
Chapter 2

Data Assimilation Systems

2.1 Summary
Three kinds of major data assimilation systems for the analysis for atmospheric fields are operated at JMA:
Global Analysis (GA), Meso-scale Analysis (MA) and Local Analysis (LA). Specifications of the JMA data
assimilation systems are summarized in Table 2.1.1, Table 2.1.2 and Table 2.1.3. All the analyses are performed
by using the procedures shown in Figure 2.1.1.

The following is a brief description of the major components of the analysis systems.

1. Observational data are received from the WMO Information System (WIS) including Global Telecom-
munication System (GTS), Internet and dedicated networks. The data are decoded according to their
code forms. If typhoons exist in the western North Pacific, typhoon bogus profiles are created.

2. Various pre-analysis procedures, such as quality control, data selection and bias correction, are applied
to the decoded observational data. In the pre-analysis process, first guess fields retrieved from forecast
models are used as a reference of the present atmospheric conditions.

3. The hybrid four-dimensional variational method using the Local Ensemble Transform Kalman Filter
is adopted in Global Analysis, while the four-dimensional variational method is adopted in Meso-
scale Analysis. To reduce the computational cost, the analysis increment is calculated using a coarser-
resolution inner model in each method. The resolution of these analysis type is the same as that of the
corresponding forecast models.

4. Local Analysis involves a three-hour cycle based on the hybrid three-dimensional variational method.
Its resolution is coarser than that of the corresponding forecast model.

The atmospheric fields analyzed from the data assimilation systems are used as initial conditions of forecast
models. First guess fields and boundary conditions of data assimilation systems are provided from forecast
models as shown in Figure 2.1.2.

Sea surface temperature fields (see Section 5.2), snow depth fields (see Section 2.8) and soil moisture fields
(see Section 2.9) are also analyzed every day.

The Japanese 55-year Reanalysis project has been conducted for the period from 1958 and continues today
on a near-real-time basis (see Section 2.11).
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Figure 2.1.1: Major functional components and data flow in the JMA data assimilation system.
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Table 2.1.1: Specifications of 4D-Var in Global Analysis (GA)
Analysis time 00, 06, 12 and 18 UTC
Analysis scheme Incremental hybrid 4D-Var using LETKF
Data cut-off time 2 hours and 20 minutes for early run analysis at 00, 06, 12 and 18 UTC

11 hours and 50 minutes for cycle run analysis at 00 and 12 UTC
7 hours and 50 minutes for cycle run analysis at 06 and 18 UTC

First guess 6-hour forecast by the GSM
Domain configuration Globe
(Outer step) TL959, Reduced Gaussian grid, roughly equivalent to 0.1875◦ (20 km)

[1920 (tropic) – 60 (polar) ] × 960
(Inner step) TL319, Reduced Gaussian grid, roughly equivalent to 0.5625◦ (55 km)

[640 (tropic) – 60 (polar) ] × 320
Vertical coordinate σ-p hybrid
Vertical levels 128 forecast model levels up to 0.01 hPa + surface
Analysis variables Wind, surface pressure, specific humidity and temperature
Observation (as of 31
March 2022)

SYNOP, METAR, SHIP, BUOY, TEMP, PILOT, Wind Profiler, AIREP, AM-
DAR, Typhoon Bogus; atmospheric motion vectors (AMVs) from Himawari-
8, GOES-[16, 17] and Meteosat-[8, 11]; MODIS polar AMVs from Terra
satellite; AVHRR polar AMVs from NOAA and Metop satellites; LEO-GEO
AMVs; ocean surface wind from Metop-[B, C]/ASCAT; radiances from NOAA-
[15, 18, 19]/AMSU-A, Metop-[B, C]/AMSU-A, Aqua/AMSU-A, DMSP-F[17,
18]/SSMIS, Suomi-NPP/ATMS, NOAA-20/ATMS, GCOM-W/AMSR2, GPM-
core/GMI, Aqua/AIRS, Metop-[B, C]/IASI, Suomi-NPP/CrIS, NOAA-20/CrIS,
FY-3C/MWHS2, NOAA-19/MHS, Metop-[B, C]/MHS and FY-3C/MWRI; clear
sky radiances from the water vapor channels (WV-CSRs) of Himawari-8, GOES-
[16, 17] and Meteosat-[8, 11]; GNSS RO bending angle data from Metop-[B,
C]/GRAS and TerraSAR-X/IGOR; zenith total delay data from ground-based
GNSS

Assimilation window 6 hours
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Table 2.1.2: Specifications of the Mesoscale Analysis (MA)
Analysis time 00, 03, 06, 09, 12, 15, 18 and 21 UTC
Analysis scheme Incremental 4D-Var using a nonlinear forward model in the inner step with low

resolution
Data cut-off time 50 minutes for analysis at 00, 03, 06, 09, 12, 15, 18 and 21 UTC
First guess 3-hour forecast produced by ASUCA
Domain configuration Japan and its surrounding area
(Outer step) Lambert projection: 5 km at 60◦N and 30◦N, 817 × 661

Grid point (1, 1) is at the northwest corner of the domain.
Grid point (565, 445) is at 140◦E, 30◦N

(Inner step) Lambert projection: 15 km at 60◦N and 30◦N, 273 × 221
Grid point (1, 1) is at the northwest corner of the domain.
Grid point (189, 149) is at 140◦E, 30◦N

Vertical coordinate z-z⋆ hybrid
Vertical levels (Outer step) 96 levels up to 37.5 km

(Inner step) 48 levels up to 37.5 km
Analysis variables Wind, potential temperature, surface pressure, pseudo-relative humidity, soil

temperature and soil volumetric water content
Observations (as of 31
March 2022)

SYNOP, SHIP, BUOY, TEMP, PILOT, Wind Profiler, Weather Doppler radar
(radial velocity, reflectivity), AIREP, AMDAR, Typhoon Bogus; AMVs
from Himawari-8; ocean surface wind from Metop-[B, C]/ASCAT; radiances
from NOAA-15/AMSU-A, NOAA-[18, 19]/ATOVS, Metop-[B, C]/ATOVS,
Aqua/AMSU-A, DMSP-F[17, 18]/SSMIS, FY-3C/MWHS2, GCOM-
W/AMSR2, GPM-core/GMI and Metop-[B, C]/IASI; clear sky radiances
from the water vapor channels (WV-CSRs) of Himawari-8; Radar/Raingauge-
Analyzed Precipitation; precipitation retrievals from DMSP-F[17, 18]/SSMIS,
GCOM-W/AMSR2 and GPM-core/GMI; GPM-core/DPR; GNSS RO refractiv-
ity data from Metop-[B, C]/GRAS, TerraSAR-X/IGOR and TanDEM-X/IGOR;
Total Precipitable Water Vapor from ground-based and shipborne GNSS

Assimilation window 3 hours
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Table 2.1.3: Specifications of the Local Analysis (LA)
Analysis time 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22 and 23 UTC
Analysis scheme The three-hour analysis cycle repeats hourly assimilation with hybrid 3D-Var

and one-hour forecasts
Data cut-off time 30 minutes for analysis at 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20, 21, 22 and 23 UTC
First guess Initial fields produced by the latest MSM
Domain configuration Japan and its surrounding area

Lambert projection: 5 km at 60◦N and 30◦N, 633 × 521
Grid point (1, 1) is at the northwest corner of the domain.
Grid point (449, 361) is at 140◦E, 30◦N

Vertical coordinate z-z⋆ hybrid
Vertical levels 48 levels up to 21.8 km
Analysis variables Wind, potential temperature, surface pressure, pseudo-relative humidity, skin

temperature, ground temperature and soil moisture
Observations (as of 31
March 2022)

SYNOP, SHIP, BUOY, AMeDAS, TEMP, PILOT, Wind Profiler, Weather
Doppler radar (radial velocity, reflectivity), AIREP, AMDAR; AMVs from
Himawari-8; radiances from NOAA-15/AMSU-A, NOAA-[18, 19]/ATOVS,
Metop-[B, C]/ATOVS, Aqua/AMSU-A, DMSP-F[17, 18]/SSMIS, FY-
3C/MWHS-2, GCOM-W/AMSR2, GPM-core/GMI and Metop-[B, C]/IASI;
clear sky radiances from the water vapor channels (WV-CSRs) of Himawari-8;
soil moisture from GCOM-W/AMSR2 and Metop-B/ASCAT; Total Precipitable
Water Vapor from ground-based GNSS
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Figure 2.1.2: Main flow of JMA data assimilation systems. The first-guess and boundary conditions for Local
Analysis are obtained from the latest MSM output.
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2.2 Observation Data

2.2.1 Summary of Observation Data Used in Analysis
A variety of observations are utilized in JMA’s current NWP systems. Table 2.2.1 summarizes the types used
and the input parameters for the objective analysis systems, as of 31 March, 2022. Additional information on
each observation type is provided in the following subsection.

2.2.2 Supplemental Information for Used Observation
2.2.2.1 SYNOP

SYNOP is a numerical code used for reporting surface observations at land stations. About 27,000 reports are
produced every six hours.

2.2.2.2 AMeDAS

AMeDAS (the Automated Meteorological Data Acquisition System) is a JMA land surface automated network
to observe near surface temperature and wind at about 930 stations in Japan at 10 minute intervals. JMA is
proceeding with a plan for an upgrade of AMeDAS stations to attach humidity sensors up to 2024. Humidity
observations started at 54 AMeDAS stations in FY 2020 and 103 stations newly added in FY 2021.

2.2.2.3 METAR

METAR is a numerical code used for reporting aerodrome weather information. Around 45,000 reports are
produced every six hours.

2.2.2.4 SHIP

SHIP is a numerical code used for reporting surface observations performed at sea stations such as ships, oil
rigs and moored buoys anchored at fixed locations. Around 8,000 reports are produced every six hours.

2.2.2.5 BUOY

BUOY is a numerical code used for reporting surface observations performed by drifting buoys. Around 14,000
reports are produced every six hours.

2.2.2.6 TEMP

TEMP is a numerical code used for reporting upper-level pressure, temperature, humidity and wind observa-
tions performed by radiosondes. Upper air observations are usually taken at the same time each day (00 and/or
12 UTC). Around 590 reports are produced at these times respectively.

2.2.2.7 PILOT

PILOT is a numerical code used for reporting upper-level wind observations performed by rawins or pilot
balloons. Around 230, 210 and 70 reports are produced at 00, 12 and 06/18 UTC, respectively.

2.2.2.8 Aircraft

Aircraft observations are reported via Aircraft Report (AIREP) and Aircraft Meteorological Data Relay (AM-
DAR). While vertical profile data can be obtained at the vicinity of airports, only flight level data can be
collected along the other airways. The numerous reports received from the U.S. are thinned to 1/50th over the
continental U.S. in analysis pre-processing. Even after this processing, 55,000 - 70,000 reports are produced
every six hours covering areas around the world. Aircraft data availability is improving from the reduced
volume caused by the COVID-19 pandemic that began around March 2020.
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Table 2.2.1: Summary of the observation types and parameters used in objective analysis. Third column: P:
surface pressure; u: zonal wind; v: meridional wind; T : temperature; Rh: relative humidity; TB: radiance in
brightness temperature; R1: precipitation amount; Pwv: precipitable water vapor;Vr: radial velocity, S mc: soil
moisture content, S d: snow depth. Fourth column: GA: global analysis; MA: meso-scale analysis; LA: local
analysis.

Observation type (or code
name used for reporting
observation)

Brief description Parameters used
in analysis

Analysis type which
observations are used

SYNOP Land surface observations from world weather stations P, u, v,T,Rh, S d GA,MA, LA

AMeDAS Land surface automated observation network in Japan u, v,T LA

METAR Routine weather reports from aerodromes P,T,Rh GA

SHIP Sea surface observations from ships, oil rigs and moored buoys P, u, v,T,Rh GA,MA, LA

BUOY Sea surface observations from drifting buoys P, u, v,T,Rh GA,MA, LA

TEMP Upper-air observations from radiosondes P, u, v,T,Rh GA,MA, LA

PILOT Upper-air wind observations from rawins or pilot balloons u, v GA,MA, LA

Aircraft Upper-air observations from aircraft (mainly commercial) u, v,T GA,MA, LA

Wind Profiler Upper-air wind profile observations from Japan, Hong Kong
and Europe

u, v GA,MA, LA

AMV Atmospheric motion vector (AMV) wind data from geosta-
tionary (GEO) satellites, low earth orbit (LEO) satellites and
a combination of LEO and GEO

u, v GA,MA, LA

Scatterometer Ocean surface wind vector data from scatterometers on LEO
satellites

u, v GA,MA

MW Sounder Radiance data from microwave (MW) sounders on LEO satel-
lites

TB GA,MA, LA

MW Imager Radiance data from MW imagers on LEO satellites and precip-
itation amounts estimated from MW imager radiance data

TB,R1(MA only) GA,MA, LA

CSR Clear sky radiance (CSR) data from water vapor channels on
GEO satellite infrared imagers

TB GA,MA, LA

Hyperspectral IR Sounder Radiance data from infrared(IR) sounders on polar orbiting
satellites

TB GA

GNSS-RO Bending angle and refractivity profile data retrieved from radio
occultation (RO) measurements of global navigation satellite
system (GNSS) receivers on LEO satellites

Bending Angle
Refractivity

GA(Bending Angle),
MA(Refractivity)

Ground-based GNSS Zenith total delay (ZTD) data and precipitable water vapor
(PWV) data estimated from ground-based GNSS receivers

ZT D,Pwv GA(ZT D),
MA, LA(Pwv)

Shipborne GNSS ZTD and PWV data estimated from shipborne GNSS receivers Pwv MA

Radar Reflectivity Relative humidity data estimated using 3-dimensional reflec-
tivity data from JMA weather (Doppler) radars and Dual-
frequency Precipitation Radar (DPR) onboard GPM-core satel-
lite.

Rh MA, LA

Radial Velocity Radial velocity data from JMA weather Doppler radars
(WDRs) and Doppler radars for airport weather (DRAWs)

Vr MA, LA

R/A Radar estimated precipitation amounts calibrated using
AMeDAS raingauge network data

R1 MA

Soil Moisture Contents Soil moisture data retrieved from microwave imager radiances
and microwave scatterometer observations

S mc LA

Typhoon Bogus See Section 2.4. P, u, v GA,MA
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2.2.2.9 Wind Profiler

Upper air wind speed and direction are monitored by wind profilers on the ground. A total of 33 wind profilers
operated by JMA produce data every 10 minutes. The specifications are detailed in Ishihara et al. (2006). Wind
profiler data from Europe and Hong Kong are also available.

2.2.2.10 AMVs

Atmospheric motion vector (AMV) wind data are derived by tracing the movement of cloud or water vapor pat-
terns in successive satellite images. AMVs from four geostationary (GEO) satellites (Meteosat-8, -11, GOES-
16, -17 and Himawari-8), low earth orbit (LEO) satellites (Terra, Aqua, NOAA and Metop) and LEOGEO-
AMVs are used. LEOGEO-AMV data are derived using imagery from a combination of polar-orbiting and
geostationary satellites for 60◦N and 60◦S latitude areas. AMVs from GEO satellites cover 60◦N − 60◦S and
those from polar-orbiting satellites cover polar regions (i.e., latitudes higher than 60◦).

2.2.2.11 Scatterometers

Ocean surface wind vectors from scatterometers polar-orbiting satellites are used. Data from ASCAT (the
advanced scatterometer) onboard Europe’s Metop-B, -C polar-orbiting satellites are currently utilized.

2.2.2.12 MW Sounders

Radiance data from the following microwave (MW) sounders are used; AMSU-A (Advance Microwave Sound-
ing Unit A) on NOAA-15, -18, -19, Metop-B and -C, MHS (Microwave Humidity Sounder) units on NOAA-
19, Metop-B, -C, ATMS (Advanced Technology Microwave Sounder) on Suomi-NPP (Suomi National Polar-
orbiting Partnership) and NOAA-20, and MWHS-2 (Microwave Humidity Sounder 2) on FY-3C. AMSU-A is
a temperature sounder primary measuring atmospheric temperature profiles. MHS and MWHS-2 are humidity
sounders primary measuring middle to upper tropospheric humidity profiles. ATMS has temperature and hu-
midity sounding channels. In meso-scale and local analysis, their radiance data are assimilated under clear-sky
conditions (not affected by cloud/rain). In global analysis, MHS, ATMS (humidity channels) and MWHS-2
radiances are assimilated under all-sky conditions and the other MW sounders’ radiances are assimilated under
clear-sky conditions.

2.2.2.13 MW Imagers

Radiances from the following MW imagers are used; AMSR2 (Advanced Microwave Scanning Radiometer 2)
on GCOM-W (Global Change Observation Mission 1st - Water), SSMIS (Special Sensor Microwave Imager
Sounder) on DMSP (Defense Meteorological Satellite Program) -F17, -F18 and GMI (GPM (Global Precipita-
tion Measurement mission) Microwave Imager) on GPM. Their radiances are sensitive to water vapor amounts
in the lower troposphere. They are assimilated under all-sky conditions in global analysis, and assimilated
under clear-sky conditions in meso-scale and local analysis. Precipitation amounts estimated from radiances
using the MSC method (Takeuchi and Kurino 1997) are also used in meso-scale analysis. Radiances from
AMSR2, SSMIS are used for snow-cover product as well (see Subsection 2.8.1).

2.2.2.14 CSR

Clear sky radiance (CSR) is a product providing averaged radiance over cloud-free pixels in GEO satellite
imagers. CSR data from four GEO satellites (Meteosat-8, -11, GOES-16, -17 and Himawari-8) are used.
CSR data of water vapor channels/bands which are sensitive to water vapor amounts in the upper and middle
troposphere are used.
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2.2.2.15 Hyperspectral IR Sounders

Radiances under clear-sky conditions from hyperspectral IR sounders are used. The data adopted are from IASI
on Metop and CrIS on Suomi-NPP and NOAA-20. Channels located within a CO2 absorption band sensitive
to temperature are used.

2.2.2.16 GNSS-RO

GNSS-RO (Global Navigation Satellite Systems - Radio Occultation) is a technique for measuring atmospheric
profiles. With this approach, a set of atmospheric time delay data of GNSS radio signals received by a LEO
satellite is obtained during each radio occultation event. Since the delay is a result of atmospheric radio re-
fraction along the propagation path of the signal, the vertical profiles of refractivity (or the bending angle)
of the atmosphere at a tangent point can be estimated from the delay data set. As refractivity is a function
of temperature, humidity and pressure, it can be used to determine the profiles of these properties. The cur-
rently used LEO satellites and their GNSS receivers are IGOR (Integrated GPS Occultation Receiver) onboard
TerraSAR-X and TanDEM-X, GRAS (GNSS Receiver for Atmospheric Sounding) onboard Metop-B.

2.2.2.17 Ground-based GNSS

Ground-based GNSS data are provided from atmospheric time delays of GNSS radio signals collected by
ground-based GNSS receivers. JMA uses ground-based GNSS data collected from the global network along
with GEONET GNSS receiver data (Ishikawa 2010). GEONET is a ground-based GNSS receiver network
operated by the Geospatial Information Authority in Japan using around 1,300 receivers located throughout
the country. GNSS-ZTD (GNSS - zenith total delay) data are estimated by averaging the delays of multiple
GNSS satellite signals monitored using a single receiver, and are used in global analysis. GNSS-PWV (GNSS
- Precipitable Water Vapor) data based on analysis of GEONET GNSS-ZTD data are used in meso-scale and
local analysis.

2.2.2.18 Shipborne GNSS

Shipborne GNSS data are provided every 10 minutes from two JMA observation vessels and four Japan Coast
Guard vessels (as of March 2021). Shipborne GNSS-derived precipitable water vapor (PWV) data (Shoji et al.
2017) are used in meso-scale analysis. One JMA vessel mission is to conduct targeted observations to improve
forecast accuracy for heavy rainfall in NWP during Japan’s rainy season.

2.2.2.19 Radar Reflectivity

A total of 20 C-band weather radars with Doppler functionality are operated by JMA, which is proceeding with
plans to upgrade these units to C-band dual-polarization solid-state weather radar. Eight of the twenty radars
had been upgraded by March 2022. Three-dimensional reflectivity data are obtained every five minutes, and
relative humidity profiles are estimated from reflectivity data and NWP grid point values using a technique
based on Bayes’ theorem (Caumont et al. 2010). Relative humidity data are produced for areas within a 200
km radius of each radar site below freezing level and used in meso-scale and local analysis. Relative humidity
profiles estimated from reflectivity data collected using the Dual-frequency Precipitation Radar (DPR) on the
GPM-core satellite are used in meso-scale analysis.

2.2.2.20 Radial Velocity of Doppler Radar

A total of twenty C-band weather Doppler Radars (WDRs) and nine Doppler Radars for Airport Weather
(DRAWs) are operated by JMA. As referred in Subsection 2.2.2.19, eight of the twenty WDRs were upgraded
until March 2022. Three-dimensional radial velocity data are produced every five minutes within a 150 km ra-
dius for WDRs and every six minutes within a 120 km radius for DRAWs. The range and azimuthal resolutions
are 250 m and 0.703◦ deg, respectively.
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2.2.2.21 Analysis of Precipitation(R/A)

R/A is a product providing composite precipitation data produced by JMA. These data are cumulative precipi-
tation estimations based on weather radar data with a Z-R relationship (Z = 200R1.6) calibrated using AMeDAS
raingauge data in real time. The details are found in Subsection 4.4.1.

2.2.2.22 Soil Moisture Content

Soil moisture content data estimated from microwave imager (AMSR2/GCOM-W) radiances and microwave
scatterometer (ASCAT/Metop-B) observations are used for areas over land in local analysis.

2.3 Quality Control and Related Procedures
Quality control (QC) is a series of procedures by which “bad” observations are screened out. It is a vital
component of the objective analysis system because observations sometimes include large errors and erroneous
data can significantly impair the quality of atmospheric analysis, leading to low levels of forecast skill. QC
procedures in JMA’s objective analysis systems are described in the following subsections.

2.3.1 SYNOP, AMeDAS, METAR, SHIP, BUOY, TEMP, PILOT, Aircraft and Wind
Profilers

Direct observations (i.e. SYNOP, AMeDAS, METAR, SHIP, BUOY, TEMP, PILOT and aircraft) and wind
profilers measure prognostic variables in NWP such as pressure, temperature, wind and humidity. The QC
system for these observations consists of internal and external QCs.

2.3.1.1 Internal QC

Internal QC involves procedures to check and correct observation values using collocated data in reports and
several external lists or tables. The checks are outlined below.

1. Blacklist check: The blacklist is a list of problematic stations or data, and is prepared in advance via
non-real-time QC (see Section 2.9). Blacklisted observations are rejected in this step.

2. Climatological check: Climatological reasonability is checked in this step. The criteria are defined in
advance based on WMO (1993).

3. Trajectory check: Consistency at consecutive locations is checked for reports from moving stations such
as SHIP, BUOY and aircraft. The movement velocity and direction are checked in this step and checking
is also performed to ensure that SHIP and BUOY locations are in the ocean.

4. Inter-element consistency check: The temporal continuity of consecutive reports from surface stations is
checked along with consistency among observation elements within the report.

5. Vertical consistency check: Vertical consistency is checked in TEMP and PILOT data. The check items
are (1) instrument icing, (2) temperature lapse rate, (3) hydrostatic relationship, (4) consistency among
data at standard pressure levels and those at significant levels and (5) vertical wind shear.

6. Bias correction: Bias correction is applied to TEMP data reported without radiative heating correction or
with apparent systematic biases. Correction constants are determined from one-month statistics for the
previous month. Kalman Filter is utilized to correct aircraft temperature biases in global analysis. Bias
correction values are updated at each analysis time (00, 06, 12, 18 UTC) and calculated independent of
analysis using a covariance of the first-guess departure separately for each aircraft, each vertical level
and each flight phase (ascent, cruising and descent). In mesoscale analysis, aircraft temperature biases
are corrected for each aircraft and vertical level using bias correction values statistically calculated using
the first-guess departure from global analysis for the previous month.
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2.3.1.2 External QC

External QC involves procedures to check observation values with comparison to (external) first guess and
neighboring observations. The checks are outlined below.

1. Gross error check: The departure (D ≡ O − B) of the observed value (O) from the first guess (B)
is calculated for all observations. The absolute value of D is compared with the tolerance limits CP

(the pass criterion) and CR (the failure criterion). Data satisfying |D| ≤ CP pass the QC, and those
characterized by |D| > CR are rejected. Data characterized by CP < |D| ≤ CR are regarded as suspect and
sent for spatial consistency checking.

2. Spatial consistency check: The departure D in suspect observation data is compared with departures
interpolated using the optimum interpolation method (DOI) with neighboring observations. The absolute
difference of D and DOI is compared with the tolerance limit CS (the criterion for suspect) for final
judgment and the data satisfying |D − DOI | ≤ CS are accepted.

Here, the tolerance limits CP, CR, and CS vary with local atmospheric conditions in first guess fields.
The limits are made small if the time tendency and horizontal gradient are small in the fields, and vice
versa. This scheme is called Dynamic QC (Onogi 1998).

3. Duplication check: Duplication is often found in observation reports with data obtained through dif-
ferent communication lines. The most appropriate report is picked out from among duplicates after
performance of the above checks in consideration of status.

2.3.2 AMVs
Blacklisted AMVs (Table 2.3.1) are rejected in the first step, as are those with low quality indicators (QI,
Holmlund 1998). QI thresholds are defined for each satellite, domain, vertical level and image type. Thinning
is then performed based on a distance of 200 km. Around Japan region from 120◦E to 150◦E and from 20◦N
to 45◦N, super-observation (SPOB) data are derived from Himawari-8 AMVs to arrange at 100km intervals.
(Yamashita 2016). GOES-17 AMV data observed from 11 to 16 UTC are rejected throughout the year due
to low quality influenced by issues with the unit’s cooling system. Climatological checking (see Subsection
2.3.1.1) and external QC (see Subsection 2.3.1.2) are then performed. The details of QC and detailed settings
for AMVs are given on the NWP SAF AMV monitoring page1.

2.3.3 Scatterometers
Level 2 ocean surface wind products are used in global analysis and meso-scale analysis. Low quality data
located over land or sea ice areas are rejected at the first step. The most likely wind directions are then selected
from the inherent ambiguity wind directions in scatterometer measurements using both the NWP nudging
technique and the median filter technique. The next step is gross error checking (see Subsection 2.3.1.2). In
this step, correct wind data are occasionally rejected in and around severe weather systems such as cyclones
and fronts where the wind direction and speed vary sharply. To avoid such undesirable rejection, specialized
quality control named Group-QC is applied. In this step, spatial consistency among wind vectors is checked in
terms of smooth transition in wind direction and speed. Data that pass Group-QC are excluded from rejection
in gross error checking. The details of scatterometer QC are given on the NWP SAF scatterometer monitoring
page2.

2.3.4 Satellite Radiance
Satellite radiance data are used in global, meso-scale and local analysis as a form of brightness temperature.
The RTTOV-10.2 fast radiative transfer model (Saunders et al. 2012) is employed for radiance assimilation.

1https://nwp-saf.eumetsat.int/site/amv-usage-in-the-jma-nwp-model/
2https://nwp-saf.eumetsat.int/site/monitoring/winds-quality-evaluation/scatterometer-mon/use-in-nwp/

jmamodel/
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Table 2.3.1: Summary of blacklist areas for AMVs. IR: infrared; WV: water vapor; CSWV: clear sky water
vapor; NH: Northern Hemisphere; SH: Southern Hemisphere; Polar AMV: AMVs from polar-orbiting satel-
lites; GEO AMV: AMVs from geostationary satellites except for Himawari-8; LEOGEO AMV: AMVs from a
combination of low earth orbiting and geostationary satellites.

Kind Blacklisting area
Polar AMV (IR) at NH above 300 hPa or below 900 hPa
Polar AMV (WV/CSWV) at NH above 300 hPa or below 550 hPa
Polar AMV (IR/WV) at SH above 300 hPa or below 550 hPa
Polar AMV (CSWV) at SH above 350 hPa or below 550 hPa
Polar AMV (All) poleward of 88◦N or 88◦S
GEO AMV (All) above 175 hPa or below 975 hPa, and between 400 hPa and 825 hPa
GEO AMV (IR) above 275 hPa at poleward of 20◦N or 20◦S
GEO AMV (WV) above 225 hPa at poleward of 20◦N or 20◦S
LEOGEO AMV above 300 hPa or below 900 hPa
LEOGEO AMV between 600 hPa and 640 hPa
LEOGEO AMV at poleward of 70◦N or 70◦S
LEOGEO AMV between 640 hPa and 900 hPa at poleward of 60◦S
Himawari-8 (IR/VIS) below 700 hPa over land
Meteosat-8 (IR/VIS) below 700 hPa over land

Table 2.3.2: Summary of microwave sounder channel sets used for each condition. In meso-scale and local
analysis, AMSU-A Ch. are used up to 11 and 8, respectively.

AMSU-A MHS ATMS
Clear sky ocean Ch. 4–14 Ch. 3–5 Ch. 6–9

Clear sky land/coast/sea-ice Ch. 6–14 Ch. 3–5 Ch. 7–9
Cloudy ocean Ch. 7–14 Ch. 3–5 Ch. 8–9
Rainy ocean Ch. 9–14 n/a n/a

The common QC procedures for radiance data are blacklist checking, thinning and external QC. The black-
list specifies problematic instruments, and is made in advance based on non-real-time QC (see Section 2.9).
Blacklisted data are rejected in the first step. In the next step, data are thinned spatially in each time slot of
the assimilation window (approximately one hour) to reduce computational costs. The subsequent external
QC includes reduction of instrumental scan biases (except for CSR), cloud/rain contamination checking, lo-
cation checking, channel selection and gross error checking (see Subsection 2.3.1.2). Data passing this QC
are thinned again to reduce the observation error correlation, and the thinned data are output for use in data
assimilation systems. Variational bias correction (VarBC, Derber and Wu 1998; Dee 2004) is used to reduce
air-mass dependent biases. VarBC is an adaptive bias correction scheme in which a linear regression formula
representing biases is embedded in the observation operator and regression coefficients are set as analysis vari-
ables. The formulations are described in Subsection 2.5.7.4. The satellite radiance data used in the analyses
are from MW sounders, MW imagers, CSR and hyperspectral IR sounders (GA only). The specific procedures
for each data type are described in the following subsections.

2.3.4.1 MW sounders

For radiances assimilated under clear-sky conditions (not affected by cloud/rain), the sets of channels used are
defined in advance according to individual surface and atmospheric conditions at the observation point (Table
2.3.2). In global analysis, microwave humidity sounders’ radiances (183 GHz) are assimilated under all-sky
conditions by assigning observation errors depending on cloud amount (see Subsection 2.5.7.2).
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2.3.4.2 MW imagers

Vertically polarized-channel radiances are assimilated over ice-free ocean areas. Radiances are assimilated
under all-sky conditions in global analysis (see Subsection 2.5.7.2), and assimilated under clear-sky conditions
in meso-scale and local analysis. In meso-scale analysis, precipitation retrieval is also assimilated for areas
over the ocean surrounding Japan. Precipitation amount estimations are resampled onto inner model grids with
spatial smoothing.

2.3.4.3 CSR

CSR data are horizontally thinned to divisions of 220 km for global analysis and 45 km for meso-scale analysis
and local analysis. Hourly (or temporally thinned to the hourly slots) CSR data are used in these analysis
types. Values with a low percentage of clear pixels and a large standard deviation of brightness temperature
are excluded due to their low representation of the area. CSR data from high-altitude areas (above 4,000 m)
are not used. In calculation with RTTOV-10.2, emissivity atlas data and retrieved surface temperatures from
window channel radiance are used for areas over land.

2.3.4.4 Hyperspectral IR sounders

Clear sky radiance data from hyperspectral IR sounders are used in global analysis. Data are horizontally
thinned to divisions of 200 km, and cloud screening with estimation of cloud top height are applied in quality
control. The related methods are based on the CO2 slicing approach (Eyre and Menzel 1989).

2.3.5 GNSS-RO

Bending angle data for altitudes up to 60 km are used in global analysis with 500-m vertical intervals. Refrac-
tivity data are used in meso-scale analysis. No bias correction is applied for GNSS-RO data.

2.3.6 Ground-based GNSS

ZTD data are used in global analysis. Stations at an elevation higher than 5,000 m are not used, and those
from which the absolute difference of elevation to the model surface exceeds 300 m are excluded. GNSS-ZTD
values smaller than 1,000 mm or larger than 3,000 mm are rejected in climatological checking. Data with
absolute differences of more than 50 mm from first guess are regarded as suspect. If the absolute difference
of departure D of suspect data from averaged D of vicinity data exceeds 50 mm, the ZTD data are not used.
PWV data are used in meso-scale and local analysis. As Japan is characterized by steep mountainous terrain,
large differences are found between actual ground surface elevations and model surface elevations especially
in mountainous areas. In meso-scale analysis, stations at an elevation of 700 m or more above mean sea level
are not used, and those from which the absolute difference of elevation to the model surface exceeds 200 m
are excluded. GNSS-PWV values smaller than 1 mm or larger than 90 mm are rejected in climatological
checking. The first guess PWV is then interpolated or extrapolated to the actual terrain surface and compared
to the GNSS-PWV. The criterion CP, CR and CS referred in Subsection 2.3.1.2 are set to 5 mm, 8 mm and 5
mm respectively for GNSS-PWV. As there is a dense GNSS-PWV network for the analysis systems, data are
thinned by 30 km for meso-scale analysis and 20 km for local analysis.

2.3.7 Shipborne-GNSS

As referred to in Subsection 2.2.2.17 and Subsection 2.3.6, ground-based GNSS-PWV data have been used in
mesoscale analysis since 2009. Quality control and data thinning processing for shipborne GNSS-PWV data
are the same as for ground-based GNSS-PWV data.
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2.3.8 Radar Reflectivity
To assimilate radar reflectivity data in meso-scale analysis and local analysis, an indirect assimilation technique
called 1D+4DVAR (Ikuta and Honda 2011) is employed. This approach is based on Caumont et al. (2010). In
1D+4DVAR, radar reflectivity data are used to retrieve relative humidity (RH) values, which are assimilated as
conventional observation data in 4D-Var. In this system, only retrieved RH values from below the melting layer
are used because it is known that reflectivity inappropriately simulated in the ice phase with the operational
MSM hydrometeor forecast, causing large biases in RH retrievals. In addition, data from around a height of
2000 m above sea level are also not used since these data are used for making R/A and are already assimilated
in meso-scale analysis in another form (surface rainfall, see Subsection 2.3.10). For operation, reflectivity data
from the JMA C-band radar network are used. Reflectivity data from space-based Dual frequency Precipitation
Radar are used to retrieve RH values and assimilated in meso-scale analysis.

2.3.9 Radial Velocity of Doppler Radar
Hourly radial velocity data from WDRs and DRAWs are used in meso-scale analysis and local analysis. In
pre-processing, the data are resampled into a 5 km range resolution and a 5.625◦ azimuthal resolution. The
resampled data are checked with respect to the number of data sampled, radial velocity variance and the differ-
ence between maximum and minimum velocity. High elevation angle data (≥ 5.9◦) are not used to avoid the
contamination of precipitation velocity values, and those from areas close to radar site (< 10 km) are not used
to avoid the influence of back scatter noise. Data showing wind speeds of less than 5 m/s are also not used to
avoid ground clutter contamination.

2.3.10 R/A
Hourly R/A data are assimilated in meso-scale analysis. After quality control, R/A data (1 km grid) are resam-
pled into inner-model grid boxes (15 km) and input for this type of analysis.

2.3.11 Soil Moisture Content
Variable transformation using the cumulative distribution function (CDF) matching method is applied for soil
moisture content (SMC). The CDF matching method involves fitting the probability density function (PDF)
of observation to the PDF of model variables. This pre-conditioning via CDF matching helps to minimize
cost function because the innovation of SMC becomes Gaussian after the CDF matching. A variational bias
correction method is used for SMC in local analysis.

2.3.12 CDA: Feedback Data Base
All information concerning the quality of observational data obtained during the quality control procedure is
archived in the Comprehensive Database for Assimilation (CDA) format, which is extensively used for both
real-time and non real-time data monitoring activities. All information contained in the CDA is managed in
the form of integer two byte data. The database format is designed for flexible use so that information on
observations can be archived easily, and is also user-friendly to facilitate data retrieval.

2.4 Typhoon Bogussing
For tropical cyclones (TCs) over the western North Pacific, typhoon bogus data are generated as a form of
pseudo-observation information and assimilated for realistic TC structure analysis based on model resolutions.
The data consist of pressures values at the mean sea level (Pmsl) and vertical profiles of the wind (Wpr f ) around
TCs. Wind profiles are placed at 850 and 300 hPa in global analysis, 1000, 925, 850, 800, 700, 600, 500, 400
and 300 hPa in meso-scale analysis. The generated bogus has an axially asymmetric structure in types of the
analysis.

22



Firstly, symmetric bogus profiles are generated automatically from central pressure values and the 15m/s
wind speed radius of a TC (R15) as analyzed by forecasters. The surface pressure profile is defined using Fujita’s
formula (Fujita 1952). Gradient wind balance is assumed for calculation of surface pressure profile meeting
the requirements at hand from the wind speed at the particular radius of R15. Upper geopotential profiles are
defined using an empirical formula based on the TC analysis described by Frank (1977). It is assumed that the
temperature anomaly has its maximum at 250 hPa. The wind field on each level is derived from geopotential
height profiles with gradient wind balance. The surface wind field is also derived from gradient wind balance,
but is modified to include the effects of surface friction.

Secondly, asymmetric components are retrieved from the first guess fields and added to the symmetric
bogus profile to generate the final asymmetric bogus structure. When the target area of bogussing is across the
lateral boundary in the meso-scale analysis, asymmetric components are not added.

Finally, pseudo-observation data are generated from the resulting bogus structure at the TC center analyzed
(Pmsl), the TC center of the first guess (Pmsl), and several points surrounding the TC center analyzed (Pmsl and
Wpr f ). The configuration for the surrounding point distribution is adaptable to the typhoon track error of the
first guess.

2.5 Global Analysis

2.5.1 Introduction
A hybrid four-dimensional variational (4D-Var) data assimilation method using a Local Ensemble Transform
Kalman Filter (LETKF, Hunt et al. 2007) is employed in analysis of the atmospheric state for the Global Spec-
tral Model (GSM), and is performed at 00, 06, 12, 18 UTC. An early analysis with a short cut-off time is
performed to prepare initial conditions for operational forecasting, and a cycle analysis with a long cut-off time
is performed to maintain the quality of the global data assimilation system. An incremental method (Courtier
et al. 1994) is adopted to improve computational efficiency using outer-loop iterations, with increments eval-
uated at a lower (inner) resolution (TL319L128: grid roughly equivalent to 0.5625◦ (55 km) and up to 0.01
hPa). The increment is then interpolated and used to update the model trajectory at the original resolution
(TL959L128: grid roughly equivalent to 0.1875◦ (20 km)), and the updated trajectory is used to refine the cost
function for subsequent inner-loop iterations. Specification of the JMA Global Analysis system is summarized
in Section 2.1.

The three-dimensional variational (3D-Var) data assimilation system was operated as the first operational
variational analysis system for GSM with the inner resolution of T106L40 (grid roughly equivalent to 110
km and up to 0.4 hPa) in September 2001 (Takeuchi and Tsuyuki 2002). In February 2005, the 4D-Var data
assimilation system was operated with the inner resolution of T63L40 (grid roughly equivalent to 180 km)
(Kadowaki 2005). The inner resolution was upgraded to T106L40 in March 2006 (Narui 2006), T159L60 (grid
roughly equivalent to 75 km and up to 0.1 hPa) in November 2007, TL319L60 in October 2011 (Kadowaki and
Yoshimoto 2012), TL319L100 in March 2014. The hybrid 4D-Var data assimilation system using the LETKF
with two outer-loop iterations was operated in December 2019 (Kadowaki et al. 2020). In March 2021, the
number of ensemble members in LETKF was increased from 50 to 100, weighting for ensemble background
error covariances was increased from 0.15 to 0.5 (Yokota et al. 2021) and the inner resolution was upgraded to
TL319L128.

2.5.2 Incremental 4D-Var Formulation and Procedural Description
In 4D-Var, 3–9-hour forecasts from the GSM are used as a first guess (background), and all observations
passed Quality Control (QC) from within three hours of analysis time (6-hour) are organized in hourly time
slots as defined in Figure 2.5.1. The cost function is used to measure the distance between the model trajectory
and observations over a six-hour assimilation window. In an incremental method, the analysis increment is
evaluated at a low-resolution, and determined by minimization of the cost function in the inner-loop iterations.
The low-resolution analysis increment is interpolated to the high-resolution analysis increment. Adding this
analysis increment to the guess field produces high-resolution analysis.
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In the outer-loop iterations, procedures mentioned above are iterated as in Figure 2.5.2 :

1. The GSM forecast from “latest” high-resolution analysis is performed to update the guess field (or model
trajectory).

2. QC processes of observations are reperformed.

3. The cost function is updated.

4. The low-resolution analysis increment is updated by minimization of the cost function in the inner-loop
iterations and used to update the high-resolution analysis.

Analysis time Representative time

09 10 11 12 13 14 15UTC 

Assimilation window

Slot 1.0h 1.5h 0.5h 

Figure 2.5.1: Schematic diagram of time slots for the analysis time 12 UTC. The black circles indicate the
representative time of each time slot.
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Figure 2.5.2: Flow of 4D-Var operation for the 12 UTC analysis time

In the j(≧1)-th outer-loop, the cost function J( j) to determine the j-th low-resolution analysis increment
update ∆x( j)

i is defined by Eq. (2.5.1).
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where the subscript i(≧1) is the index of time slot and n is the number of time slots. ∆x( j)
0 (∆x( j)

1 ) is the low-
resolution analysis increment at the initial time before (after) initialization, ∆x( j)

i≧2 is the analysis increment
evolved according to the tangent linear (TL) model to time of slot i. MMM( j)

0 is the TL operator of the nonlin-
ear normal-mode initialization operator (Machenhauer 1977) and MMM( j)

i≧1 is the TL model of the low-resolution
nonlinear (NL) forecast model M( j)

i as detailed in Subsection 2.5.3 for integration from time of slot i to that
of slot i + 1. RRR( j)

i denotes the covariance matrix of observation errors at time of slot i, and BBB is the covariance
matrix of background errors as detailed in Subsection 2.5.5 and Subsection 2.5.7. HHH( j)

i is the TL operator of
the observation operator H( j)

i . The innovation vector is given for each assimilation slot by d( j)
i = y( j)

i − Hix
( j)
i ,

where x( j)
i is the j-th guess field evolved using the high-resolution NL model, and y( j)

i is the observation data
passed QC at time of slot i. J( j)

C is a penalty term used to suppress gravity waves described in Subsection 2.5.4.
To minimize the cost function J( j), the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) al-

gorithm (Liu and Nocedal 1989) with Veersé’s preconditioner (Veersé et al. 2000) is applied. Here, the gradient
of the cost function ∇J is required. This is determined via the adjoint procedures of Eq. (2.5.2)–Eq. (2.5.5) as
computed in reverse time.

pn+1 = 0 (2.5.2)
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where pi is a auxiliary variable, MMM( j)
i

T
represents the adjoint (AD) model of the TL model MMM( j)

i , and HHH( j)
i

T
is the

AD operator of HHH( j)
i . Note that Eq. (2.5.2)–Eq. (2.5.5) should contain additional terms for the penalty term in

Eq. (2.5.1), which are omitted here for simplicity.

2.5.3 Inner Model
The inner NL model is based on the GSM, but many processes are based on those of the older GSM for many
reasons. In particular, moisture processes (the convection and cloud schemes) are based on those of GSM0103
(JMA 2002), mainly for the stability of inner TL model integration. Nonlinear normal-mode initialization
(Machenhauer 1977) is also added.

The inner TL model includes the following simple processes, most of which are based on the inner NL
model:

1. Initialization: To control gravity waves, the TL version of the nonlinear normal-mode initialization is
adopted.

2. Horizontal Diffusion: Horizontal diffusion is enhanced over that of the inner NL model based on Buizza
(1998).

3. Surface Turbulent Fluxes: Surface turbulent fluxes are formulated as Monin-Obukhov bulk formulae
based on the inner NL model. Sensible and latent heat flux are perturbed only over the sea.
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4. Vertical Turbulent Transports: The vertical turbulent transports of momentum, heat, and moisture are
formulated as the hybrid downgradient-type scheme based on the inner NL model (Subsection 3.2.7).
Those diffusion coefficients are not perturbed.

5. Orographic Gravity Wave Drag: The parameterization for orographic gravity wave drag consists of
two components: one for long waves (wavelength > 100 km) and the other for short waves (wavelength ≈
10 km) based on the inner NL model which is almost same as in GSM1705 (JMA 2018). The Richardson
number is not perturbed in some parts for long waves for the stability of inner TL model integration.

6. Long-wave Radiation: Long-wave radiation in the TL model is based on Mahfouf (1999). The tendency
of the perturbed temperature T ′ is given by

∂T ′

∂t
= −α g

Cp

∂

∂p

(
4F

T ′

T

)
(2.5.6)

where α = 1/{1 + (pr/p)10}, pr = 300 hPa, F represents the net radiation fluxes calculated in the inner
NL model, and g and Cp denote the gravitational constant and isobaric specific heat, respectively.

7. Clouds and Large-scale Precipitation: Clouds and large-scale precipitation are based on the inner
NL model, in which the former are prognostically determined in a way similar to that proposed by
Smith (1990). A simple statistical approach proposed by Sommeria and Deardorff (1977) is employed to
compute cloud amounts and cloud water content. The parameterization of the conversion rate from cloud
ice to precipitation follows the scheme proposed by Sundqvist (1978). These considerations are much
simplified in the TL model. The cloud fraction, the amount of falling cloud ice and the dependence on
water vapor of isobaric specific heat are not perturbed. Only certain variables are perturbed in computing
the conversion from cloud water to precipitation and the evaporation of precipitation.

8. Cumulus Convection: Cumulus convection is formulated as the prognostic Arakawa-Schubert scheme
(Arakawa and Schubert 1974; Moorthi and Suarez 1992; Randall and Pan 1993) based on the inner NL
model, but is highly simplified. Vertical wind shear and the planetary mixing length are not perturbed.
The magnitude of mass-flux perturbation is set bounds for the stability of inner TL model integration,
and as a result this model is not exactly linear.

2.5.4 Penalty Term
The penalty term, which is the third term of Eq. (2.5.1), is given by
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where NG denotes an operator used to calculate the tendency of the gravity wave mode based on Machenhauer
(1977). α is an empirically determined constant 3.0 × 10−2[s4/m2]. Although this penalty term is primarily
introduced to suppress gravity waves in the analysis increment, it is also effective in stabilizing calculation.

2.5.5 Background Term
The background term, which is the first term on the right side of Eq. (2.5.1), dominates how the difference
between observation data and the first guess is converted into correction for the first guess in the 4D-Var analysis
procedure. In the 4D-Var, the evolution of the initial background error covariances over the length of the
assimilation window is taken into account, although the initial background error covariances are climatological
and do not represent the day-to-day weather situation. One way to take into account the error of the day is to
use ensemble forecast as part of background error covariances. In JMA, the hybrid method composed of the
LETKF and the 4D-Var is employed as the operational system. Figure 2.5.3 shows a schematic diagram of the
hybrid 4D-Var using the LETKF.
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Figure 2.5.3: A schematic diagram of the hybrid 4D-Var using the LETKF.

Using the extended control variable method of Lorenc (2003), the background term in the hybrid 4D-Var
is defined by Eq. (2.5.8).
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(2.5.8)

where the subscript i and j in Eq. (2.5.1) are omitted here for simplicity. ∆x is the low-resolution analysis
increment. The subscript “cl” and “en” mean “climatological” and “ensemble”. βcl and βen are the weight of
“climatological” and “ensemble” background error covariances for making hybrid covariances. In JMA, both
βcl

2 and βen
2 are 0.5 under 50 hPa, and they are approaching to 1 and 0 above that.

Two kinds of covariance inflations are applied for the ensemble background error covariances. One is an
adaptive multiplicative covariance inflation used in the LETKF described in Subsection 2.5.6. The other is
an additional covariance inflation to make vertical profiles of horizontal global mean of standard deviation
from the ensemble covariances, consistent with those from the climatological background error covariances.
A covariance localization is also applied for the ensemble background error covariances. The localization
function is given as the Gaussian function of the distance between the analysis grid points. The localization
scale l for which the localization function is 1/

√
e is set to 800 km for wind vectors, temperature and surface

pressure and set to 400 km for specific humidity in the horizontal domain. The scale l is set to a 0.8 scale
height in the vertical domain for all variables. A detailed description of the climatological background error
covariances is provided in Subsection 2.5.5.1 - Subsection 2.5.5.5. A detailed description of the LETKF is
provided in Subsection 2.5.6.

2.5.5.1 Climatological Background Error Covariance

For the climatological background error covariances, the multivariate couplings in the analysis variables are
based on the geostrophic linear balance between mass and wind. Control variables are introduced to reduce the
correlations among the analysis variables, and additional statistical relations are considered in the algorithm.
These include the lower geostrophic balance on smaller horizontal and vertical scales, the almost complete
lack of geostrophic balance near the equator, the dependency of geostrophy on the vertical level, and the weak
coupling between divergence and vorticity as well as between divergence and mass.

The control variables are relative vorticity ∆ζ, unbalanced divergence ∆ηU , unbalanced temperature and
surface pressure (∆TU , ∆PsU), and the logarithm of specific humidity ∆ ln q in the spectral space on the model
layers. ∆ denotes deviation from the first guess and subscript U means the term of “unbalanced”. Autoco-
variances of the control variables are assumed to be homogeneous and isotropic. Correlation structures do not
depend on geographical locations, but vertical correlations do depend on horizontal scale. The unbalanced
variables ∆ηU and (∆TU , ∆PsU) are defined as
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∆ηU ≡ ∆η − P∆ϕB (∆ϕB = ∆ϕB(∆ζ)) (2.5.9)(
∆TU

∆psU

)
≡

(
∆T
∆ps

)
− Q∆ϕB − R∆ηU (2.5.10)

where P, Q, and R are regression coefficients, ∆ϕB is a modified balance mass variable derived from relative
vorticity as described in Subsection 2.5.5.2. This formulation is similar to that previously used in ECMWF
(Derber and Bouttier 1999). The regression coefficients are computed statistically using the NMC method
(Parrish and Derber 1992) with 24/48-hour forecast differences to enable estimation of the total covariances
for each total spectral coefficient.

2.5.5.2 Modified Balance Mass Variable

The geostrophic balance is well kept at mid-levels in the troposphere in the extratropics. In other areas, the
balance is weak. To incorporate consideration of these relationships, a modified balance mass variable is
introduced. The statistical relationships linking relative vorticity, divergence, temperature, and surface pressure
are calculated. First, singular value decomposition of the linear balance operator L is conducted.

∆ϕ̃B = L∆ζ = UWVT∆ζ (2.5.11)

where ∆ϕ̃B is the original balance mass variable, W is a positive semi-definite diagonal matrix, and U and V are
orthogonal matrices. The decomposed modes depend on latitude (i.e., a singular mode with a small singular
value has a large amplitude in the low latitudes). Each wave number component of L is denoted as

∆ϕ̃B
m
n = cm

n ∆ζ
m
n−1 + cm

n+1∆ζ
m
n+1 ((n, m) , (0, 0), n = m, m + 1, . . . , N),

cm
n = −

2Ωa2

n2

√
n2 − m2

4n2 − 1
, cm

N+1 = 0, ∆ϕ̃B
0
0 = 0

(2.5.12)

here Ω is the angular velocity of the earth, a is the earth’s radius, n is the total wavenumber, and m is the zonal
wavenumber. Second, the coefficient of regression between mass variable ∆Φ 3 (as derived from temperature
and surface pressure) and balance mass variable is calculated as follows

D j =

⟨ (
UT∆Φ

)m

j

(
UT∆ϕ̃B

)m

j

⟩
⟨ [(

UT∆ϕ̃B

)m

j

]2 ⟩ (2.5.13)

where ⟨ ⟩ denotes statistical, zonal-wavenumber, and vertical-level mean, D j denotes a positive definite diago-
nal matrix, and j denotes an index of singular vectors in latitudinal wave numbers, respectively. The regression
coefficients D j (0 − 1) indicate the extent to which geostrophic balance is satisfied. Modified balance mass
variable ∆ϕB is then constructed as follows:

∆ϕB = UDUT∆ϕ̃B = UDWVT∆ζ = L̃∆ζ (2.5.14)

Note that the modified balance operator L̃ is based on 1) conversion from the spectral space to the singular
vector space, 2) the product of the regression coefficients D, and 3) conversion from the singular vector space
to the spectral space. The correlation between the modified mass variable and the unbalanced mass variable
(i.e. ∆Φ − ∆ϕB) can be neglected in all regions including the tropics.

3The mass variable ∆Φk is defined as ∆Φk = ∆ϕk + RdT̄k∆pk/ p̄, where subscript k is the vertical level index, ∆ϕk is the geopotential
height, T̄k is the reference (global mean) temperature, p̄ is the reference (global mean) pressure at ground surface, ∆pk is the pressure, and
Rd is the dry gas constant. In the caluculation of ∆ϕk , T̄k and p̄ are also used and some approximation is done.
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2.5.5.3 Regression Coefficients for ∆ηU and (∆TU , ∆PsU)

The regression coefficient matrices P, Q, and R are calculated for each total wavenumber n as follows:
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(2.5.15)

Qn =

⟨ (
∆T m

n
∆ps

m
n

) (
∆ϕB

m
n
)T

⟩⟨
∆ϕB

m
n
(
∆ϕB

m
n
)T

⟩−1

(2.5.16)
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where ⟨ ⟩ denotes the statistical and zonal-wavenumber mean.

2.5.5.4 Background Error Covariance Matrix

The background error covariance matrices of the control variables are calculated for each total wavenumber
n, and the matrix size is equivalent to the number of vertical levels for ∆ζ, ∆ηU , and ∆ ln q or the number of
vertical levels +1 for (∆TU , ∆PsU).
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where ⟨ ⟩ denotes the statistical and zonal-wavenumber mean, and overline means complex conjugate. The
total variances of the control variables are rescaled by a factor of 0.8836.

2.5.5.5 Cholesky Decomposition of Background Error Covariance Matrix

The background error covariance matrix mentioned above is decomposed using the Cholesky decomposition.
This gives independent and normalized (i.e., preconditioned) control variables ∆ym

n as follows:
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∆ym
n ≡ L−1

n ∆xm
n (2.5.21)

where J(x)
n is a background error term for the control variable x at the total wavenumber n, Bn is a background

covariance matrix for x, and Ln is a lower triangular matrix.
In summary, normalized control variables ∆ym

n (k) are completely independent and normalized based on
background error variance. The background term of the cost function is simplified as a summation of the
square of the normalized control variables.

2.5.6 LETKF
The specifications of the LETKF approach used in the GA to provide flow-dependent background error covari-
ances are listed in Table 2.5.1.

Observation datasets assimilated in the LETKF are the same as those of GA (Table 2.1.1) except for those
of hyperspectral sounders (AIRS, IASI and CrIS).
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Table 2.5.1: Specifications of the LETKF used in GA
Data cut-off time same as in the 4D-Var
First guess 3–9-hour forecast of its own
Horizontal resolution Same as for the Inner step of the 4D-Var
Vertical resolution (model top) Same as for the 4D-Var
Ensemble size 100 members
Analysis variables Same as in the 4D-Var
Observation Same as in the 4D-Var except for AIRS, IASI and CrIS
Assimilation window 6 hours (± 3 hours of analysis time)
Covariance inflation Adaptive multiplicative covariance inflation

Initialization
Horizontal divergence adjustment based on the analysis of

surface pressure tendency (Hamrud et al. 2015)

Localization

Gaussian function. The localization scale for which the localization
function is 1/

√
e is set to 400 km in the horizontal domain

(300 km for humidity-sensitive observations), a 0.6 scale height in the vertical
domain (1.2 for surface pressure and ground-based GNSS zenith total-delay
observations) and three hours in the temporal domain. For satellite radiance
observations, the maximum of the square of the weighting function divided by its
peak value and the Gaussian function with a 0.6

√
2 scale height centered

at the peak of the weighting function is used as the vertical localization function.
Model ensemble method Stochastic physics scheme

Other characteristics
A total of 100 analyses are re-centered

so that their ensemble mean is consistent with the hybrid 4D-Var.

Observation localization is applied in the LETKF. Observation errors are multiplied by the inverse of the
localization function to give less weight to data collected farther from the analysis grid point. The localization
function is given as the Gaussian function of the distance between the analysis grid point and the observation
location. The localization scale l for which the localization function is 1/

√
e is set to 400 km in the horizontal

domain (300 km for humidity-sensitive observations), a 0.6 scale height in the vertical domain (1.2 for surface
pressure and ground-based GNSS zenith total-delay observations) and 3 hours in the temporal domain. The tail
of the localization function is set to 0 farther than 2

√
10/3l. For satellite radiance observations, the maximum

of a square of the weighting function divided by its peak value and the Gaussian function with a length scale of
0.6
√

2 scale height centered at the peak of the weighting function is used as the vertical localization function.
Multiplicative covariance inflation (Anderson 2001) is applied to first-guess (6-hour forecast from the pre-

vious analysis) ensembles. Inflation coefficients are estimated for each analysis grid point so that the following
relation (Desroziers et al. 2005) is observed using locally assimilated observations:

tr
[
dA−BdT

O−B

]
= αtr

[
HBHT

]
(2.5.22)

where dA−B, dO−B, H and B represent the analysis increment projected onto the observation space, innovations,
observation operator and background error covariance, respectively. tr [] represents the trace of the matrix, and
α represents the inflation coefficient. Based on (2.5.22), the raw inflation coefficient is estimated on analysis
grid point j as

α j,raw =

∑Nobs
m=1 ρm, j

(
dA−B,mdO−B,m/σ

2
o,m

)
∑Nobs

m=1

[
ρ2

m, j (HmXb) (HmXb)T / (K − 1) /σ2
o,m

] (2.5.23)

where Nobs is the number of observations assimilated locally, K is the ensemble size, ρm, j is the localization
function of the mth observation and HmXb is the first-guess perturbation projected onto the mth observation.
The subscript raw represents a raw estimate. dA−B,m and dO−B,m are the observational increment and innovation
of the mth observation, where dA−B,m is computed with a transformation matrix derived from LETKF analysis
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on grid j. Temporal smoothing is applied to the estimated inflation coefficient as

αi, j =
αi−1, jσ

2
o, j + αi, j,rawσ

2
b

σ2
o, j + σ

2
b

(2.5.24)

where the subscript i represents the value at the ith analysis step, and σ2
o, j and σ2

b are error variances of the
estimated and prior coefficients and are set as

σ2
o, j = 1/

Nobs∑
m=1

ρm, j (2.5.25)

σ2
b = 0.005 (2.5.26)

Finally, the estimated coefficients are relaxed to the default values as the deviation from these defaults reaches
1/e at 10 days. The defaults are set to 1.21 from the surface to 45 hPa and linearly reduced with the logarithm
of pressure to 1.0 at 0.85 hPa. Inflation to specific humidity is reduced by 30% of the estimated inflation
coefficients below 230 hPa and linearly decreases with the logarithm of pressure to about 15% at 45 hPa.

Initialization based on analysis of surface pressure tendency (Hamrud et al. 2015) is applied after the
LETKF analysis update. The surface pressure tendency of the first-guess ensembles (∂ps/∂t)guess is diagnosed
from the continuity equation and the hydrostatic balance as(

∂ps

∂t

)
guess
= −

∫ 1

0
∇ ·

(
vguess

∂pguess

∂η

)
dη (2.5.27)

where ps, v, p and η are surface pressure, horizontal wind, pressure and the model vertical coordinates (1 at
the bottom and 0 at the top), respectively. Surface pressure tendency is analyzed by adding the above variable
to the first-guess state variables of the LETKF. The difference in surface pressure tendency diagnosed from
horizontal wind and surface pressure analysis and that observed from LETKF analysis is distributed to each
model layer so that the value is proportional to the global mean of the analysis spread of horizontal wind.
Horizontal wind is adjusted using

∆
[∇ · (vkdpk)

]
= wk

(∂ps

∂t

)
diag
−

(
∂ps

∂t

)
anl

 (2.5.28)

where k is an index of the vertical model layer, wk is the weight on the kth model layer and dpk is the difference
in half-level pressure adjacent to the kth full-level model layer. The horizontal wind increment is derived from
(2.5.28) assuming ∆ (dpk) = 0 and ∆ (∇ × (vkdpk)) = 0.

The analysis ensemble is recentered so that the ensemble mean is consistent with global analysis.
The stochastic physics scheme (Subsection 3.3.4) is also applied to the forecast ensemble of the LETKF.

2.5.7 Observation Terms
2.5.7.1 Observation Data

The assimilated observation types are shown in Table 2.1.1, and brief explanations for each data type as well
as the quality control procedures are found in Section 2.2 and Section 2.3.

Observational data and related departures (observation minus first guess) are given with the location and
time via the pre-analysis procedure. Surface pressure data at the station height or sea level pressure data
reported from surface observation station are assimilated after conversion to the pressure at model surface
height. While scatterometer data are reported as winds at 10 m above sea level, assimilated as wind at the
lowest model level. The zenith total delay from GNSS data are assimilated over land. Satellite radiance data
from MW sounders, MW imagers, Hyperspectral IR sounders and CSRs are directly assimilated using the K
matrix model of RTTOV-10.2 (Saunders et al. 2012). GNSS-RO data are assimilated in the form of bending
angle at the tangent point using ROPP8 (Culverwell et al. 2015).
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2.5.7.2 Observation Error

Observation errors (the diagonal part of the observation error covariance matrix) are estimated based on inno-
vation statistics (Desroziers et al. 2005), and are summarized in Table 2.5.2 and Table 2.5.3. For ocean surface
wind data from scatterometers, such errors are defined as those with values of 4 or 6 m/s. For GNSS-RO
bending angle data, errors are defined as a function of height only. The observation error threshold is 1% of the
observed bending angle above 10 km, and varies linearly from 20% at 0 km to 1% at 10 km. For ground-based
GNSS-ZTD data, the observation error is 20 mm. The error at an arbitrary reported pressure level is linearly
interpolated in the logarithm of pressure (log(p)). The cross correlations of observation errors (off the diago-
nal part of the observation error covariance matrix) are not considered explicitly in 4D-Var. To eliminate the
cross-correlation term in the cost function, horizontally or vertically dense observations are thinned spatially
in pre-analysis, and observation errors are inflated with predefined factors.

For satellite radiance data of MW imagers and sounders assimilated under all-sky conditions, observation
errors are given by an observation error model. Observation errors are assigned as a function of the symmetric
(average of observation and first guess (FG)) cloud amount to handle the non-Gaussian distribution of obser-
vation errors. The symmetric cloud amount is based on Geer and Bauer (2011) using horizontal and vertical
polarization difference at 37GHz for MW imagers, and Geer et al. (2014) using difference of scattering effect
between 90GHz and 150GHz channels for MW sounders. The parameters of the observation error model are
derived based on FG departure statistics as listed in Table 2.5.4. Observation error model for 183GHz channels
is separately prepared for each surface types (ocean, land and sea ice). Only parameters for ocean are shown.

2.5.7.3 Observation Operator

In 4D-Var, observation data at a given location and time are simulated using forecast variables for the surround-
ing grids in the nearest forecast hour with spatial inter/extrapolation and variable conversion. Observation op-
erator involves these consecutive procedures. A fast radiative transfer model known as RTTOV-10.2 is used
as the observation operator for satellite radiance data assimilation. ROPP8 is used as the observation operator
for the assimilation of GNSS-RO bending angle data. These operators are provided as external libraries from
EUMETSAT NWP-SAF and ROM SAF, respectively.

2.5.7.4 Variational Bias Correction

As mentioned in Subsection 2.3.4, variational bias correction (VarBC) is applied to satellite radiance data
biases. In 4D-Var with VarBC, the observation operators are extended to include bias correction terms and the
control (analysis) variables are extended to include bias correction (regression) coefficients. These coefficients
are optimized as control variables.

The extended form of the cost function Eq. (2.5.1) is defined as follows.

J (∆z0) =
1
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∆xT
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2
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(2.5.29)
where,

∆z0 ≡
[
∆x0

T,∆βT
]T
, BBBβ ≡ diag

(
Fin f

2

Nvar
, . . . ,

Fin f
2

Nvar

)
, Nvar ≡


N

log10
N

N0
+1

(N ≥ N0)

N0 (N < N0)

∆z0 represents extended increments, consisting of low resolution model variable increments ∆x0 and bias
correction coefficient increment ∆β, BBBβ is the background error covariance matrix for the bias correction coef-
ficient β, pi, j is predictors for bias correction, m is the number of predictors for all radiance observation types,
Fin f is an arbitrarily defined inflation factor, N is the number of data and N0 is the threshold for the valid
number of data.
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Table 2.5.2: Observation error tables used in operational global analysis for (a) conventional observation,
(b) AMV, (c) AMSU-A, (d) ATMS and (e) CSR from four geostationary satellites. Ps, u, v, T , RH and TB

denote surface pressure, zonal and meridional wind components, temperature, relative humidity and brightness
temperature, respectively. “x” in (c) denotes that the channel is not used.

(a) conventional observation (b) AMV

Level(hPa)
Element

Ps(hPa) u, v(m/s) T (K) RH(%)
Level(hPa)

Element
u, v(m/s)

Surface 0.7 1,000 4.5
1,000 2.3 1.7 6.4 850 4.5

850 2.4 1.2 15.9 700 4.5
700 2.5 1.0 19.8 500 4.5
500 2.5 0.8 31.5 300 5.3
300 2.7 0.9 31.7 200 5.8
200 2.8 1.1 24.1 100 6.8
100 3.1 1.2 3.8 50 7.0

50 3.0 1.4 1.4 30 7.2
30 3.0 1.5 1.3 10 7.6
10 3.9 2.5 1.3 1 9.1

1 4.6 5.4 1.3 0.4 10.6
0.4 7.7 7.6 1.3 0.1 10.6
0.1 7.7 7.6 1.3

(c) AMSU-A TB (K) (d) ATMS TB (K)

Channel
Satellite

Metop-B Metop-C NOAA-15 NOAA-18 NOAA-19
Channel

Satellite
Suomi-NPP NOAA-20

4 x 0.45 0.45 0.45 0.45 6 0.3 0.3
5 x 0.3 0.3 x 0.3 7 0.3 0.3
6 0.3 0.3 x 0.3 0.3 8 0.3 0.3
7 0.3 0.3 0.3 0.3 0.3 9 0.3 0.3
8 0.3 0.3 0.3 x x
9 0.3 0.3 0.3 x 0.3

10 0.3 0.3 0.45 0.3 0.3
11 0.45 0.45 x 0.45 0.45
12 0.64 0.64 0.64 0.64 0.64
13 1.02 1.02 0.85 1.02 1.02
14 2.83 2.83 x 2.63 2.63

(e) CSR TB (K)

band (µm)
Satellite

GOES-16
band (µm)

Satellite
Meteosat-8

band (µm)
Satellite

Meteosat-11
band (µm)

Satellite
Himawari-8

8 (6.15) 1.5 5 (6.25) 1.5 5 (6.25) 1.5 8 (6.24) 1.5
9 (7.00) 1.5 9 (6.94) 1.5

10 (7.40) 1.5 6 (7.35) 1.5 6 (7.35) 1.5 10 (7.35) 1.5
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Table 2.5.3: Observation error tables used in operational global analysis for hyperspectral IR sounders. (a)
IASI and (b) CrIS.

(a) IASI TB (K) (b) CrIS TB (K)
Metop-B Metop-C Metop-B Metop-C Suomi-NPP NOAA-20

Ch. Ch. Ch.
38 1.26 1.08 232 0.81 0.84 27 0.81 0.75
49 1.20 1.08 236 0.69 0.69 31 1.35 1.32
51 1.23 1.05 239 0.75 0.81 37 0.54 0.51
55 1.20 1.05 243 0.72 0.84 51 0.39 0.39
57 1.23 1.02 246 0.72 0.78 69 0.45 0.36
61 1.20 0.96 249 0.69 0.75 73 0.45 0.36
63 1.14 0.99 252 0.72 0.75 75 0.51 0.42
70 1.11 0.96 256 0.72 0.72 79 0.42 0.36
85 1.11 0.93 262 0.69 0.72 80 0.45 0.39
87 1.08 0.99 265 0.78 0.72 81 0.39 0.36

109 0.96 0.84 267 0.69 0.63 83 0.39 0.36
116 0.87 0.87 269 0.72 0.78 85 0.39 0.36
122 0.87 0.87 271 0.66 0.69 87 0.39 0.39
128 0.87 0.84 273 0.63 0.66 88 0.39 0.39
135 0.78 0.81 275 0.72 0.75 93 0.42 0.42
141 0.78 0.87 278 0.72 0.72 96 0.39 0.39
146 0.72 0.75 282 0.72 0.72 102 0.48 0.48
148 0.75 0.78 284 0.72 0.69 106 0.45 0.45
154 0.75 0.78 288 0.69 0.72 116 0.54 0.54
159 0.72 0.72 292 0.66 0.66 123 0.63 0.63
161 0.72 0.75 294 0.75 0.78 124 0.54 0.54
167 0.72 0.75 296 0.78 0.81 125 0.57 0.60
173 0.72 0.81 306 0.90 0.87 132 0.54 0.54
180 0.72 0.84 308 0.69 0.72 136 0.51 0.54
185 0.75 0.81 316 0.69 0.72 138 0.54 0.57
187 0.72 0.81 320 0.72 0.72 142 0.51 0.54
193 0.81 0.90 323 0.69 0.66 148 0.48 0.48
205 0.90 1.02 327 0.72 0.75
212 0.87 0.78 333 0.72 0.75
217 0.81 0.87 347 0.72 0.75
219 0.87 0.81 350 0.69 0.72
224 0.78 0.84 354 0.72 0.69
226 0.81 0.84 356 0.69 0.69
230 0.75 0.78 360 0.69 0.66
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Table 2.5.4: Observation error (S clr, S cld) and threshold of symmetric cloud amount for identifying clear-sky
and cloudy samples (Cclr, Ccld) for assimilated channel under all-sky conditions.

Satellite/Sensor Frequency(GHz) S clr S cld Cclr Ccld

Ch. and polarization
GCOM-W/AMSR2 7 19V 4.8 43.8 0.0 0.6

9 23V 6.9 22.8 0.0 0.5
11 37V 6.0 34.2 0.0 0.5

DMSP-F17/SSMIS 9 183 ± 6.6 9.4 82.2 0.0 40.0
10 183 ± 3.0 8.0 56.1 0.0 40.0
11 183 ± 1.0 7.9 29.2 0.0 40.0

DMSP-F17,18/SSMIS 13 19V 5.4 40.8 0.0 0.6
14 23V 7.2 19.8 0.0 0.6
16 37V 6.9 35.1 0.0 0.5

GPM-core/GMI 3 19V 5.1 47.1 0.0 0.6
5 23V 6.9 26.1 0.0 0.5
6 37V 6.6 36.6 0.0 0.5

12 183 ± 3 6.8 75.8 0.0 40.0
13 183 ± 7 7.1 105.0 0.0 30.0

NOAA-19,Metop-B,C/MHS 3 183 ± 1 6.1 44.0 0.0 45.0
4 183 ± 3 5.4 71.4 0.0 45.0
5 190V 4.9 104.1 0.0 45.0

FY-3C/MWHS-2 11 183 ± 1.0 6.9 50.1 0.0 50.0
12 183 ± 1.8 6.6 71.0 0.0 50.0
13 183 ± 3.0 6.5 91.6 0.0 50.0
14 183 ± 4.5 6.9 110.0 0.0 50.0
15 183 ± 7.0 6.6 128.2 0.0 50.0

Suomi-NPP,NOAA-20/ATMS 18 183 ± 7.0 8.2 117.0 0.0 50.0
19 183 ± 4.5 8.1 99.9 0.0 50.0
20 183 ± 3.0 7.7 81.1 0.0 50.0
21 183 ± 1.8 7.3 43.6 0.0 50.0
22 183 ± 1.0 7.4 43.6 0.0 50.0
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The second term on the right hand side of Eq. (2.5.29) is the background term for the bias correction
coefficients, and

∑m
j=0 ∆β j pi, j is the bias correction term. This equation is used instead of Eq. (2.5.1) in 4D-

Var.
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2.6 Meso-scale Analysis

2.6.1 Introduction
Meso-scale analysis (MA) produces initial conditions for the Meso-Scale Model (MSM, Subsection 3.5.1)
every three hours with incorporation of information from observations into the model for optimal forecasting
of weather phenomena with emphasis on high-impact events.

In March 2002, a four-dimensional variational (4D-Var) scheme was introduced as the data assimilation
approach for MA (Ishikawa and Koizumi 2002) in place of the previous three-dimensional optimal interpola-
tion (3D-OI) scheme to create the world’s first operational limited-area 4D-Var system. Following the upgrade
of the MSM forecast model to a non-hydrostatic type (JMA-NHM; Saito et al. 2006, 2007) in September
2004, the previous hydrostatic 4D-Var was replaced by a non-hydrostatic model-based 4D-Var system (known
as JMA Nonhydrostatic model-based Variational Data Assimilation (JNoVA; Honda et al. 2005)) in April
2009. The domain of MA is the same as that of the MSM, covering Japan and its surrounding areas. Operation
covering the current 4,080 × 3,300 km domain, extended from the previous 3,600 × 2,880 km, was introduced
in March 2013 (Subsection 3.5.1). A further upgrade of the MSM forecast model in February 2017 replaced
JMA-NHM with a newly developed non-hydrostatic model called ASUCA (Ishida et al. 2009, 2010; Hara
et al. 2012) as described in Subsection 3.5.1. In March 2020, a 4D-Var system based on ASUCA (ASUCA-
Var; Ikuta et al. 2021) was introduced (Ikuta et al. 2020). This development enabled MA to produce initial
conditions more consistent with the upgraded MSM forecast model. In March 2022, the model top was up-
graded from 21,801 m to 37,500 m, with the number of vertical layers increased from 76 to 96 in the outer
model and from 38 to 48 in the inner model.

Various observational data are used to improve the accuracy of prediction for meso-scale weather events, in-
cluding information from weather radars, satellite observations and ground-based GNSS (Table 2.1.2). Thanks
to the advanced data assimilation scheme of 4D-Var utilized with these data, MA produces initial conditions
highly consistent with the balance of model equations.

2.6.2 Operational System
MA is performed using ASUCA-Var system and produces initial conditions for MSM forecasts at 00, 03, 06,
09, 12, 15, 18 and 21 UTC. The data assimilation window is set as three hours, with the end of the window
corresponding to the analysis time. Figure 2.6.1 shows the MA process:

1. With the initial condition produced in the previous MA, the high-resolution (5 km) forecast model is run
within the three-hour data assimilation window to obtain the first guess.

2. Quality-control for observation (Section 2.3) and calculation of related deviations from the first guess
are conducted as preparation for input to the next step.

3. 4D-Var analysis is performed to determine the optimal model state by assimilating observations in a
low-resolution (15 km) space.

4. The low-resolution (15 km) analysis increment is added to the high-resolution (5 km) first guess via
interpolation to determine the initial condition for the next step.

5. Based on this initial condition, the high-resolution (5 km) forecast model is run within the data assimi-
lation window to determine the initial condition for the MSM.

In MA, the first and last steps in which the high-resolution forecast model is run are called the outer steps,
and that in which ASUCA-Var in the low-resolution space is executed is called the inner step. ASUCA is used
as the forecast model for both steps. The analysis domain is shown in Figure 2.6.2 with a topographic map (5-
km resolution) as used by MA. The lateral boundary conditions are from Global Spectral Model (GSM,Section
3.2) forecasts, while the initial conditions of the first guess are taken from the previous MA (the three-hour
forecast in the last outer step). Thus, MA frames the cycle analysis nested into the GSM.
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The cut-off time of input observation data for MA is 50 minutes after each analysis time. Observation data
received by this time are distributed into four time slots with the observation time rounded to the nearest hour
(as represented by the four stars in Figure 2.6.1). Accordingly, data observed from 4 hours before to 0.5 hours
after analysis are assimilated in the inner step.

Figure 2.6.1: MA procedure (03 UTC analysis) Figure 2.6.2: MA domain and topography

As described previously, ASUCA-Var in the inner step involves a data assimilation system based on a
four-dimensional variational (4D-Var) method as detailed in Subsection 2.6.3. This approach is based on
maximum likelihood estimation, with optimal values (i.e. analysis fields) determined by minimizing the cost
function (Subsection 2.6.3.1 for details). This minimization requires iterative calculation of the cost function
and its gradient (50 times at maximum), which takes considerable computational resources. To reduce this
burden, operational ASUCA-Var involves an incremental approach (Courtier et al. 1994) in which a model
with a low-resolution relative to that used in the outer step is adopted in minimization. The basic field in this
approach is updated with the low-resolution nonlinear model twice (20 and 35 steps). Operational formulation
of minimization with this approach is detailed in Subsection 2.6.3.1. The model used in minimization for
ASUCA-Var is called the inner model, with the specifications described in Subsection 2.6.3.3. The horizontal
grid spacing is 5 km (817 × 661 grid points) with 96 vertical layers for atmosphere in the outer steps, and 15
km (273 × 221 grid points) with 48 vertical layers in the inner step.

2.6.3 Basic Formulation

2.6.3.1 Cost Function

In the MA system, 4D-Var data assimilation is used to determine the optimal model trajectory in a phase space
by minimizing its deviation from observations and the first guess. Deviation is measured using the cost function
J, defined as

J(x0) = Jb + Jo + Jvbc + Jp

=
1
2

(
x0 − xb

0

)T
B−1

0

(
x0 − xb

0

)
+

N∑
t=0

1
2

(
Ht(xt) − yt + P(b)

)T
R−1

t

(
Ht(xt) − yt + P(b)

)
+ Jvbc + Jp,

(2.6.1)

where the superscript T represents transpose.
The first and second terms of Eq. (2.6.1) are background and observation terms, representing deviations

from the first guess and observation, respectively. x0 is the model state at the beginning of the data assimilation
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window (time level t = 0) to be optimized4, xb
0 is the first guess of the model state at t = 0, yt is a column

vector consisting of observational data available at t (t = 0, ...,N), and xt is the model state at t as forecast from
the initial condition x0 as

xt = Mt(x0) , (2.6.2)

where Mt denotes the forecast operator. Ht is an observation operator used to convert model state variables to
observations, typically consisting of conversion from model variables to observation parameters and interpo-
lation from model grid points to observation points. P(b) is observation bias. The error covariance matrixes
B0 and Rt specify the error profiles (uncertainty and error correlation) of xb

0 and yt, respectively (Subsection
2.6.3.2 and Subsection 2.6.4.2). Observation terms are modified via the introduction of variational quality
control (Subsection 2.6.4.5).

The third term of Eq. (2.6.1) Jvbc is for variational bias correction (VarBC; Dee 2004) to estimate obser-
vation bias. It is given as

Jvbc =
1
2

(
b − bb

)T
B−1

vbc

(
b − bb

)
, (2.6.3)

where b is a control variable for bias correction, bb is the first guess of b, and Bvbc is the background error
covariance matrix for VarBC, which is used to correct for satellite brightness temperature. VarBC background
error is defined from Cameron and Bell (2018) as

Bvbc =
σ2

o

Nb
, (2.6.4)

Nb = max(mavg,mmin)
(

1
21/n − 1

)
, (2.6.5)

where σo is the observation error standard deviation, mavg is the average number of observations including a
particular channel assimilated over the last three days, mmin is the lower limit of observation numbers (500),
and n is the bias halving time (set as 8).

The fourth term of Eq. (2.6.1) Jp is a penalty term based on digital filter to suppress high-frequency noise
mostly caused by gravity waves (Gauthier and Thépaut 2001), given as

Jp =
1
2

(
xN/2 − xN/2

)T
B−1

df

(
xN/2 − xN/2

)
(2.6.6)

where xN/2 is the model state analysis increment at the center of the data assimilation window (t = N/2), xN/2
is the digitally filtered analysis increment at t = N/2, and Bdf is the background error covariance matrix for
digital filtering. Based on Wee and Kuo (2004), Bdf is given as

B−1
df =

λ

diag(B0)
, (2.6.7)

where λ is the factor 1.0×10−6. For a time series of model states over the data assimilation window {x0, ..., xN},
the digitally filtered state x at t = N/2 is given as

xN/2 =

N∑
k=0

hN/2−kWk xk , (2.6.8)

where

hk =
sin kθc

kπ
, (2.6.9)

is a low-pass filter that removes time oscillations exceeding the cutoff frequency θc. The Dolph-Chebyshev
window function Wk (Lynch 1997) is also used to suppress the noise from the Fourier truncation (Gibbs oscil-
lation).

4 Lateral boundary conditions over the data assimilation window can be included in the vector to be optimized, x0, but this is not
adopted in operational MA.
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In MA, an incremental approach is adopted to reduce computational cost. Optimization is performed using
the inner model (Subsection 2.6.3.3) to determine an analysis increment for the low-resolution model space
(inner step). The cost function is expanded around the basic field, which can be expressed as

J(δx0) =
1
2
δx0

T B−1
0 δx0

+

N∑
t=0

1
2

(
HtMtδx0 + Pδb − dt

)T
R−1

t

(
HtMtδx0 + Pδb − dt

)
+ Jvbc + Jp,

(2.6.10)

where
δx0 = x0 − xb

0, (2.6.11)

δb = b − bb
0, (2.6.12)

dt = yt − Ht(Mt(xb
0)) − P(bb), (2.6.13)

and Ht, Mt, and P are tangent-linear operators of Ht, Mt, and P, respectively.
The effect of the non-linear process was insufficiently incorporated in analysis values with linear opti-

mization alone. To address this problem, a basic-field update (Trémolet 2008) was introduced to incorporate
non-linear effects into optimization. Details of the update in ASUCA-Var are provided in Section 2.1 of Ikuta
et al. (2021). The field is updated twice during optimization.

The final analysis xN is determined from forecasting with the high-resolution model over the data assimi-
lation window (outer step).

xN = MN(x0) . (2.6.14)

2.6.3.2 Background Error Covariance

As detailed previously, the background error covariance B indicates the error profile of the first guess (Sub-
section 2.6.3.1). However, calculation using the complete form of B is impractical due to the extremely large
dimensions of the model state space. In practice, drastic simplification is applied to B to make the problem
tractable.

A group of parameters are defined as analysis variables, with background errors considered uncorrelated.
The variables used in MA are

• u: x component of horizontal wind
• v: y component of horizontal wind
•

(
Tg, ps, θ

)
: underground and skin temperature, surface pressure and potential temperature

•
(
Wg, µp

)
: soil moisture and pseudo-relative humidity (µp = qv/qb

sat, where qv is the mixing ratio of water
vapour and qb

sat is the saturated water vapour of the first guess).

Tg is perturbed only at land grids, as that at ocean grids is not a prognostic variable in the MSM.
δx0 is transformed from uncorrelated control variables χ as

δx0 = x0 − xb
0 = B1/2χ, (2.6.15)

B1/2 is the square root of B, and has the form

B1/2 = Kp


B1/2

u 0 0 0
0 B1/2

v 0 0
0 0 B1/2

Tg,ps,θ
0

0 0 0 B1/2
Wg,µp

 . (2.6.16)
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Here, Kp is a linearized parameter transform from control variables to model variables, and B1/2
χi is the spatial

transform for the i-th sub-group χi of the parameters in χ. The spatial structure of background error covariance
Bχi is modeled as

B1/2
χi
= CvB1/2

h,χi
B1/2

v,χi
. (2.6.17)

Here, Cv denotes a vertical coordinate transformation to limit the terrain effect of the vertical coordinate within
the lower troposphere.

The square root of the vertical background error covariance matrix Bv,χi is given by

B1/2
v,χi
= diag

(
Bv,χi

)1/2
VΛ1/2VT , (2.6.18)

where Λ is a diagonal matrix whose elements are the eigenvalues of
[
diag

(
Bv,χi

)−1/2
Bv,χi diag

(
Bv,χi

)−1/2
]
, and

V is the orthogonal matrix (VT V = I) whose columns are the related eigenvectors.
The horizontal background error correlation Bh,χi is defined on the vertical level of the model. In the

calculation of B1/2
h,χi

, the recursive filter technique (Purser et al. 2003) is used in each of the x- and y-directions.
The background error statistics Bv,χi and Bh,χi are estimated using the NMC method (Parrish and Derber

1992). Vertical background error covariance is calculated separately for sea and land grids (except u and v)
and classified by local time.

Variational optimization is performed with respect to χ. The transform (2.6.15), called preconditioning,
simplifies the background term of the cost function J (see Eq. (2.6.1) and Eq. (2.6.10); for simplicity, the
present discussion does not deal with Jvbc and Jp). The cost function and its gradient after the transform are
given as

J(χ) =
1
2
χTχ +

N∑
t=0

1
2

(
HtMtB1/2χ − dt

)T
R−1

t

(
HtMtB1/2χ − dt

)
, (2.6.19)

∇χJ = χ +
N∑

t=0

BT/2MT
t HT

t R−1
t

(
HtMtB1/2χ − dt

)
, (2.6.20)

where MT
t and HT

t are the adjoint model and the adjoint of the observation operator.

2.6.3.3 Inner Model

In ASUCA 4D-Var, a high-resolution with the same configuration as the MSM (5 km horizontal grid spacing,
96 vertical layers), is used in the outer step. The inner step is executed using the nonlinear model (NLM),
tangent-linear model (TLM) and adjoint model (ADM), with a lower resolution (15 km horizontal grid spacing,
48 vertical layers) to reduce computational cost. The specifications of the inner and outer models are listed in
Table 2.6.1.

The NLM is essentially the same as the outer model except for the resolution and the configuration of
convective parameterization. The dynamics of the TLM are fully tangent-linearized, although some physical
processes are simplified or not implemented to avoid errors associated with non-linearity.

In regard to cloud microphysics, saturation adjustment is linearized but other processes are not. For con-
vective parameterization, the NLM adopts the modified Kain-Fritsch scheme (Kain and Fritsch 1990) but the
TLM does not. For the boundary layer scheme, Mellor-Yamada-Nakanishi-Niino level 3 (Nakanishi and Niino
2006) is employed, and is linearized for the TLM except for diffusion coefficients and partial condensation.
The surface flux scheme based on Beljaars and Holtslag (1991) is linearized for the TLM except for bulk
coefficients. The TLM Radiation scheme is simplified based on Mahfouf (1999).

2.6.4 Observation Terms
2.6.4.1 Observation Data

Assimilated observation types are shown in Table 2.1.2, and brief outlines of each data type and related quality
control procedures are given in Section 2.2 and Section 2.3.
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Table 2.6.1: Specifications of the outer and inner models employed in MA
Outer model Inner NLM Inner TLM/ADM

Resolution 5 km, 96 layers 15 km, 48 layers 15 km, 48 layers
Cloud microphysics 6-class 3-ice bulk

scheme, Subsection
3.5.4

6-class 3-ice bulk
scheme, Subsection
3.5.4

Only saturation adjust-
ment process tangent-
linearized

Convection Modified Kain-Fritsch Modified Kain-Fritsch None
Boundary layer Mellor-Yamada-

Nakanishi-Niino
level-3

Mellor-Yamada-
Nakanishi-Niino
level-3

Tangent-linearized ex-
cept for diffusion coef-
ficients and partial con-
densation

Surface flux Beljaars and Holtslag Beljaars and Holtslag Tangent-linearized ex-
cept for bulk coeffi-
cients

Radiation Subsection 3.5.6 Subsection 3.5.6 Mahfouf (1999)

2.6.4.2 Observation Error

The observation error covariance matrix R in Eq. (2.6.1) is assumed to be diagonal. Estimation of observa-
tion errors (diagonal components of R) is based on innovation statistics (Desroziers et al. 2005). Errors for
conventional observations, wind profiler data and AMVs are summarized in Table 2.6.2. Errors for satellite
radiance are the same as those in global analysis (Table 2.5.2(c) - (j)). Errors for GNSS-PWV and radial ve-
locity are 3 mm and 3.3 m/s, respectively. Errors for relative humidity data from DPR are 5%, and those from
ground-based radar are approximately 30 %. Errors for ocean surface wind data from scatterometers are 3
m/s. For GNSS-RO refractivity data, observation errors are defined as a function of height only. Observation
error is calculated using linear interpolation to be 10% of refractivity at 0 km, 0.5% at 10 km, 0.18% at 20 km
and 0.04% at 30 km. Errors for Radar/Raingauge Analyzed Precipitation (R/A) are based on the precipitation
amount (Koizumi et al. 2005). The error at an arbitrary reported pressure level is linearly interpolated in the
logarithm of pressure (log(p)). The cross-correlations of errors between different observations are not con-
sidered explicitly in 4D-Var. To eliminate consideration of cross-correlation terms in the cost function, dense
observations are thinned spatially and observation errors are inflated in pre-analysis.

2.6.4.3 Observation Operator

The RTTOV-10.2 fast radiative transfer model is used as the observation operator for satellite radiance data as-
similation, while ROPP8 for the assimilation of refractivity data from GNSS-RO. These operators are provided
as external libraries from EUMETSAT NWP-SAF and ROM SAF, respectively.

2.6.4.4 Special Treatment for Precipitation Data

For the observation terms of the cost function in Eq. (2.6.1), a Gaussian probability density function (PDF)
for observation errors is assumed. However, as the PDF for precipitation-amount data is not Gaussian, the
following observation term is used for one-hour precipitation-amounts (Koizumi et al. 2005):

Jo
PREC(x) =

n∑
j (where ro

j≥0.5)

(
H j(x) − ro

j

)2

2σo(ro
j )

2 . (2.6.21)

Here, H j(x) is an observation operator used to convert the state variable x to one-hour cumulative precipitation
values at the j-th grid point, ro

j is precipitation observed at the grid point, and n is the number of grid points in
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Table 2.6.2: Observation error tables used in the operational meso-scale analysis for (a) conventional observa-
tion and wind profiler data and (b) AMV. Ps, u, v, T and RH denote surface pressure, x and y wind components
in an MSM Lambert projection space, temperature and relative humidity respectively.

(a) Conventional observation and wind profiler data (b) AMV
Element Ps (hPa) u (m/s) v (m/s) T (K) RH (%) Element u (m/s) v (m/s)

Level (hPa) Level (hPa)
Surface 0.7 1,000 4.1 3.3

0.6 for SYNOP in Japan 850 2.9 2.3
1,000 2.1 1.9 1.3 9.8 700 3.2 2.6

925 2.0 1.9 0.9 10.3 500 3.7 3.0
850 2.0 2.0 0.9 12.7 300 4.6 3.7
700 2.0 1.9 0.9 12.8 200 3.8 4.9
500 1.9 1.9 0.7 12.9 100 4.4 6.0
400 2.2 2.2 0.7 13.3 50 3.5 5.1
300 2.6 2.6 0.9 13.5 30 5.1 6.2
250 2.7 2.6 1.0 14.4 10 6.2 7.2
200 2.7 2.6 1.1 13.7
150 2.6 2.6 1.1 16.6
100 3.2 3.0 1.5 15.1

70 3.7 3.1 1.9 13.6
50 3.2 2.8 1.9 12.1
30 3.2 2.8 1.9 11.8
10 3.2 2.8 1.9 12.2

the inner model5. σo(ro
j ) is the observation error standard deviation, defined as

σo(ro
j ) ≡

Csat max(rmin, ro
j )

(
H j(x) ≤ ro

j

)
CsatCa max(rmin, ro

j )
(
H j(x) > ro

j

) , Ca = 3, Csat = 1 for R/A
Ca = 5, Csat = 2 for satellite retrievals

, rmin ≡ 1mm/h.

(2.6.22)
Here, Csat is an observation error inflation factor for satellite retrievals, and Ca is a tuning factor for the asym-
metric structure of the departure frequency distribution around 0.

One-hour precipitation observation values less than 0.5 mm are not assimilated, since the quality of such
data is rather poor for snowfall. The observation error of satellite retrievals is considered to be larger than that
of R/A because retrieval is from instantaneous observation rather than from one-hour cumulative observation.

2.6.4.5 Variational Quality Control

Variational quality control (VarQC, Andersson and Järvinen 1999) is applied in 4D-Var for conventional ob-
servations. With VarQC, the observation error PDF is assumed to be a summation of a Gaussian function and
a positive constant value within a certain range. This constant represents the probability of rough error within
the range.

The following observation term and its gradient are used for conventional observations in the cost function
Eq. (2.6.1) in 4D-Var with VarQC:

jVarQC
o = − log

(
γ + exp (− jo)

γ + 1

)
, γ ≡ A

√
2π

(1 − A) 2d
(2.6.23)

∇ jVarQC
o = WVarQC∇ jo, WVarQC ≡ 1 − γ

γ + exp (− jo)
. (2.6.24)

5 If one-hour cumulative precipitation P1h is larger than 1 mm/h,
(
3P1/3

1h − 2
)

is used for H j(x) and ro
j .
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Here, A is the prior probability of rough error (e.g., 0.05 for SYNOP), d is the maximum standard deviation
below which rough error is possible (e.g., 9 for SYNOP), jVarQC

o is the observation term for a single observation
component with VarQC, and jo is the term without VarQC.

Eq. (2.6.24) shows that ∇ jVarQC
o is almost the same (effective) as ∇ jo when jo is small (WVarQC ≈ 1) and

∇ jVarQC
o is almost 0 (not effective) when jo is large (WVarQC << 1). Observation values satisfying WVarQC <

0.25 are regarded for rejection in VarQC.

2.7 Local Analysis

2.7.1 Introduction
Local Analysis (LA) produces initial conditions for the Local Forecast Model (LFM) (Subsection 3.6.1) at a
horizontal resolution of 2 km. Its operation started in August 2012, with eight runs per day on an area of Japan
measuring 2,200 × 2,500 km to initialize LFM forecasts over a domain covering the eastern part of the country.
An enhancement in the operation of LA, along with the LFM, was implemented in May 2013, extending its
domain to cover Japan and the surrounding areas (3,160 × 2,600 km) and increasing its daily operations to 24
runs per day.

To provide initial conditions for this high-resolution forecast model targeting small-scale severe weather
events, LA is designed to allow rapid production and frequent updating of analysis at a resolution of 5 km
(Subsection 2.7.2). In each LA run, an analysis cycle with hourly three-dimensional variational (3D-Var)
data assimilation is executed for the previous three hours to incorporate information from newly received
observational data in each case. The analysis cycle was originally based on JMA-NHM (Saito et al. 2006,
2007) and JNoVA 3D-Var (the 3D-Var version of JNoVA (Honda et al. 2005)), which was replaced by the
new-generation version based on ASUCA (Ishida et al. 2009, 2010; Hara et al. 2012) and ASUCA-3DVar in
January 2015 (Aranami et al. 2015). In March 2022, the analysis cycle was updated to hybrid 3D-Var utilizing
ensemble perturbation of Meso-Scale Ensemble Prediction System (MEPS) data (Section 3.6) (Yokota et al.
2022).

As with MA, high-density remote sensing data (including information from weather radars and ground-
based GNSS) are assimilated on an hourly basis in LA as important sources of detailed information contribut-
ing to better forecasting of high-impact phenomena (see Table 2.1.3). LA was also adopted in January 2017
to make extensive use of satellite observations , with application of the variational bias correction technique.
The capacity of high-resolution NWP to capture small-scale variations in topography is expected to help re-
duce representativeness errors in the assimilation of surface observations. In association, LA also assimilates
automated surface station (AMeDAS) data ahead of other operational data assimilation systems with lower
resolutions in order to appropriately reflect the effects of local-scale environments near the surface.

Based on these features, LA is characterized as a data assimilation system for high-resolution and high-
frequency NWP.

2.7.2 Operational System
To satisfy the requirements outlined in Subsection 2.7.1, operational LA incorporates an analysis cycle with
3D-Var, which can meet demand for prompt and frequent product updates within a limited time frame (all pro-
cesses, including data quality control, are completed within around 15 minutes) with far fewer computational
resource requirements than 4D-Var. In 3D-Var, the weighted average of flow-dependent and climatological
background error covariances (hybrid covariance) is used (hybrid 3D-Var), and the former is created from
ensemble perturbations of MEPS.

LA involves the running of an analysis cycle on a domain identical to that of the LFM (see Figure 2.7.1),
following the flow chart shown in Figure 2.7.2. The cycle consists of four successive instances of hybrid 3D-
Var analysis (3, 2, 1 and 0 hours prior to the initial time of the LFM; (a), (b), (c) and (d) in Figure 2.7.2), where
quality controlled observation data rounded to the nearest hour are assimilated. After each instance of analysis
except the last one ((d) in Figure 2.7.2), a one-hour forecast (LF1) with a horizontal resolution of 5 km is
executed using analysis for initial conditions, thereby providing the first guess for the next 3D-Var analysis. In
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the first 3D-Var ((a) in Figure 2.7.2), the first guess is supplied from the MSM (Subsection 3.6.2), which also
provides lateral and upper boundary conditions for LF1 throughout the three-hour data assimilation period. Sea
surface temperature is given by HIMSST (see Subsection 5.2.2). The analyzed field in the last 3D-Var ((d) in
Figure 2.7.2) is used as the initial condition of the LFM. Further LA specifications are provided in Table 2.1.3.

Figure 2.7.1: domains of LA and
LFM.
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Figure 2.7.2: Schematic representation of LA analysis.

2.7.3 Basic Formulation
2.7.3.1 Cost Function

LA involves four time slots for the assimilation of observations using hybrid 3D-Var, in which the extended
control variable method (Lorenc 2003) is used to take into account flow-dependent error covariance. The
related cost function in the i-th time slot is defined as

J(δxi) =
1
2
δxT

i,clB
−1
cl δxi,cl +

1
2
δxT

i,enB−1
en δxi,en (2.7.1)

+
1
2

(Hδxi − di + Pδbi)T R−1 (Hδxi − di + Pδbi) (2.7.2)

+
1
2
δbT

i S−1
i δbi, (2.7.3)

δxi = βclδxi,cl + βenδxi,en. (2.7.4)

Here, δxi is the increment, δbi is the increment of the observation bias vector, and the subscript i is the hourly
time-index. The innovation vector di is given by

di = yi −H
(
xb

i

)
− P

(
bb

i

)
, (2.7.5)

where yi is the vector of observations, xb
i is the background state and bb

i is the background state of observation
bias in the i-th time slot. H is the nonlinear observation operator, H is the tangent linearized observation op-
erator, P is the nonlinear operator of predictors for VarBC, P is the matrix of predictors for VarBC , B is the
covariance matrix of background error, R is the diagonal matrix of observation error and Si is the diagonal ma-
trix of parameters used to control the adaptivity of observation bias vector estimation in VarBC. The subscripts
“cl” and “en” mean “climatological” and “ensemble”, respectively. βcl and βen are the weights for the hybrid
covariances, set as (β2

cl, β
2
en) = (0.5, 0.5).
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2.7.3.2 Solution Procedure

The analysis xa at the initial time t of LFM, corresponding to i = 4, is calculated by repeating hybrid 3D-
Var and one-hour forecasting. The one-hour forecast operatorMi,i+1 is configured specifically for LA. In this
configuration, the horizontal resolution is set to 5 km as in the MSM, but the physics schemes differ from those
used in the MSM and the LFM.

The LA cycle is conducted as outlined below.

1. Ben valid at t − 3h, t − 2h, t − 1h, t are created from MEPS ensemble perturbations.

2. xb
i=1 valid at t − 3h is provided by the MSM, and bb

i=1 is equal to the analysis variables of observation
bias ba in the previous LA.

3. δxi is optimized by minimization of the cost function, J (δxi).

4. The i-th background state is updated with the one-hour forecast:

xb
i+1 =Mi,i+1

(
xb

i + δxi

)
, (2.7.6)

and the observation bias is given by

bb
i+1 = bb

i + δbi. (2.7.7)

5. Steps 3 and 4 are repeated three times.

6. For the initial time, the cost function J (δxi=4) is minimized and the analysis increments are added to the
background state. The low-resolution (5 km) analysis variables are given by

xa = xb
4 + δx4, (2.7.8)

and the analysis variables of observation bias ba are given by

ba = bb
4 + δb4. (2.7.9)

Finally, the low-resolution analysis xa is interpolated to the high resolution of 2 km with consideration of
ancillaries (i.e., topography, soil type and land usage) to be used as the initial condition with the LFM.

2.7.3.3 Analysis Variables

The analysis increment is defined as δx =
(
δu, δv,

(
δTg, δps, δθ

)
,
(
δWg, δµp

))T
.

• u: x-component of horizontal wind.
• v: y-component of horizontal wind.
•

(
Tg, ps, θ

)
: underground and skin temperature, surface pressure and potential temperature.

•
(
Wg, µp

)
: soil moisture and pseudo-relative humidity.

Tg is perturbed only at land grids, as that at ocean grids is not a prognostic variable in the LFM.

2.7.3.4 Background Error Covariance

δx is transformed from uncorrelated control variables χ, as follows:

δx = B1/2χ =
[
βclB1/2

cl βenB1/2
en

] [χcl

χen

]
, (2.7.10)

B1/2 is the square root of B.
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The climatological background error covariance Bcl is modeled as described in Subsection 2.6.3.2, and
statistics are estimated using the NMC method (Parrish and Derber 1992). However, the error profiles in the
lower levels are modified artificially to localize spatial correlations so that surface observations are assimilated
more appropriately. The seasonal variation of background error statistics is not taken into account.

The ensemble background error covariance Ben is created from 100 ensemble perturbations using 5 lagged
MEPS forecasts with 20 members, and spatial localizations with Gaussian functions (scales of 1/

√
e are set as

100 km horizontally and 0.5 km vertically) to reduce sampling errors. Ben is inflated by multiplication with
a factor, which is the ratio of Bcl and the horizontal mean of Ben for potential temperature at 5.5 km above
ground level, meaning that error variance is comparable to the magnitude of Bcl.

2.7.4 Observation Terms

2.7.4.1 Observation Data

Assimilated observation types and brief outlines of each data type are provided in Table 2.1.3.

2.7.4.2 Observation Error

The observation error covariance matrix is assumed to be diagonal, and cross-correlation between different
observations is not considered as it is in MA.

2.7.4.3 Observation Operators

The observation operator for surface observations (i.e., wind at a height of 10 m and temperature, relative
humidity at a height of 1.5 m) is based on the surface diagnostic scheme (Beljaars and Holtslag 1991) in the
LFM. In the tangent linear operator for surface observation, perturbations of transfer coefficients for surface
fluxes are not considered in diagnostic equations.

The observation operator for brightness temperature is RTTOV-10.2 (Saunders et al. 2012), but perturba-
tions of surface elements and ozone are ignored as inputs to the RTTOV tangent-linear model.

The observation operator for soil moisture is provided using a linear regression equation with coefficients
estimated from cumulative distribution function matching.

2.7.5 Parallelization

The data assimilation domain is two-dimensionally decomposed into blocks, each of which is assigned to an
MPI process. The loops for the y-direction and certain fused horizontal loops are forked via OMP paralleliza-
tion similar to that of the LFM (see Section 3.5.10). Observations are distributed to blocks according to their
location, and innovations are calculated in each process. In addition, the recursive filter method is parallelized
using decomposed blocks.

In calculation of minimization, the inner product of general vectors in the L-BFGS (Nocedal and Wright
2006) is determined for each block, and loops for observations and model variables are forked via OMP paral-
lelization.

2.8 Snow Depth Analysis

2.8.1 Global Snow Depth Analysis

The global snow depth analysis is executed every day as a part of cycle run analysis of the Global Analysis
( Table 2.1.1 ) at 18 UTC. Daily averaged global snow depth data at the resolution same as of the Global
Analysis ( TL959: grid roughly equivalent to 0.1875◦ (20 km) ) are analyzed using the forecast snow depth
fields, the satellite snow-cover product and SYNOP snow depth data. Analysis involves two-dimensional
optimal interpolation (2D-OI).
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The satellite snow-cover product is retrieved in the 0.25◦ × 0.25◦ latitude/longitude grid from microwave
imager radiances6 with the same scheme as used for JRA-55 (Kobayashi et al. 2015). In the algorithm, regions
where the observation satisfies the following criteria are considered to be covered by snow7:

Tb (19GHz,V) < 265K

Tb (19GHz,H) − Tb (37GHz,H) > threshold (H)

Tb (19GHz,V) − Tb (37GHz,V) > threshold (V)

where Tb is the brightness temperature, H and V are the horizontal and vertical channels, respectively. Thresh-
olds (H, V) should be 0 K for ideal snow but in practice need to be adjusted depending on the snow and surface
condition. Accordingly, those values are determined for each region, vegetation, and month. For grid with no
satellite radiance for not more than 3 days, past snow-cover product is used. For grid with no satellite radiance
more than 3 days, missing value is used.

The first guess snow depth fields used in 2D-OI are estimated mainly from the satellite snow-cover product
and the forecast snow depth as below.

1. The satellite snow-cover product is interpolated in the grid for GSM.
2. The satellite snow-cover product is changed under some conditions. Grid point values in grids where

climatological probability of snow exceed 80 % and there is snow in forecast are set to values meaning
snow. Missing values are replaced to values meaning snow or no snow depending on climatological
probability of snow and forecast land surface temperature.

3. If there is snow in both the forecast and the satellite, the forecast snow depth is used as the first guess.
4. If there is no snow in the forecast or in the satellite, the first guess is set to 0 cm.

This first guess and observations reported from SYNOP stations are handed over to the 2D-OI system for
the snow depth analysis. The spatial correlation coefficient for the background error, µkl, is based on Brasnett
(1999) and given by

µkl = α(rkl)β(∆zkl)

with the horizontal and vertical separation, rkl and ∆zkl between points k and l. α(rkl) and β(∆zkl) are the
horizontal and vertical structure functions:

α(rkl) =
(
1 +

rkl

L

)
exp

(
− rkl

L

)
,

β(∆zkl) = exp

−
(
∆zkl

h

)2
 ,

where L and h are set to 100 km and 800 m, respectively. The ratio between standard deviations of observation
and background errors is set at 0.7. Grids on ocean are skipped in snow depth analysis. Grids where there is
no snow in both the forecast and the satellite are also skipped and the analysis are set to 0 cm. Grids where the
forecast ground surface temperature is above the freezing point and there is very few snow only in the forecast
or the satellite are also skipped and the analysis are set to 0 cm. Grids covering land ice are also skipped and
the analysis are set to the climatological values.

In each Global Analysis ( both early and cycle ) at 00, 06, 12 and 18 UTC, the latest snow depth anal-
ysis is copied. This analysis around Japan are replaced by inverse distance weighted interpolation of latest
observations reported from SYNOP and AMeDAS stations. Finally, snow depth are converted to snow water
equivalents as an initial condition for the land-surface process (see Subsection 3.2.10) in the GSM.

6 SSMIS ( DMSP F-17, F-18 ) and AMSR2 ( GCOM-W1 ) are used.
7There are some typographical errors in Kobayashi et al. (2015).
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2.8.2 Mesoscale Snow Depth Analysis

In the Meso Scale Model (MSM, Section 3.5), snow cover data are used to gauge the status of ground snow,
with depths exceeding 5 cm in individual grid squares being classified as snow-covered. Snow depth analysis
data are produced via a two-dimensional OI (2D-OI) in the high-resolution snow depth analysis system. The
first guesses for 2D-OI are set using an offline version of the land surface model (LSM) with the same domain
and grid spacing as the MSM. The offline LSM and the 2D-OI are outlined below.

The offline LSM, which includes a multi-layer snowpack model, simulates typical snow processes such
as accumulation, compaction and ablation. The atmospheric forcing data necessary to drive the LSM are air
temperature and wind velocity at the lowest atmospheric model level and radiative fluxes toward the surface as
predicted by the MSM. Radar/Raingauge Analyzed Precipitation data (see Subsection 4.4.1) are used as rain
and snowfall inputs to the LSM.

The model first guesses and observations reported from SYNOP and AMeDAS stations are handed over
to the 2D-OI system in the snow depth analysis system. The methodology of OI is based on Brasnett (1999),
where the correlation coefficient, µkl, is given by

µkl = α(rkl)β(∆zkl) (2.8.1)

with the horizontal and vertical separation, rkl and ∆zkl between points k and l. α(rkl) and β(∆zkl) are the
horizontal and vertical structure functions:

α(rkl) =
(
1 +

rkl

L

)
exp

(
− rkl

L

)
, (2.8.2)

β(∆zkl) = exp

−
(
∆zkl

h

)2
 , (2.8.3)

where L and h are set to 25 km and 500 m, respectively. The standard deviations of observation and background
errors are set at 4 and 3 cm, respectively.

2.9 Soil Moisture Analysis

Global soil moisture analysis is performed as part of Global Analysis (Table 2.1.1) every six hours. Soil
moisture fields for the first three soil layers are analyzed via a simplified Extended Kalman Filter (EKF) (Hess
2001, de Rosnay et al. 2013) using first-guess forecasts of soil moisture and analyzed screen-level temperature
and relative humidity.

In this EKF, the analyzed state vector xa at time ti is calculated for each grid point as

xa(ti) = xb(ti) +Ki
[
yo(ti) − Hi(xb)

]
(2.9.1)

where xb, yo and Hi are the first-guess state vector, observation state vector and nonlinear observation operator,
respectively. In global soil moisture analysis, values (i.e., degrees of saturation) for the first three soil levels
(from the surface to a depth of 0.19 m) correspond to xa and xb. Analyzed screen-level temperature and relative
humidity are treated as yo. The Kalman gain matrix Ki is calculated as

Ki =
[
B−1 +Hi

TR−1Hi
]−1

Hi
TR−1 (2.9.2)

where B and R are background-error and observation-error covariance matrices, respectively. Following de
Rosnay et al. (2013), these are static and diagonal matrices composed of error variances for simplification. The
terms are based on soil moisture standard deviation σb = 0.02 m3/m3, and screen-level parameter standard
deviations of σT = 1 K for temperature and σRH = 4 % for relative humidity. Hi is a linearized observation
operator approximated from finite differences between perturbed and unperturbed forecasts based on a low-
resolution (TL319L128) version of GSM2103 (Table 3.1.1).
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The analyzed screen-level parameters are derived from two-dimensional optimal interpolation (2D-OI)
assimilating SYNOP observations. The spatial correlation coefficient for background error, µkl, is based on
Drusch and Viterbo (2007) as

µkl = α(rkl)β(∆zkl) (2.9.3)

with horizontal and vertical separation rkl and ∆zkl between points k and l. α(rkl) and β(∆zkl) are the horizontal
and vertical structure functions:

α(rkl) = exp
{
−1

2

( rkl

L

)2
}
, (2.9.4)

β(∆zkl) = exp

−
(
∆zkl

h

)2
 , (2.9.5)

where L and h are 200 km and 800 m, respectively. The standard deviations of background and observation
errors are 1.5 and 2 K for temperature and 5 and 10 % for relative humidity. In Eq. (2.9.1), the analysis
increments of screen-level parameters are used as background departures yo(ti) − Hi(xb).

2.10 Non-real-time Quality Control

2.10.1 GDPFS-RSMC Operational Activities

JMA is designated as a Regional Specialized Meteorological Center (RSMC) of the World Meteorological
Organization (WMO) Global Data-processing and Forecast System (GDPFS), and is known in this role as
RSMC Tokyo. In March 1991, WMO Commission for Basic Systems (CBS) designated RSMC Tokyo as
a lead center for monitoring the quality of land surface observations in Region II (Asia). As a part of its
operational activities, JMA produces a six-monthly report containing a consolidated list of stations suspected
of reporting low-quality observation data on station level pressure, mean sea level pressure and geopotential
height during the six-month periods ending June and December. This report is available on JMA’s website8.

RSMC Tokyo also produces monthly statistics on the quality of all observations received in time for use
in its final global analyses. Copies of these reports are provided to major GDPFS centers and to the WMO
Secretariat. The reports are also available on JMA’s website9.

Data quality evaluation is based on differences between observations and first guess fields (three to nine-
hour forecasts) from the global model. Standard procedures and formats for the exchange of monitoring results
are given in the Manual on GDPFS (WMO-No.485).

2.10.2 WDQMS Operational Activities

The WMO Integrated Global Observing System (WIGOS) is a framework for all WMO observing systems and
WMO contributions to co-sponsored observing systems in support of all WMO Programmes and activities. At
WIGOS workshops on Quality Monitoring and Incident Management held in December 2014 and December
2015, plans were developed for a WIGOS Data Quality Monitoring System (WDQMS). The Task Team on
WDQMS (TT-WDQMS) is working to develop the WDQMS under the Inter-Commission Coordination Group
on WIGOS. Four NWP centers (European Centre for Medium-Range Weather Forecasts (ECMWF), National
Centers for Environmental Prediction (NCEP), JMA and Deutscher Wetterdienst (DWD)) contribute to the
NWP Quality Monitoring Pilot Project on WDQMS, providing monitoring output in near-real time to the
WMO Secretariat. Contributions began with surface pressure data, and now also include information on surface
humidity, wind, temperature and upper-air soundings.

8http://qc.kishou.go.jp/clsf.html
9http://qc.kishou.go.jp/mmr.html
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2.10.3 Blacklist Management
As mentioned in Section 2.3, low quality observational data can result in significant forecast degradation. The
cause of low quality may be instrumental failure, which can continue for a long time. Such observation data
should be excluded in the first step of QC, and a blacklist is kept to meet this need. Blacklist management is
one of the most important activities in QC. The quality of all observations is evaluated based on differences
between observations and first guess fields from the global model (three to nine-hour forecasts), the meso-scale
model (zero to three-hour forecasts) and the local forecast model (one-hour forecasts). Providers of problematic
observation data are added to the blacklist.

2.11 Climate Data Assimilation System
For climate system monitoring and seasonal prediction, it is essential to comprehend both current and past
climate conditions accurately and consistently over a long period of time. To this end, a high-quality, spatio-
temporally homogeneous long-term climate dataset based on reanalysis of past observations using a state-of-
the-art NWP technique is maintained.

JMA conducted its second global atmospheric reanalysis (the Japanese 55-year Reanalysis, or JRA-55;
Kobayashi et al. 2015) covering the period from 1958, when regular radiosonde observations began on a
global basis. Production is continued to the present on a near-real-time basis as an operational climate data
assimilation system, thereby supporting real-time climate monitoring and seasonal prediction. JRA-55 data
are also used in various research and development activities at JMA and in wider communities of fundamen-
tal academic fields such as meteorology, climatology and oceanography, practical application fields such as
agricultural meteorology and renewable energy, and other areas.

The data assimilation system used to produce JRA-55 data is described in Kobayashi et al. (2015). The sys-
tem is based on the TL319 version of JMA’s operational data assimilation system as of December 2009 (JMA
2007, 2013), and features numerous improvements made since Japan’s first global atmospheric reanalysis (the
Japanese 25-year Reanalysis, or JRA-25; Onogi et al. 2007). These include a revised longwave radiation
scheme, a 4D-Var data assimilation system and a variational bias correction scheme for satellite radiances.
The system also incorporates several newly available observational datasets produced as a result of ongoing
efforts to improve the quality of past observation data, including homogenization of radiosonde temperature
observations (Haimberger et al. 2008, 2012) and reprocessing of satellite data at major meteorological satellite
centers (e.g. van de Berg et al. 2002; Oyama 2010).

These improvements make JRA-55 products considerably superior to JRA-25 products. Two major issues
with JRA-25 (a cold bias in the lower stratosphere and a dry bias in the Amazon basin) are mitigated in JRA-
55, and the temporal consistency of temperature analysis is considerably better than in previous reanalysis
products.
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