Specifications (as of 31 December 2020) – an excerpt from the Joint WMO Technical Progress Report on the Global Data Processing and Forecasting System and Numerical Weather Prediction Research Activities for 2020

MSM specifications

1. System	
System	Meso-scale model
Date of implementation	1 March 2001
2. Configuration	
Domain	Japan and its surrounding area
	Lambert projection, 817×661 grid points
Horizontal resolution	5 km at 60°N and 30°N (standard parallels)
Vertical levels	76
Model top	22 km
Forecast length	51 hours (00, 12 UTC), 39 hours (03, 06, 09, 15, 18, 21 UTC)
Runs per day (times in UTC)	8 (00, 03, 06, 09, 12, 15, 18 and 21 UTC)
Coupling to ocean/wave/sea ice	None
models	
Integration time step	100/3 seconds (3-stage Runge-Kutta method)
3. Surface boundary conditions	
Sea-surface temperature	Analyzed SST and sea-ice distribution
Land surface analysis	Climatological values of evaporability, roughness length and albedo
	Snow cover analysis over Japan using a land surface model
4. Lateral boundary conditions	
Model providing lateral	GSM
boundary conditions	
Lateral boundary condition	4 times/day
update frequency	00 - 57-hour GSM forecasts initialized at $00/06/12/18$ UTC for (03,
	06)/(09, 12)/(15, 18)/(21, 00) UTC forecasts
5. Other details	
Soil scheme	Ground temperature prediction using an eight-layer ground model
	Evaporability prediction initialized using climatological values
	depending on location and season
Radiation	Short wave: two-stream with delta-Eddington approximation
	(every 15 minutes)
	Long wave: two-stream absorption approximation method (every
	15 minutes)
Large-scale dynamics	Finite volume method with Arakawa-C-type staggered coordinates.
	horizontally explicit and vertically implicit time integration
	scheme, and combined third- and first-order upwind horizontal
	finite difference schemes in flux form with a limiter as proposed by
	Koren (1993) in advection treatment for monotonicity, time-
	splitting of vertical advection
	Fully compressible non-hydrostatic equations
Boundary layer	Mellor-Yamada-Nakanishi-Niino Level-3 scheme
	Similarity theory adopted for surface boundary layer
Convection	Kain-Fritsch convection scheme
Cloud/microphysics	Three-ice bulk cloud microphysics
	Consideration of PDF-based cloud distribution in microphysics
	Time splitting of vertical advection for water substances, cloud
	water and cloud cover diagnosed using a partial condensation
	scheme
Orography	Mean orography smoothed to eliminate shortest-wave components
Horizontal diffusion	None
Gravity wave drag	None
6. Further information	
System documentation URL	https://www.jma.go.jp/jma/jma-eng/jma-center/nwp/nwp-top.htm