Specifications (as of 31 December 2020) – an excerpt from the Joint WMO Technical Progress Report on the Global Data Processing and Forecasting System and Numerical Weather Prediction Research Activities for 2020

Analysis scheme	Incremental hybrid 4D-Var using LETKF
Data cut-off time	2 hours and 20 minutes for early run analysis at 00, 06, 12 and 18 UTC
	11 hours and 50 minutes for cycle run analysis at 00 and 12 UTC
	7 hours and 50 minutes for cycle run analysis at 06 and 18 UTC
First guess	6-hour forecast by the GSM
Domain	Globe
configuration	TL959, Reduced Gaussian grid, roughly equivalent to 0.1875° (20 km)
(Outer step)	[1920 (tropic) – 60 (polar)] x 960
(Inner step)	TL319, Reduced Gaussian grid, roughly equivalent to 0.5625° (55 km)
	[640 (tropic) – 60 (polar)] x 960
Vertical coordinates	σ-p hybrid
Vertical levels	100 forecast model levels up to 0.01 hPa + surface
Outer-loop iterations	2
Inner-loop iterations	Approx. 35
Control variables for	Relative vorticity, unbalanced divergence, unbalanced temperature,
climatological	unbalanced surface pressure and natural logarithm of specific humidity
background error	
covariance	
Covariance inflation	Adaptive multiplicative covariance inflation (as per LETKF application)
for ensemble	Additional covariance inflation is applied to create vertical profiles for the
covariance	horizontal global mean of standard deviation from ensemble covariances
-	consistent with those from climatological background error covariances.
Localization for	Gaussian function. The localization scale for which the localization function
ensemble covariance	is $1/\sqrt{e}$ is set to 800 km in the horizontal domain and a 0.8-scale height in
	the vertical domain.
Weighting for hybrid	0.85 for climatological covariance and 0.15 for ensemble covariance under 50
covariance	hPa. Values approach 1 and 0 above 50 hPa, respectively.
Analysis variables	Wind, surface pressure, specific humidity and temperature
Observations (as of	SYNOP, METAR, SHIP, BUOY, TEMP, PILOT, Wind Profiler, AIREP,
31 December 2020)	AMDAR, Typhoon Bogus; atmospheric motion vectors (AMVs) from
	Himawari-8, GOES-16, Meteosat-8, 11; MODIS polar AMVs from Terra and
	Aqua satellites; AVHRR polar AMVs from NOAA and Metop satellites; LEO-
	GEO AMVs; ocean surface wind from Metop-A, B, C/ASCAT, ScatSat-
	1/OSCAT; radiances from NOAA-15, 18, 19/ATOVS, Metop-A, B, C/ATOVS,
	Aqua/AMSU-A, DMSP-F17, 18/SSMIS, Suomi-NPP, NOAA-20/ATMS,
	GCOM-W/AMSR2, GPM-core/GMI, Coriolis/WindSat, FY-3C/MWRI, Megha-
	Tropiques/SAPHIR, Aqua/AIRS, Metop·A,B/IASI, Suomi-NPP, NOAA-
	20/CrIS, clear sky radiances from the water vapor channels (WV-CSRs) of
	Himawari-8, GOES-15, 16, Meteosat-8, 11; GNSS RO bending angle data
	from Metop-A, B/GRAS, COSMIC/IGOR, TerraSAR-X/IGOR; zenith total
	from Metop-A, B/GRAS, COSMIC/IGOR, TerraSAR-X/IGOR; zenith total delay data from ground-based GNSS

Specifications of 4D-Var in Global Analysis

Specifications of the LETKF in Global Analysis

Data cut-off time	As per 4D-Var
First guess	Own 6-hour forecast
Domain configuration	As per 4D-Var inner step
Vertical coordinates	As per 4D-Var
Vertical levels	As per 4D-Var
Ensemble size	50 members

Perturbations to	Stochastic perturbation of physics tendency
model physics	
Initialization	Horizontal divergence adjustment based on analysis of
	surface pressure tendency (Hamrud et al., 2015)
Covariance inflation	Adaptive multiplicative covariance inflation
Localization	Gaussian function. The localization scale for which the localization function
	is $1/\sqrt{e}$ is set to 400 km in the horizontal domain (300 km for humidity-
	sensitive observations), a 0.4 scale height in the vertical domain (0.8 for
	surface pressure and ground-based GNSS zenith total-delay observations)
	and three hours in the temporal domain. For satellite radiance observations,
	the maximum of the square of the weighting function divided by its peak
	value and the Gaussian function with a $0.4\sqrt{2}$ scale height centered at the
	peak of the weighting function is used as the vertical localization function.
Re-centering	Ensemble analysis is re-centered so that the ensemble mean is consistent with 4D-
	Var.
Analysis variables	As per 4D-Var
Observation	As per 4D-Var, but without the use of Aqua/AIRS, Metop-A, B/IASI and
	Suomi-NPP, and NOAA-20/CrIS data
Assimilation window	As per 4D-Var

Specifications of snow depth analysis in Global Analysis

Methodology	Two-dimensional Optimal Interpolation scheme
Domain and grids	Global, 1° × 1° equal latitude-longitude grids
First guess	Derived from previous snow depth analysis and USAF/ETAC Global Snow
	Depth climatology (Foster and Davy, 1988)
Data used	SYNOP snow depth data
Frequency	Daily

Reference:

Foster, D. J., and R. D. Davy, 1988: Global Snow Depth Climatology. USAF-ETAC/TN-88/006. Scott Air Force Base, Illinois, p. 48.