                                                                                           |            |            |          |           | MSLP | 720        | 0        | 2.38 | -7.39  | 42111 | 30.32 | 78.03                | 683   | 962  | SLP       | 703       | 1   | 1.03   | 6.15   | 6.24  |
| 38947                                                                                     | 37.23      | 69.08      | 327      | 485       | SLP  | 356        | 0        | 2.11 | -3.10  |       |       |                      |       |      | MSLP      | 702       | 0   | 1.86   | -4.52  | 4.89  |
|                                                                                           |            |            |          |           | MSLP | 717        | 0        | 2.46 | -0.37  | 43201 | 15.42 | 75.63                | 670   | 607  | SLP       | 706       | 0   | 0.81   | 3.07   | 3.18  |
| 40945                                                                                     | 34.82      | 67.82      | 2550     | 3196      | SLP  | 255        | 2        | 1.25 | -6.52  |       |       |                      |       |      | MSLP      | 706       | 0   | 0.99   | -1.34  | 1.66  |
|                                                                                           |            |            |          |           | MSLP | 254        | 1        | 5.17 | -1.24  | 43418 | 8.58  | 81.25                | 79    | 12   | SLP       | 683       | 0   | 0.64   | 4.87   | 4.91  |
|                                                                                           |            |            |          |           |      |            |          |      |        |       |       |                      |       |      | MSLP      | 683       | 0   | 0.62   | -0.10  | 0.63  |
|                                                                                           |            |            |          |           |      |            |          |      |        | 44424 | 29.28 | 82.17                | 2300  | 3072 | SLP       | 460       | 1   | 1.59   | -4.37  | 4.65  |
|                                                                                           |            |            |          |           |      |            |          |      |        |       |       |                      |       |      | GZ850     | 457       | 0   | 14.81  | -43.61 | 46.05 |
|                                                                                           |            |            |          |           |      |            |          |      |        | 44429 | 28.05 | 82.5                 | 634   | 784  | SLP       | 386       | 1   | 0.83   | -3.67  | 3.77  |
|                                                                                           |            |            |          |           |      |            |          |      |        |       |       |                      |       |      | MSLP      | 387       | 0   | 1.96   | -1.52  | 2.48  |
|                                                                                           |            |            |          |           |      |            |          |      |        | 48926 | 20.25 | 100.43               | 531.8 | 576  | SLP       | 435       | 11  | 2.05   | 13.43  | 13.58 |
|                                                                                           |            |            |          |           |      |            |          |      |        |       |       |                      |       |      | MSLP      | 433       | 0   | 1.57   | -1.31  | 2.04  |
|                                                                                           |            |            |          |           |      |            |          |      |        | 41244 | 24.23 | 55.92                | 372   | 413  | SLP       | 647       | 8   | 4.19   | 4.47   | 6.13  |
|                                                                                           |            |            |          |           |      |            |          |      |        |       |       |                      |       |      | MSLP      | 635       | 7   | 4.22   | -1.85  | 4.61  |
|                                                                                           |            |            |          |           |      |            |          |      |        |       |       |                      |       |      |           |           |     |        |        |       |



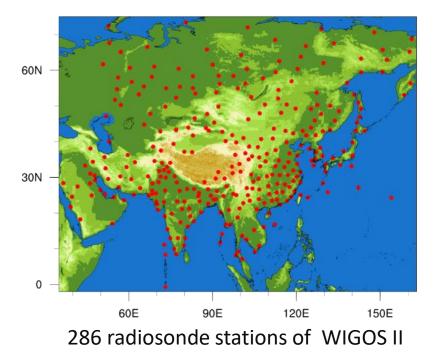


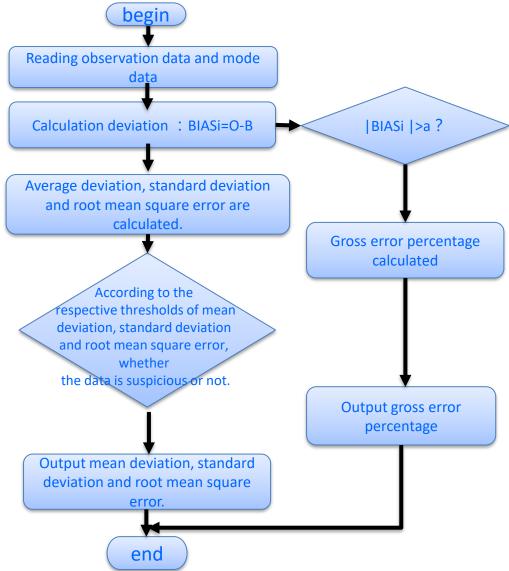
### **Tracking & Improvement of Abnormal Pressure Data**

1. Communicate with the station and repair the air pressure sensor.

56307、55680 station

2. Communicate with the station and check the surrounding environment of the air pressure sensor.


53567 station


3. Communicate with the data transmission department and check the data transmission operation software.

54321 station

# (2) Radiosonde Data Quality Evaluation

Comparing the data quality evaluation methods of WMO, ECMWF and JMA, we can quantitatively evaluate and monitor data quality of radiosonde, find and solve the problem of data quality in time, improve the data service quality, and fully support the new requirements of the World Meteorological Center for global meteorological data service.





#### Quality evaluation method of O-B

# **Comparison of evaluation (height)**

|   |       | Cł      | nina    |       |          | E        | С       |      |          | JM       | A        |           |
|---|-------|---------|---------|-------|----------|----------|---------|------|----------|----------|----------|-----------|
|   | IDENT | OBSTIME | ELEMENT | LEVEL | WMO      | OBS      |         |      | WMO      | OBS      | ELE-     |           |
|   | 30758 | 12      | Z       | 1000  | IDENT    | TIME     | ELM     | LEV  | IDENT    | TIME     | MENT     | LEVEL     |
|   | 31004 | 0       | Z       | 100   | 01400    | 00       | Z       | 1000 |          |          |          |           |
|   | 31004 | 12      | Z       | 100   | 01400    | 12       |         | 1000 | 01400    | 00       | Z        | 1000      |
| - | 32150 | 0       | Z       | 200   | 04360    | 00       | Z       | 1000 | 01400    | 12       | Z        | 1000      |
|   | 40375 | 0       | Z       | 1000  | 04360    | 12       | Z       | 1000 |          |          |          |           |
|   | 40375 | 12      | Z       | 1000  | 17351    | 00       | Z       | 70   | 04360    | 00       | Z        | 1000      |
| Ð | 40394 | 0       | Z       | 1000  | 22820    | 12       | Z       | 200  | 04360    | 12       | Z        | 925       |
|   | 40430 | 0       | Z       | 1000  | 22820    | 00       | Z       | 200  | 27962    | 12       | Z        | 50        |
|   | 40430 | 12      | Z       | 1000  | 27962    | 12       | Z       | 50   | 40437    | 00       | Ζ        | 850       |
|   | 40437 | 0       | Z       | 925   | 34882    | 12       | Z       | 50   | 40437    | 12       | Ζ        | 925       |
|   | 40437 | 12      | Z       | 925   | 40437    | 12       | Z       | 850  |          |          |          | · · · · · |
|   | 41112 | 0       | Z       | 1000  | 42299    | 12       | Z       | 925  | 47122    | 00       | Z        | 1000      |
|   | 41112 | 12      | Ζ       | 1000  | 42299    | 00       | Z       | 925  | 47122    | 12       | Z        | 1000      |
| - | 42369 | 12      | Ζ       | 150   | 47122    | 12       | Z       | 1000 | 47158    | 00       | Ζ        | 30        |
|   | 44292 | 12      | Ζ       | 1000  | 47122    | 00       | Z       | 1000 | $) \sim$ |          |          |           |
| - | 47122 | 0       | Ζ       | 1000  | 47158    | 00       | Z       | 30   | 78486    | 00       | Ζ        | 850       |
| - | 47122 | 12      | Ζ       | 1000  | 78988    | 12       | Z       | 1000 | 78988    |          | Z        | 1000      |
|   | 47158 | 0       | Ζ       | 30    | YLV96W   | 12       | Z       | 400  | 10900    | 12       | Ц        | TOOO      |
|   |       |         |         |       | Coincide | ence rat | te: 349 | 6    | Coir     | ncidence | rate: 84 | %         |

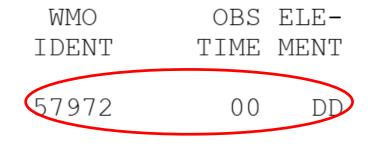
Coincidence rate: 34%

Coincidence rate: 84%

China has the ability to assess the height, but there is still a gap with the international level.

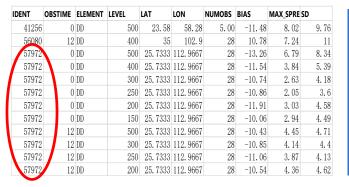
# **Comparison of evaluation** (wind speed)

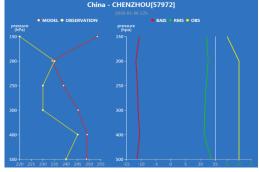
|          |       | Chi     | na      |       |       | EC   |     |     |                         | JM          | 4            |            |
|----------|-------|---------|---------|-------|-------|------|-----|-----|-------------------------|-------------|--------------|------------|
| Z        | IDENT | OBSTIME | ELEMENT | LEVEL | WMO   | OBS  |     |     | WMO                     |             | ELE-         |            |
| Jai      | 31004 | 0       | V       | 200   | IDENT | TIME | ELM | LEV | IDENT                   | TTME        | MENT         | LEVEL      |
| anua     | 31004 | 12      | V       | 200   |       |      |     |     |                         | 12<br>12    | V<br>V       | 500<br>700 |
| Ja       | 42182 | 12      | V       | 200   | 42182 | 12   | V   | 100 | 41839<br>41893<br>42182 | 12          | V            | 700        |
| _        | IDENT | OBSTIME | ELEMENT | LEVEL |       |      |     |     |                         | 12          | V            | 200        |
| ~        | 31004 | 0       | V       | 200   | WMO   | OBS  |     |     | WMO<br>IDENT            | OBS<br>TIME | ELE-<br>MENI |            |
| February | 31004 | 12      | V       | 250   | IDENT | TIME | ELM | LEV |                         |             |              |            |
| 2<br>L   | 42182 | 0       | V       | 200   | 40100 | 10   |     | 150 | 41768<br>41 <u>780</u>  | 12          | V            | 500<br>500 |
| b<br>b   | 42182 | 12      | V       | 200   | 42182 | 12   | V   | 150 | 42182                   | 00          | V            | 200        |
| ш        | 57993 | 0       | V       | 150   | 42182 | 00   | V   | 100 | 42182<br>57993          | 12<br>12    | V<br>V       | 200        |
|          | IDENT | OBSTIME | ELEMENT | LEVEL |       |      |     |     | - WMO                   |             | ELE-         | 500        |
| ے        | 31004 | 0       | V       | 250   | WMO   | OBS  |     |     | IDENT                   | TIME        | MENT         | LEVEL      |
| March    | 31004 | 12      | V       | 200   | IDENT | TIME | ELM | LEV | IDUNI                   |             |              |            |
| ١a       | 40800 | 0       | V       | 250   |       | 10   |     |     | 40100                   | 0.0         | 7.7          | 200        |
| 2        | 42182 | 12      | V       | 200   | 42182 | 12   | V   | 150 | 42182                   | 0.0         | V            | 200        |
|          | 57993 | 12      | V       | 250   |       |      |     |     | 42182                   | 12          | V            | 200        |
|          | IDENT | OBSTIME | ELEMENT | LEVEL | WMO   | OBS  |     |     | wmo                     | OBS         | ELE-         |            |
| April    | 31004 | 0       | V       | 200   | IDENT | TIME | ELM | LEV | IDENT                   | TIME        | MENT I       | EVEL       |
| d        | 31004 | 12      | V       | 250   | IDENT |      |     |     |                         |             |              |            |
| 4        | 42182 | 12      | V       | 200   | 42182 | 12   | V   | 200 | 42182                   | 12          | V            | 200        |
| >        | IDENT | OBSTIME | ELEMENT | LEVEL |       |      |     |     |                         | -           |              |            |
| May      | 31004 | 0       | V       | 150   |       | NO   |     |     |                         | N           | 10           |            |
| 2        | 31004 | 12      | V       | 150   |       |      |     |     |                         |             |              |            |
| ً رە     | IDENT | OBSTIME | ELEMENT | LEVEL | -     |      |     |     |                         |             |              |            |
| June     | 31004 | 0       | V       | 150   |       | NO   |     |     |                         | N           | 10           |            |
| J        | 31004 | 12      | V       | 150   |       |      |     |     |                         |             |              |            |

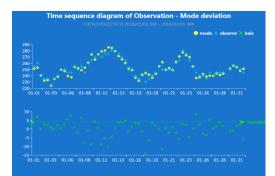

China has the ability to assess the wind speed, but there is still a gap with the international level.

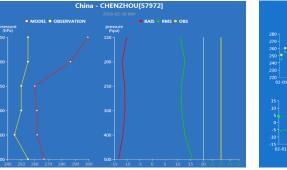
# **Comparison of evaluation results——wind direction**

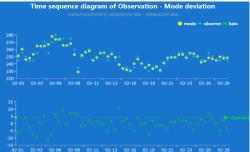
|         |                       | Ch           | ina           |              |       | EC   |     |       | JMA  |      |
|---------|-----------------------|--------------|---------------|--------------|-------|------|-----|-------|------|------|
|         | <b>IDENT</b><br>42867 | OBSTIME<br>0 | ELEMENT<br>DD | LEVEL<br>500 | WMO   | OBS  |     | WMO   |      | ELE- |
|         | 42874                 | 0            | DD            | 500          | IDENT | TIME | ELM | IDENT | TIME | MENT |
|         | 43192                 | 0            | DD            | 400          | -     |      |     |       |      |      |
| )<br>Ti | 43599<br>57972        | 12<br>0      | DD<br>DD      | 500<br>500   | 57972 | 00   | DD  | 57972 | 00   | DD   |
| ∆p      | 57972                 | 0            | DD            | 300          | 57972 | 12   | DD  | 57972 | 12   | DÐ   |
|         | 57972                 | 0            | DD            | 250          |       |      |     |       |      |      |
|         | 57972                 | 12           | DD            | 300          |       |      |     |       |      |      |
|         | 57972                 | 12           | DD            | 250          |       |      |     |       |      |      |
|         | 57972                 | 12           | DD            | 150          |       |      |     |       |      |      |


| >      | IDENT | OBSTIME | ELEMENT | LEVEL |
|--------|-------|---------|---------|-------|
| ש      | 54374 | 0       | DD      | 300   |
| $\geq$ | 57972 | 12      | DD      | 300   |
|        | 59280 | 12      | DD      | 150   |


NO

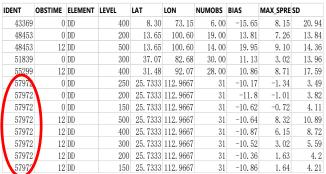


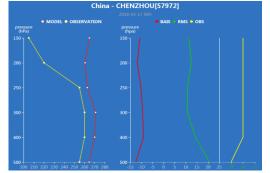


#### Tracking and Improvement of Abnormal Wind Direction Data

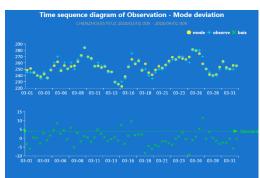

| IDENT | OBSTIME  | ELEMENT | LEVEL | LAT   | LON    | NUMOBS | BIAS   | MAX_SPRE | SD    |
|-------|----------|---------|-------|-------|--------|--------|--------|----------|-------|
| 28951 | 12       | DD      | 200   | 53.23 | 63.62  | 5.00   | -10.50 | 3.08     | 10.03 |
| 35700 | 00       | DD      | 500   | 47.12 | 51.92  | 23.00  | 13.28  | 8.37     | 17.09 |
| 43599 | 12       | DD      | 200   | -0.68 | 73.15  | 25.00  | -19.03 | 8.08     | 17.34 |
| 48327 | 00       | DD      | 400   | 18.77 | 98.97  | 7.00   | 11.64  | 6.15     | 10.99 |
| 48407 | 12       | DD      | 150   | 15.25 | 104.87 | 5.00   | -11.62 | 9.44     | 20.44 |
| 49000 | 12       | DD      | 300   | 7.17  | 100.60 | 6.00   | 19.17  | 3.10     | 6.41  |
| 57972 | 00       | DD      | 150   | 25.73 | 112.97 | 31.00  | -13.24 | 4.47     | 5.90  |
| 57972 | 00       | DD      | 200   | 25.73 | 112.97 | 31.00  | -11.26 | 3.21     | 4.64  |
| 57972 | <b>O</b> | DD      | 250   | 25.73 | 112.97 | 31.00  | -11.64 | 2.71     | 4.14  |
| 57972 | 0        | DD      | 400   | 25.73 | 112.97 | 31.00  | -13.75 | 5.74     | 7.17  |
| 57972 | 0        | DD      | 500   | 25.73 | 112.97 | 31.00  | -10.10 | 6.91     | 8.34  |
| 57972 | 1        | DD      | 150   | 25.73 | 112.97 | 30.00  | -10.60 | 4.36     | 5.79  |
| 57972 | 1        | DD      | 200   | 25.73 | 112.97 | 30.00  | -11.73 | 3.24     | 4.67  |
| 57972 | 12       | DD      | 250   | 25.73 | 112.97 | 31.00  | -11.25 | 2.54     | 3.97  |
| 57972 | 12       | DD      | 300   | 25.73 | 112.97 | 31.00  | -10.97 | 2.01     | 3.44  |
| 57972 | 12       | DD      | 400   | 25.73 | 112.97 | 31.00  | -10.46 | 2.73     | 4.16  |
| 57979 | 12       | DD      | 500   | 25.73 | 112.97 | 31.00  | -11.33 | 6.26     | 7.69  |







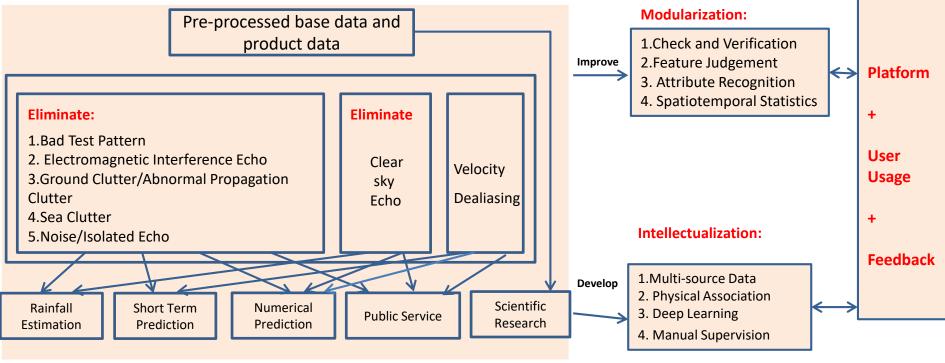

Feb

Jan

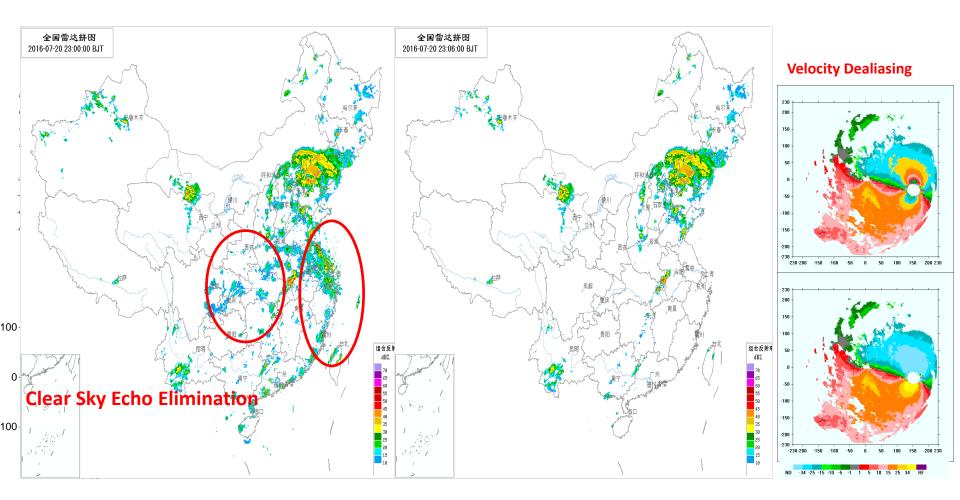







Mar

#### **Suspicious station**


#### Station id: 57972 (China)

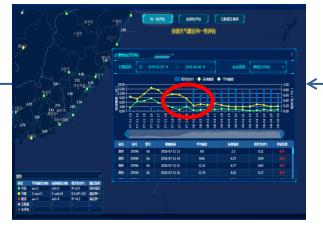
# (3) Doppler Weather Radar Data Quality Control —Only for China

#### **Technical Route:** Basic Quality Control, Modularization, Intellectualization



**Basic Quality Control** 




#### **Data Acquisition Monitoring**



#### **Reports Publishing**

#### 天气雷达数据质量年报 天气雷达数据质量月报 第4期 (2018年度) 2019年第1票(总43期) (2017年12月-2018年11月) 中国气象局气象探测中心数据质量室编 2019年1月-中国气管局气管双洲中心数据质量空偏。 1. 雷达数据质量情况。 1. 雷达数据质量情况。 (1) 2018 年實达业务运行数量。 2019年1月全国运行的新一代天气雷达有 209 部, 在 到 2018年11月底,有 208部新一代天气雷达业务运行, 上传至国家级的基数据中有 30 部署达出现数据质量问题。 其中 SA 型 84 部, SB 型 20 部, SC 型 12 部, CA 型 10 部, 占总站数约14.4%,比上月减少3.9%;累积出现6748 额次的 CB 型 16 部, CC 型 40 部, CD 型 25 部, WSR-88D 型 1 部。~ 教授演員回顧,约占总规制和次的0.71%,比上月接加 表1 业务运行的雷达数量+ 0.06% 習法型号 SA# SB# SC# CA# CB# CC# CD# 88D# 活行言法表面: 844 207 127 107 167 407 257 17 数据质量问题出现级大较高(≥20 次)的雷达有14部 台计 208 🖗 占总站数的 6.7%,其中, 宁德雷达 (SA)、南宁雷达 (SA) (2) 各省(区,市) 留計數据质量。 2017年12月-2018年11月,全国组网运行的新一代天 三亚雷站 (SC)。浙江雷达 (CD)、西安雷达 (CB) 出现电磁 气雷达在规定的观测时间段内有151部雷达出现不同程度 干扰现象的频次较多,分别为468次,992次,1241次,2871 8、440次。出现非常达观测因波较多的常达有长的常过 的数据质量问题,占总套达数量的72.6%。累计出现60633 频次的数据质量问题。。 (OC),为 51 次。出现回波被强的雪达有白城雪达(CC)、 出現規測数器质量问题频次胶英(≥100次)的需达有 样斯尔海雷达(CC),分别为36次、49次。(详见附件)。 41 部 ( 大原、长治、通辽、赤峰、大连、朝阳、白城、杜 教报质量问题中出现电磁干扰现象的雷达有 16 部,景 升江、加格动奇、南京、盐城、连云港、杭州、湖州、宁波、 积总集次为 6544 次,占本月全部数据质量问题的 96,98%; 合肥、马鞍山、龙岩、宇德、吉安、济南、烟台、潍坊、长 出现非雷达观测回波的雷达有 12 部、系积总规次为 99 次。


#### **Data Evaluation**



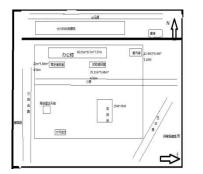
#### **Data Quality Monitoring**



#### **Diagnostic Errata**



## (4) OSCAR/Surface-----Metadata Maintain


➢Nominated a National Focal Point for OSCAR/Surface

- Maintain the metadata of 88 Sounding stations and 385 surface stations
- >Update the metadata of relocated stations every year
- Correct any erroneous and/or missing metadata identified in OSCAR

# OSCAR/Surface-----Metadata Standard

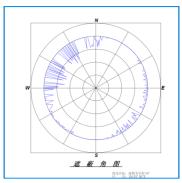
#### •WIGOS metadata as primary template

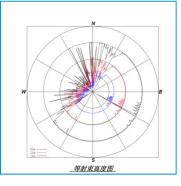
- ✓ 10 categories
- ✓ 65 elements

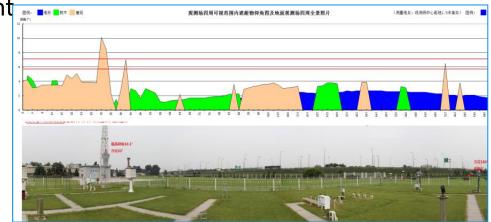




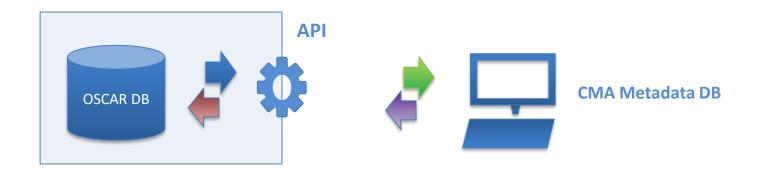
#### Add new metadata elements


✓Amount to 73 elements+Station evolution


+On duty


+Obstacle type

+Interference source


+Observation environment assessment +etc....



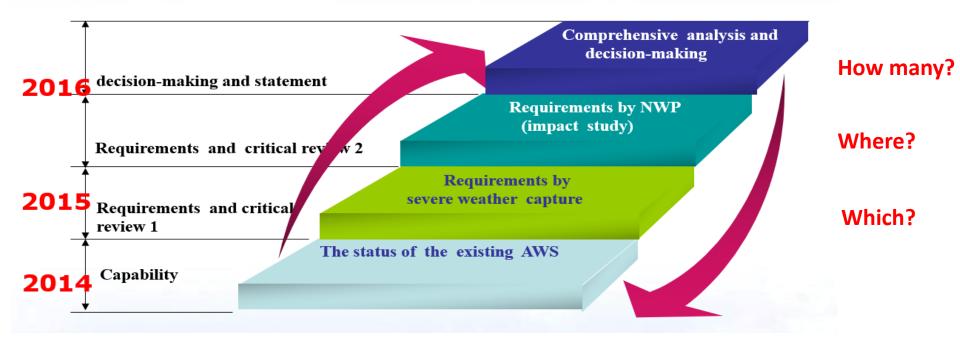




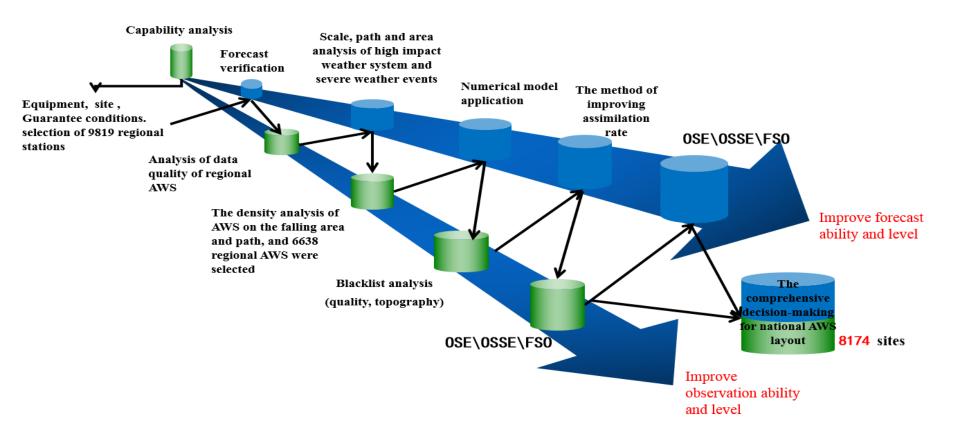
### OSCAR/Surface----- Share Metadata







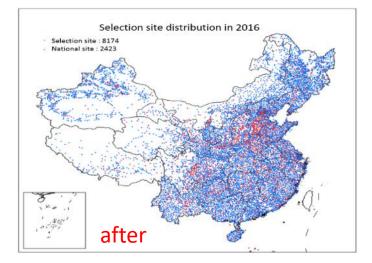

**CMA system** 


The new system is under development

# (5) Optimization of the Surface AWS network CMA practice of RRR tool

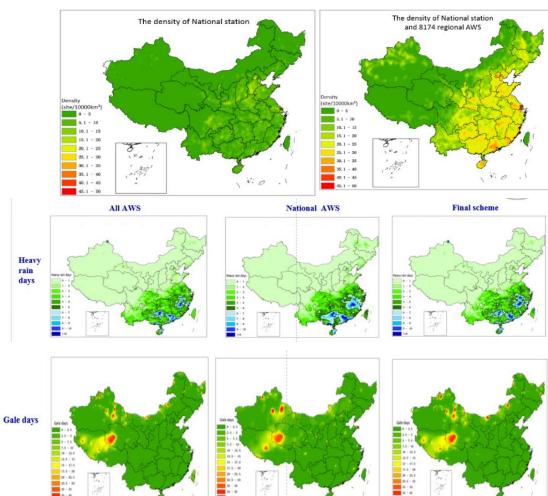
#### The RRR cycle of the optimization AWS network




### Mutual reciprocity and mutual benefit



- RRR is a process with combining the science and engineering process of the system.
- Both the observation systems, forecast system and met. service systems benefit from the RRR process.


### Comparisons of the layout before and after the optimization



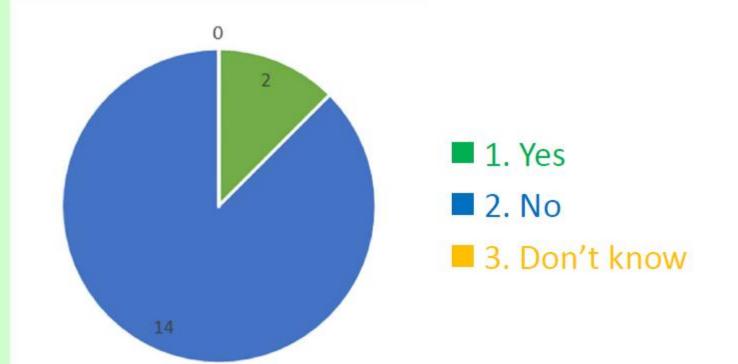


before

after



# **II. Next work planning**


# (1) Human resource training plan

- Based on the RTC-Nanjing (Beijing), RWC-Beijing(MOC/CMA) will joint other units, development training course and open a training course every year for all member of RA II.
- MOC/CMA gathers a large number of top technical expert, and plays an important role in various WMO working groups.
- Postdoctoral visiting scholar.
- Organize expert on-site technical training for one week every time.

# (1) Human resource training plan

- Based on the RTC-Nanjing (Beijing), RWC-Beijing(MOC/CMA) will joint other units, development training course and open a training course every year for all member of RA II.
- MOC/CMA gathers a large number of top technical expert, and plays an important role in various WMO working groups.
- Postdoctoral visiting scholar.
- Organize expert on-site technical training for one week every time.

# Q3.6.3-1 Have you ever attended a training course on OSCAR/Surface?



#### Presenter's comments

RA II WIGOS Workshop - Regional WIGOS Centres (RWCs) and its services for Members, Tokyo, Japan, 6-9 March 2019

# (2) provide technical support and service

- Based on the RIC-Beijing, RWC-Beijing(MOC/CMA) can help all member of RA II. to find the cost-effective instrument or observing system.
- To build RWC website and hot-line telephone. www.observation-cma.com



# (3) to strengthen cooperation between members

- to strengthen bilateral cooperation;
- to joint implementation of the "One Belt And One Road" international development, to promote an action plan on redesign and improvement of the GBON.
  - AWS: unattended from station to information center
  - Sounding station: let us have a best try to make those silent station alive ! Together!



WEATHER CLIMATE WATER TEMPS CLIMAT EAU



Thank you Merci 谢谢 ありがとう

#### WMO OMM

World Meteorological Organization Organisation météorologique mondiale