
Chapter 2

Data Assimilation Systems

2.1 Summary

Three kinds of major data assimilation systems for the analysis for atmospheric fields are operated at JMA:
Global Analysis (GA), Meso-scale Analysis (MA) and Local Analysis (LA). Specifications of the JMA data
assimilation systems are summarized in Table 2.1.1. All the analyses are performed by using the procedures
shown in Figure 2.1.1.

The following is a brief description of the major components of the analysis systems.

1. Observational data are received from the GTS, Internet and dedicated network. They are decoded ac-
cording to their code forms. If typhoons exist in the western North Pacific, typhoon bogus profiles are
created.

2. Various pre-analysis procedures, such as quality control, data selection and bias correction, are applied
to the decoded observational data. In the pre-analysis process, first guess fields retrieved from forecast
models are used as a reference of the present atmospheric conditions.

3. The four-dimensional variational method is adopted in the global analysis and the meso-scale analysis.
And the three-dimensional variational method is adopted in the local analysis. All the analyses are
carried out on the grid of the corresponding forecast models except for the local analysis.

The atmospheric fields analyzed from the data assimilation systems are used as initial conditions of forecast
models. First guess field and boundary conditions of data assimilation systems are provided from forecast
models as shown in Figure 2.1.2.

Sea surface temperature field (see Section 5.2) and snow depth field are also analyzed every day. For climate
monitoring, JMA Climate Data Assimilation System (JCDAS) is operated taking over the data assimilation
cycle of the Japanese 25-year Reanalysis (JRA-25) (see Section 2.10).

2.2 Observation Data

2.2.1 Summary of Observation Data Used in the Analysis

A variety of observations has been utilized in the present NWP systems in JMA. Table 2.2.1 summarizes the
utilized observation types and the parameters which are inputted into the objective analysis systems, as of 1
January 2013. The additional information for each observation type is described in the following subsection.
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Figure 2.1.1: Major functional components and data flow in the JMA data assimilation system
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Table 2.1.1: Specifications of the JMA data assimilation systems

Analysis Model Global Analysis (GA) Meso-scale Analysis (MA) Local Analysis (LA)
Analysis time 00, 06, 12, 18 UTC 00, 03, 06, 09, 12, 15, 18, 21 UTC 00, 03, 06, 09, 12, 15, 18, 21 UTC

Early analysis:
2h20m (00,06,12,18UTC) 50m 30m

Data cut-off time Cycle analysis: (00,03,06,09,12,15,18,21 UTC) (00,03,06,09,12,15,18,21 UTC)
11h50m (00,12UTC)
7h50m (06,18UTC)

Horizontal Grid system Reduced Gaussian grid Lambert projection Lambert projection
Horizontal resolution TL959 (20km) 5km at 60◦N and 30◦N 5km at 60◦N and 30◦N
Number of grid points (1920 − 60) × 960 721 × 577 441 × 501
Horizontal resolution TL319 (55km) 15km at 60◦N and 30◦N -

of inner model
Number of grid points (640 − 60) × 320 241 × 193 -

of inner model
Vertical coordinate σ-p hybrid z-z? hybrid

Vertical levels Surface +60 levels Surface +50 levels 50 levels
up to 0.1hPa up to 21.8km up to 21.8km

Analysis scheme 4-dimensional variational method 3-dimensional variational method
# Global snow depth analysis is carried out everyday on 1◦ × 1◦ longitude-latitude grids.
## JMA Climate Data Assimilation System (JCDAS) is performed taking over the data assimilation

cycle of the Japanese 25-year Reanalysis (JRA-25)(see Section 2.10).

Figure 2.1.2: Major flow of the JMA data assimilation systems
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Table 2.2.1: Summary of the observation types and the parameters used in the objective analysis. The meanings
of the symbols in the third column are as follows. P: Surface pressure; u: zonal wind; v: meridional wind;
T : Temperature; Rh: Relative humidity; TB: Radiance in brightness temperature; R1: Precipitation amount;
Pwv: Precipitable water vapor; Vr: Radial velocity. The meanings of the symbols in the fourth columns are as
follows. GA: Global Analysis; MA: Meso-scale Analysis; LA: Local Analysis.

Observation types (or the code
name used for reporting the ob-
servation)

Short description Parameters
used in the
analysis

The analyses which
use the observation

SYNOP Land surface observations at the world’s weather stations P, u, v,T,Rh GA,MA, LA

AMeDAS Land surface automated observation network in Japan u, v,T LA

SHIP Sea surface observations by ships, oil rigs and moored buoys P, u, v,T,Rh GA,MA

BUOY Sea surface observations by drifting buoys P, u, v,T,Rh GA,MA

TEMP Upper-air observations by radiosondes P, u, v,T,Rh GA,MA

PILOT Upper-air wind observations by rawins or pilot balloons u, v GA,MA

Aircraft Upper-air observations by (mainly commercial) aircrafts. u, v,T GA,MA, LA

Wind Profiler Upper-air wind profile observations in Japan, Hong Kong, Eu-
rope and the U.S.

u, v GA,MA, LA

AMV Atmospheric motion vector (AMV) wind data from geostation-
ary (GEO) satellites and polar orbiting satellites

u, v GA,MA

Scatterometer Ocean surface wind vector (OSWV) data from scatterometers
on low earth orbit (LEO) satellites

u, v GA

MW Sounder Radiance data from microwave (MW) sounders on polar orbit-
ing satellites

TB GA,MA

MW Imager Radiance data from MW imagers on LEO satellites and precip-
itation amount estimated from the MW imager radiance data

TB,R1 GA(TB only),MA

CSR Clear sky radiance (CSR) data of water vapor channels on GEO
satellites’ infrared imagers

TB GA,MA

GNSS-RO Refractivity profile data retrieved from radio occultation
(RO) measurements of the global navigation satellite systems
(GNSS) receivers on LEO satellites

refractivity GA

GNSS-PWV Precipitable water vapor data estimated from atmospheric sig-
nal delay measurements of the ground-based GNSS receivers

Pwv MA, LA

Radar Reflectivity Relative humidity data estimated from 3-dimensional reflectiv-
ity data of JMA weather (Doppler) radars.

Rh MA

Radial Velocity Radial velocity data from JMA weather Doppler radars
(WDRs) and Doppler radars for airport weather (DRAWs).

Vr MA, LA

R/A Radar estimated precipitation amount calibrated by AMeDAS
raingauge network data

R1 MA

Typhoon Bogus see Section 2.4 P, u, v GA,MA
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2.2.2 Supplemental Information for Used Observation
2.2.2.1 SYNOP

SYNOP is a numerical code name used for reporting surface observations at land stations. About 16,000
reports are available within every 6 hours.

2.2.2.2 AMeDAS

AMeDAS (Automated Meteorological Data Acquisition System) is a JMA land surface automated observation
network. Near surface temperature and wind observations at about 840 stations are available in Japan with 10
minutes interval. For precipitation, about 1,300 raingauges are available in the AMeDAS network.

2.2.2.3 SHIP

SHIP is a numerical code name used for reporting surface observations at sea stations, such as ships, oil rigs
and moored buoys anchored at fixed locations. About 4,500 reports are available within every 6 hours.

2.2.2.4 BUOY

BUOY is a numerical code name used for reporting surface observations by drifting buoys. About 7,500 reports
are available within every 6 hours.

2.2.2.5 TEMP

TEMP is a numerical code name used for reporting upper-level pressure, temperature, humidity and wind
observations by radiosondes. The upper air observations are usually taken at the same time each day (00 and/or
12 UTC). About 650 reports are available at these times.

2.2.2.6 PILOT

PILOT is a numerical code name used for reporting upper-level wind observations by rawins or pilot balloons.
About 300, 200 and 100 reports are available at 00 and 12 UTC, 06 UTC and 18UTC, respectively.

2.2.2.7 Aircraft

Aircraft observations are reported by Aircraft Report (AIREP), Aircraft Meteorological Data Relay (AM-
DAR), and Aircraft Communications Addressing and Reporting System (ACARS). Since numerous reports
are received from the U.S., the reports are thinned to one-fiftieth over the continental U.S. in the pre-process of
the analysis. Even after the pre-process, 30,000-50,000 reports are available within every 6 hours in the world.
While vertical profile data can be obtained in the vicinity of airports, only flight level data are available along
the airways apart from airports.

2.2.2.8 Wind Profiler

Upper air wind speeds and directions are observed by wind profilers at the ground. 33 wind profilers are
operated by JMA and the data are available every 10 minutes. The detailed specifications are found in Ishihara
et al. (2006). Wind profiler data from the U.S., Europe, and Hong Kong is also available.

2.2.2.9 AMV

Atmospheric motion vector (AMV) is the wind data derived by tracing the movement of individual cloud or wa-
ter vapor patterns in successive satellite images. The AMVs from 5 geostationary (GEO) satellites (Meteosat-7,
-9, GOES-13, -15 and MTSAT-2) and 2 polar orbiting satellites (Terra and Aqua) are used. AMVs from GEO
satellites cover 60◦N − 60◦S and those from polar orbiting satellites cover the polar regions (higher latitudes
than 60◦).
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2.2.2.10 Scatterometer

Ocean surface wind vectors from scatterometers onboard polar orbiting satellites are used. Only ASCAT
(advanced scatterometer) onboard Europe’s polar orbiting satellite, Metop-A, is being used.

2.2.2.11 MW Sounder

Clear radiances from microwave (MW) sounders are used. The used sounders are AMSU-A (Advance Mi-
crowave Sounding Unit - A) onboard NOAA-15, -16, -18, -19, Metop-A and Aqua, and MHS (Microwave
Humidity Sounder) onboard NOAA-18,-19 and Metop-A. The AMSU-A is a temperature sounder and the
radiance is sensitive to the temperature profiles. MHS is a humidity sounder.

2.2.2.12 MW Imager

The less cloud/rain-affected radiances from MW imagers are used. The used imagers are SSMIS (Special
Sensor Microwave Imager Sounder) onboard DMSP-F16, -F17, -F18 and TMI (TRMM (Tropical Rainfall
Measuring Mission) Microwave Imager) onboard TRMM. The radiance is sensitive to the water vapor amount
at the lower troposphere. Precipitation amounts estimated from the radiances by MSC method (Takeuchi and
Kurino 1997) are also used in the Meso-scale Analysis.

2.2.2.13 CSR

Clear sky radiance (CSR) is the product name of the radiances averaged over cloud-free pixels on water vapor
channels in GEO satellites’ imagers. The CSRs from 5 GEO satellites (Meteosat-7, -9, GOES-13, -15 and
MTSAT-2) are used. The CSR is sensitive to the water vapor amount at the upper troposphere.

2.2.2.14 GNSS-RO

GNSS-RO (Global Navigation Satellite Systems - Radio Occultation) is a technique for measuring atmospheric
profiles. In this technique, a set of atmospheric time delay data of GNSS radio signals received by a low earth
orbit (LEO) satellite is measured during each radio occultation event. Since the delay is a result of the atmo-
spheric radio refraction along the propagation path of the signal, the vertical profiles of refractivity (or bending
angle) of the atmosphere at the tangent point can be estimated with the set of delay data. As the refractiv-
ity is a function of temperature, humidity and pressure, it can be used for determining the profiles of these
properties. The currently used LEO satellites and their GNSS receivers are IGOR (Integrated GPS Occulta-
tion Receiver) onboard COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate)
satellites and TerraSAR-X, GRAS (GNSS Receiver for Atmospheric Sounding) onboard Metop-A, BlackJack
onboard GRACE-A (Gravity Recovery and Climate Experiment) and CORISS (C/NOFS Occultation Receiver
for Ionospheric Sensing and Specification) onboard C/NOFS (Communications/Navigation Outage Forecasting
System).

2.2.2.15 GNSS-PWV

GNSS-PWV (GNSS - Precipitable Water Vapor) is a product name of the observations by ground-based GNSS
receivers. Atmospheric time delays of GNSS radio signals are observed by the receivers and zenith total
delay (ZTD) is estimated by averaging the delays of multiple GNSS satellite signals measured by one receiver.
Since the ZTD depends on the amount of water vapor and temperature over the receiver, PWV amount can be
estimated by using ZTD and supplemental temperature data. GEONET GNSS receiver data are used for GNSS-
PWV analysis in JMA. The GEONET is the ground based GNSS receiver network operated by Geospatial
Information Authority in Japan. About 1,200 receives are operated continuously over Japan.

14



2.2.2.16 Radar Reflectivity

Twenty C-band weather radars are operated by JMA and eighteen of them are equipped with Doppler function.
Three-dimensional reflectivity data are obtained every five minutes. Relative humidity profiles are estimated
from the reflectivity data and NWP grid point values by the technique based on Bayes’ theorem (Caumont
et al. 2010). The relative humidity data are produced within 200 km radius from each radar site below freezing
level.

2.2.2.17 Radial Velocity

Eighteen C-band weather Doppler Radars (WDRs) and 9 Doppler Radars for Airport Weathers (DRAWs) are
operated by JMA. Three-dimensional radial velocity data are available every five minutes within 150 km radius
for WDRs and every six minutes within 120 km for DRAWs. The range resolution is 0.5 km and the azimuthal
resolution is 0.703◦.

2.2.2.18 R/A

Radar/Raingauge Analyzed Precipitation (R/A) data are a product name of composite precipitation data pro-
duced by JMA. The precipitation data are the accumulated precipitation estimation by weather radars with
Z-R relationship (Z = 200R1.6) calibrated by AMeDAS raingauge data in real time. The details are found in
Subsection 4.4.1.

2.3 Quality Control and Relating Procedures
Quality control (QC) is a series of procedures by which “bad” observations are screened out. The QC is a
vital component of the objective analysis system, because observations sometimes include large error and the
erroneous data might degrade the quality of atmospheric analysis extremely. Such degradation leads to the
worse forecast skill. The QC procedures in the JMA objective analysis systems are described in the following
subsections.

2.3.1 SYNOP, AMeDAS, SHIP, BUOY, TEMP, PILOT, Aircraft and Wind Profiler
Direct observations (i.e. SYNOP, AMeDAS, SHIP, BUOY, TEMP, PILOT and aircraft) and wind profiler are
the observations measuring prognostic variables in the NWP such as pressure, temperature, wind and humidity.
The total QC system for these observations is composed by “Internal QC” and “External QC”.

2.3.1.1 Internal QC

Internal QC is the procedures to check and correct observation values using the collocated data in the report
and several external lists or tables. The check items are shown as follows.

1. Blacklist check: Blacklist is a list of problematic stations or data prepared in advance with non-real-time
QC (see Section 2.9). The observations enlisted in the blacklist are rejected in this step.

2. Climatological check: Climatological reasonability is checked in this step. The criteria are defined based
on WMO (1993) in advance.

3. Trajectory check: Consistency of consecutive locations is checked for the reports from moving stations
such as SHIP, BUOY and aircrafts. The moving velocity and direction are checked in this step. It is also
checked for SHIP and BUOY whether the location is in the ocean or not.

4. Inter-element consistency check: Temporal continuity of consecutive reports from surface stations are
checked. Consistencies among observation elements within the report are also checked.
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5. Vertical consistency check: The vertical consistency is checked for TEMP and PILOT data. The check
items are (1) icing of instruments, (2) temperature lapse rate, (3) hydrostatic relationship, (4) consistency
among data at standard pressure levels and those at significant levels and (5) vertical wind shear.

6. Bias correction: A bias correction is applied to the TEMP data which are reported without radiative
heating correction or have apparent systematic biases. The bias correction constants are prepared with
the one-month statistics in the previous month. Same bias correction approach is applied to the aircraft
temperature data for the Global Analysis but not for the meso-scale and Local Analysis.

2.3.1.2 External QC

External QC is the procedures to check the observation values with comparing to the (external) first guess and
neighboring observations. The check items are as follows.

1. Gross error check: The departure (D ≡ O − B) of the observed value (O) from the first guess (B) is
calculated for all the observations. The absolute value of D is compared with the tolerance limits CP (the
criterion for “pass”) and CR (the criterion for “reject”). The datum with |D| ≤ CP passes the QC and the
datum with |D| > CR is rejected. The datum with CP < |D| ≤ CR is regarded as “suspected” and sent to
the following spatial consistency check.

2. Spatial consistency check: The departure D of the suspected observations are compared with the depar-
tures interpolated by the optimum interpolation method (DOI) using the neighboring observations. The
absolute difference of the D and DOI is compared with the tolerance limit CS (the criterion for “suspect”)
for the final judgment and the datum with |D − DOI | ≤ CS is accepted.

Where, the tolerance limits CP, CR, and CS are variable according to the local atmospheric conditions in
the first guess fields. The limits are made small if the time tendency and horizontal gradient are small in
the fields, and vice versa. The scheme is called “Dynamic QC” (Onogi 1998).

3. Duplication check: Duplication of observation reports is frequently found for the data obtained through
different communication lines. The most appropriate report is picked up from the duplicated reports after
the above mentioned checks with considering the status.

2.3.2 AMV
The AMVs enlisted in the blacklist (Table 2.3.1) are rejected in the first step. Then the AMVs with the low
quality indicator (QI, Holmlund 1998) are also rejected. The QI thresholds are defined for each satellite,
domain, vertical level and type of image, respectively. It is followed by a thinning step. The thinning distance
is 200 km. The following steps are the climatological check (see Subsection 2.3.1.1) and the external QC (see
Subsection 2.3.1.2). The details of the QC for AMV are described in the NWP SAF AMV monitoring page1.

2.3.3 Scatterometer
Level 2 ocean surface wind products are used in the Global Analysis. Low quality data over land or sea ice
are rejected at the first step. The wind data with the speed larger than 15 m/s are also rejected for ASCAT
because of the negative bias in the intense wind against the first guess. Then, the most likely wind directions
are selected from the inherent ambiguity wind directions in the scatterometer measurements by both NWP
nudging technique and median filter technique. The next step is the gross error check (see Subsection 2.3.1.2).
In this step, correct wind data are occasionally rejected in and around severe weather systems such as cyclones
and fronts where the wind direction and speed vary sharply. To avoid such undesirable rejection, a specialized
quality control named “Group-QC” is applied. In the Group QC, spatial consistency among the wind vectors
is checked in terms of smooth transition in wind direction and wind speed. The Group-QC-passed data are
excluded from the rejection in the gross error check. The details of the QC for scatterometer are described in
the NWP SAF scatterometer monitoring page2.

1http://research.metoffice.gov.uk/research/interproj/nwpsaf/satwind_report/amvusage/jmamodel.html
2http://research.metoffice.gov.uk/research/interproj/nwpsaf/scatter_report/scatusage/jmamodel.html
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Table 2.3.1: Summary of the blacklisting areas for AMV. The acronyms in the table are as follows. IR: infrared;
WV: water vapor; CSWV: clear sky water vapor; NH: Northern Hemisphere; SH: Southern Hemisphere; Polar
AMV: AMV from polar orbiting satellites; GEO AMV: AMV from geostationary satellite

Kind Blacklisting area
Polar AMV (IR) at NH above 300 hPa or below 900 hPa
Polar AMV (WV/CSWV) at NH above 300 hPa or below 550 hPa
Polar AMV (IR/WV) at SH above 300 hPa or below 550 hPa
Polar AMV (CSWV) at SH above 350 hPa or below 550 hPa
Polar AMV (All) poleward of 88◦N or 88◦S
GEO AMV (All) above 175 hPa or below 975 hPa
GEO AMV (IR) above 275 hPa at poleward of 20◦N or 20◦S
GEO AMV (WV) above 225 hPa at poleward of 20◦N or 20◦S

Table 2.3.2: Summary of the used channel sets of microwave sounders under each condition

AMSU-A MHS
clear sky ocean ch. 4–13 ch. 3–5

clear sky land/coast/sea-ice ch. 6–13 ch. 3–5
cloudy ocean ch. 7–13 ch. 3–5
rainy ocean ch. 9–13 n/a

2.3.4 Satellite Radiance
Satellite radiance data are used in the Global and Meso-scale Analysis as a form of brightness temperature.
A fast radiative transfer model RTTOV10 (Saunders et al. 2012) is employed for the radiance assimilation.
The common QC procedures for the radiance data are blacklist check, thinning and external QC. The blacklist
is the list for problematic instrument prepared in advance with non-real-time QC (see Section 2.9). The data
enlisted in the blacklist are rejected in the first step. In the next step, the data are thinned spatially at each
time slot of assimilation window (approximately one hour) to reduce the computational costs. The following
external QC includes reduction of instrumental scan biases (except for CSR), cloud/rain contamination check,
location check, channel selection and gross error check (see Subsection 2.3.1.2). The QC passed data are
thinned again for the reduction of observation error correlation. The thinned data are outputted to be used in
the data assimilation systems. In the Global Analysis, variational bias correction (VarBC, Derber and Wu 1998;
Dee 2004) is used for the reduction of air-mass dependent biases. VarBC is an adaptive bias correction scheme
where a linear regression formula to represent biases is embedded in the observation operator and the regression
coefficients are set as analysis variables. The formulations are described in Subsection 2.5.7.4. In the Meso-
scale Analysis, the air-mass dependent biases are removed in the pre-process by using the VarBC coefficients
obtained in the latest Global Analysis. The used satellite radiance data are the data from MW sounder, MW
imager and CSR. The specific procedures for each data are described in the following subsections.

2.3.4.1 MW sounder

The sets of used channels are defined according to each surface and atmospheric condition in advance. The
sets are summarized in Table 2.3.2.

2.3.4.2 MW imager

The less cloud/rain-affected radiances of vertically polarized channels are assimilated over the ice-free ocean.
In the Meso-scale Analysis, precipitation retrievals are also assimilated over the ocean surrounding Japan. The
precipitation amount estimations are resampled onto the grid of inner model with spatial smoothing.
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2.3.4.3 CSR

The CSR are thinned to every 2.0 degrees horizontally and every 2 hours temporally. The CSR having a low
percentage of clear pixels and a large standard deviation of brightness temperature are excluded because these
data have low representativeness of the area. For Meteosat-7, data in nearly local midnight are also excluded
to avoid solar stray light contamination (Munro et al. 2004).

2.3.5 GNSS-RO

Refractivity data at the altitudes up to 30 km are used in the Global Analysis with the 500 m vertical intervals.
The observation errors are defined as a function of height.

2.3.6 GNSS-PWV

The PWV data are used in the meso-scale and Local Analysis. Since there are steep mountains in Japan, large
differences are found between the actual ground surface elevation and the model surface elevation especially
in mountain area. In the Meso-scale Analysis, the stations with 500 m or higher elevation from the mean sea
level are not used. The stations from which the absolute difference of the elevation to the model surface is
larger than 200 m are also not used. The GNSS-PWV with the value smaller than 1 mm or larger than 90 mm
is rejected in a climatorogical check. Then, the first guess PWV is interpolated or extrapolated to the actual
terrain surface and compared to the GNSS-PWV. The data with the absolute difference from the first guess
are larger than 8 mm are rejected in a gross error check. Since there are dense GNSS-PWV network for the
analysis systems, the data are thinned by 30 km for the Meso-scale Analysis and 15 km for the Local Analysis.

2.3.7 Radar Reflectivity

To assimilate the radar reflectivity data in the Meso-scale Analysis, an indirect assimilation technique which
is called 1D+4DVAR (Ikuta and Honda 2011) is employed. The technique is based on Caumont et al. (2010).
In the 1D+4DVAR, radar reflectivity data are used for retrieving relative humidity (RH), and the RH retrievals
are assimilated as conventional observation data by 4D-Var. In this system, only the RH retrievals below the
melting layer are used because it is known the reflectivity can be only inappropriately simulated in ice phase
with the operational MSM hydrometeors forecast and it causes large biases for the RH retrievals. In addition,
the data around the height of 2000 m above sea level are also not used since the data used for making R/A,
which are already assimilated in the Meso-scale Analysis in another form (surface rainfall, see Subsection
2.3.9). For the operation, reflectivity data from the JMA C-band radar network are used.

2.3.8 Radial Velocity

The hourly radial velocity data from the WDRs and the DRAWs are used in the Meso-scale Analysis. In the
pre-process, the data are resampled into the 5 km range resolution and the 5.625◦ azimuthal resolution. The
resampled data are checked with respect to the sampling data number, radial velocity variance and difference
of the maximum and minimum velocity. High elevation angle data (≥ 5.9◦) and the data close to the radar site
(< 10km) are not used. The reason for the former procedure is to avoid the contamination of precipitation fall
velocity, and the latter is to avoid the back scattering noise. The data with the wind speed less than 10 m/s is
also not used to avoid ground clutter contamination.

2.3.9 R/A

Hourly R/A data are assimilated in the Meso-scale Analysis. Since the R/A data are the quality controlled
product, the 1 km grid R/A data are simply resampled into the inner-model grid box (15 km) and inputted into
the Meso-scale Analysis.
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2.3.10 CDA: Feedback Data Base

All information concerning the quality of observational data obtained during the quality control procedure are
archived in the Comprehensive Database for Assimilation (CDA). CDA is extensively used for both real-time
and non real-time data monitoring activities. All information contained in CDA is managed by the form of
integer 2 byte. The format of CDA is quite simple and is designed for flexible use so that any information
concerning observation can be archived easily. CDA is so user-friendly that any information can be extracted
easily. The CDA file size tends to become large but it can be remarkably compressed using utilities in UNIX.

2.4 Typhoon Bogussing

For tropical cyclones (TCs) over the western North Pacific, typhoon bogus data as a form of pseudo-observation
data are generated and assimilated for a realistic TC structure analysis according to the model resolutions. They
are made up of pressures at the mean sea level (Pmsl) and vertical profiles of the wind (Wpr f ) around TC. The
wind profiles are placed at 1000 hPa, 925 hPa, 850 hPa, 800 hPa, 700 hPa, 600 hPa, 500 hPa, 400 hPa and 300
hPa. The generated bogus has axially asymmetric structure in all the analyses.

Firstly, symmetric bogus profiles are generated automatically from the central pressure and the 15m/s wind
speed radius of TC (R15) analyzed by forecasters. The surface pressure profile is defined using Fujita’s formula
(Fujita 1952). The gradient wind balance is assumed to calculate the surface pressure profile meeting the
requirement from the wind speed at the particular radius R15. Upper geopotential profiles are defined by the
empirical formula based on the TC analysis described in Frank (1977). It is assumed that the temperature
anomaly has its maximum at 250 hPa. The wind field on each level is derived from the geopotential height
profiles with the gradient wind balance. The surface wind field is also derived from the gradient wind balance
but it is modified to include the effect of surface friction.

Secondly, asymmetric components are retrieved from the first guess fields and added to the symmetric
bogus profile to generate the final asymmetric bogus structure. When the target area of bogussing is across the
lateral boundary in the Meso-scale Analysis, asymmetric components are not added.

Finally, pseudo-observation data are generated from the resulting bogus structure at the analyzed TC center
(Pmsl), TC center on the first guess (Pmsl), and several points surrounding the analyzed TC center (Pmsl and
Wpr f ). The configuration for the surrounding point distribution is adaptive to the typhoon track error on the
first guess.

2.5 Global Analysis

2.5.1 Introduction

The 4-dimensional variational data assimilation (4D-Var) system for the JMA Global Spectral Model (GSM)
has been in operation since February 2005 in place of the 3-dimensional variational data assimilation (3D-Var)
system. The JMA global 4D-Var system is used for the global cycle analysis (00,06,12,18UTC) and the global
early analysis for the GSM forecast (00,06,12,18UTC). The scheme has the following benefits over the 3D-Var
scheme.

• The dynamics and physics of the forecast model are considered in assimilating data. As a result, ob-
servational data are optimally used in a meteorologically consistent way, so that the analysis increments
become flow-dependent (Figure 2.5.1).

• The observations are assimilated at appropriate observation time.

• It can directly assimilate all observations data including precipitation amount that can be derived from
model variables, although precipitation amount is not assimilated in the JMA global 4D-Var system.
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Figure 2.5.1: Analysis increments (solid line) by 3D-Var (left) and 4D-Var (right) when one pseudo observation
height data (departure 5m) is assimilated (the 20th model level). The broken line indicates the first guess height
field. 4D-Var analysis increments are flow-dependent in accordance with the first guess field.

2.5.2 Description of the Algorithm
The 4D-Var uses 3-9 hour forecast from GSM (TL959L60) as a first guess (background). All data within 3
hours from analysis time are assimilated at appropriate observation time with hourly assimilation slots. The
cost-function measures the distance between the model trajectory and the observations over a 6-hour assimila-
tion window.

An incremental method (Courtier et al. 1994) is adopted in the 4D-Var to save computer resources. In this
method, analysis increment is computed at lower resolution (inner loop:TL319L60) and then is added to the
high-resolution first guess (outer loop:TL959L60). The resolution of inner loop was upgraded from T159L60
to TL319L60 in October 2011 (Kadowaki and Yoshimoto 2012).

To obtain the analysis increment ∆xi , the minimization of the cost function J defined by Eq. (2.5.1) is
performed in the inner loop.

J
(
∆x0

)
=

1
2
∆xT

0BBB−1∆x0 +
1
2

n∑
i=0

(
HHHi∆xi − di

)T
RRR−1

i

(
HHHi∆xi − di

)
+ JC (2.5.1)

∆xi+1 =MMMi∆xi =MMMiMMMi−1MMMi−2 . . .MMM0NNN∆x0 (2.5.2)

where subscript i indicates the time and n denotes the end of the assimilation window. ∆x0 is the low resolution
increment at the initial time before the initialization, and ∆xi is the increment evolved according to the tangent
linear model from the initial time to time i and RRRi denotes the covariance matrix of observation errors at time
i and BBB is the covariance matrix of background errors, which are described in detail in Subsection 2.5.6 and
Subsection 2.5.7. MMMi is the tangent linear (TL) model of the low resolution nonlinear (NL) forecast model Mi

described in detail in Subsection 2.5.4. NNN is a nonlinear normal-mode initialization operator (Machenhauer
1977). HHHi is the TL operator of the observation operator Hi. The innovation vector is given at each assimilation
slot by di = y0

i −Hixb
i , where xb

i is the background state evolved by the high resolution NL model, and y0
i is the

observation data at time i. JC is the penalty term to suppress the gravity wave described in Subsection 2.5.5.
To minimize the cost function J, the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algo-

rithm (Liu and Nocedal 1989) with Veersé’s preconditioner (Veersé et al. 2000) is applied. Here, the gradient
of the cost function ∇J is required. It is obtained from the following adjoint procedures Eq. (2.5.3)-Eq. (2.5.6),
which is computed reverse in time.

pn+1 = 0 (2.5.3)

pi =MMMT
i pi+1 +HHHT

i RRR−1
i

(
HHHi∆xi − di

)
(i = n, . . . , 1) (2.5.4)

p0 =MMMT
0 p1 +BBB−1

(
∆x0

)
+HHHT

0RRR−1
0

(
HHHi∆xi − di

)
(2.5.5)
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∇J
(
∆x0

)
= p0 (2.5.6)

where pi is a dummy variable, MMMT
i is the adjoint (AD) model of the TL model MMMi, and HHHT

i is the AD operator of
HHHi. Note that Eq. (2.5.3)-Eq. (2.5.6) should contain additional terms of the penalty term and the initialization
in Eq. (2.5.1), which are neglected here for the simplicity.

The analyzed variables are the relative vorticity, divergence, temperature, surface pressure and the loga-
rithm of specific humidity in the spectral space on the model layers (eta-coordinate). Observational data y0

i are
wind vector, temperature, relative humidity, satellite radiances, etc.

The low resolution increment ∆xi obtained from the minimization of the cost function in the inner loop is
interpolated to the high resolution analysis increment. By adding the increment to the first guess field, high
resolution analysis field is derived.

2.5.3 Description of the Procedure

The JMA global 4D-Var system are performed 4 times a day (00,06,12,18UTC). The observations within 3
hours from each analysis time (within assimilation window) are assimilated. The flow of 4D-Var is shown in
Figure 2.5.2 for the case of 12UTC analysis time. It is the same for the cycle and early analyses.
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Figure 2.5.2: Flow of 4D-Var procedure for the case of 12UTC analysis time

The procedure is as follows:

1. 9-hour forecast (09UTC-15UTC) of the high resolution outer NL model (same as GSM with the resolu-
tion of TL959L60) from previous analysis is used as a first guess (background). The departures between
the model trajectory and observations di = y0

i −Hixb
i over a 6-hour assimilation window (09UTC-15UTC)

are measured. Observations are organized in six time-slots. The time intervals for the first and last slots
are 0.5 hour and 1.5 hour and the others are 1 hour (Figure 2.5.3). All observations in each time slot are
regarded as observed in each representative time.
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2. The 3 hour forecast field (valid at 09UTC) of the first guess is interpolated into the field with the res-
olution of the inner model (TL319L60). The interpolation is performed not only horizontally but also
vertically to consider the difference of the topography between TL959 and TL319.

3. The inner NL model is performed from the interpolated field to calculate the background state in the low
resolution model space.

4. The TL model and AD model are performed to calculate the cost function J and its gradient ∇J with
the innovation vector di = y0

i − Hixb
i . These processes are iterated to minimize the cost function J. The

iteration is performed up to about 70 times. The background trajectory is not updated in our system.

5. After the minimization of J, the field of 3 hour forecast (valid at 12UTC) of the TL model is chosen to
be the analysis increment. It is interpolated horizontally and vertically into the field with the resolution
of the first guess field (TL959L60). Finally the analysis increment is added to the first guess field (valid
at 12UTC) to obtain the final product.

 
 

09 10 11 12 13 14 15UTC 

Analysis time 

Slot 1.0h 1.5h 0.5h 

Assimilation window 

Representative time 

Figure 2.5.3: Schematic diagram of time slots for the analysis time 12UTC. The black circles indicate the
representative time of each time slot.

2.5.4 Inner Model
The inner NL model is basically based on the JMA GSM, but moisture processes (convection scheme and
cloud scheme) are replaced with those of the older GSM (GSM0103; JMA 2002), mainly for the stability of
the inner TL model integration. In addition, the nonlinear normal-mode initialization (Machenhauer 1977) is
added.

The inner TL model includes the following simple processes and most of those are based on the inner NL
model.

1. Initialization: To control the gravity wave, nonlinear normal-mode initialization is adopted.

2. Horizontal Diffusion: Horizontal diffusion is enhanced over that of the inner NL model, according to
Buizza (1998).

3. Surface Turbulent Fluxes: The surface turbulent fluxes are formulated as the Monin-Obukhov bulk
formulae based on the inner NL model. The sensible and latent heat flux are perturbed only over the sea.

4. Vertical Turbulent Diffusion: The vertical turbulent diffusion of momentum, heat and moisture is for-
mulated as the level 2 turbulence closure scheme of Mellor and Yamada (1974) based on the inner NL
model. The diffusion coefficients are not perturbed.

5. Gravity Wave Drag: The parameterization for the orographic gravity wave drag consists of two com-
ponents: one for long waves (wavelength > 100km) and the other for short waves (wavelength ≈ 10km)
based on the inner NL model. The Richardson number is not perturbed in some part for the long waves
for the stability of the inner TL model integration.
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6. Long-wave Radiation: Two kinds of the long-wave radiation are included in the TL model. One is
based on Mahfouf (1999). The tendency of the perturbed temperature T ′ is given by

∂T ′

∂t
= −α g

Cp

∂

∂p

(
4FT ′/T

)
(2.5.7)

where α = 1/{1 + (Pr/P)10}, pr = 300hPa and F is the net radiation fluxes calculated in the inner NL
model, g and Cp denote the gravitational constant and the isobaric specific heat respectively. The other
is related to the difference between the surface ground temperature TG and the bottom level temperature
T1. The tendency of the temperature T for the nonlinear model is:

∂T
∂t
= const + β

(
TG − T1

)
(2.5.8)

where β is a coefficient given by a function of the position. The tendency of the perturbed temperature
T ′ is given by:

∂T ′

∂t
= −βT ′1 (2.5.9)

7. Clouds and Large-scale Precipitation: Clouds and large-scale precipitation are based on the inner
NL model. In the inner NL model, clouds are prognostically determined in a similar fashion to that of
Smith (1990). A simple statistical approach proposed by Sommeria and Deardorff (1977) is employed to
compute the cloud amount and the cloud water content. The parameterization of the conversion rate from
cloud ice to precipitation follows the scheme proposed by Sundqvist (1978). They are much simplified
in the TL model. The cloud fraction, the amount of dropping cloud ice, and the dependence on the water
vapor of the isobaric specific heat are not perturbed. Only some variables are perturbed in computing the
conversion from cloud water to precipitation and in computing the evaporation of the precipitation.

8. Cumulus Convection: Cumulus convection is formulated as prognostic Arakawa - Schubert scheme
(Arakawa and Schubert 1974) based on the inner NL model, but much simplified. The vertical wind
shear and the planetary mixing length are not perturbed. The magnitude of perturbation of mass-flux is
set bound for the stability of the inner TL model integration and it causes that the inner “TL” model is
not exactly linear.

2.5.5 Penalty Term
The penalty term, which is the third term of Eq. (2.5.1), is given by

JC = α

∣∣∣NG∆x0
∣∣∣2 + maxslot∑

i=2

∣∣∣NG∆xi

∣∣∣2 (2.5.10)

where NG denotes an operator to calculate the tendency of the gravity wave mode based on Machenhauer
(1977). ∆x0 is the increment at the initial time before the initialization, and ∆xi is the increment evolved
according to the tangent linear model from the initial time to the representative time of the i-th time slot after
the initialization and the summation is from the second time slot (i = 2) to the last time slot (i = maxslot). α is
a constant 3.0 × 10−2[s4/m2], determined empirically. Though this penalty term is introduced to suppress the
gravity wave in the increment ∆xi, it is also effective to stabilize the calculation.

2.5.6 Background Term
The background term, which is the first term of Eq. (2.5.1), dominates how the 4D-Var analysis procedure
converts the difference between the observation data and first guess into corrections to the first guess. The
multivariate couplings in the analysis variables are based on the geostrophic linear balance between mass
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and wind. To reduce the correlations among the analysis variables, control variables are introduced. In the
algorithm some additional statistical relations are also considered such as the less geostrophic balance in the
smaller horizontal and vertical scales, virtually no geostrophic balance near the equator, the dependency of
the geostrophy on the vertical level, a weak coupling between divergence and vorticity, as well as between
divergence and mass.

The control variables in the 4D-Var are the relative vorticity ζ, unbalanced divergence DU , unbalanced
temperature and surface pressure (T, Ps)U and the logarithm of specific humidity ln q in the spectral space on
the model layers. Autocovariances of the control variables are assumed to be homogeneous and isotropic. The
correlation structures do not depend on the geographical location, but vertical correlations depend on horizontal
scale. The unbalanced variables DU and (T, Ps)U are defined as

∆DU ≡ ∆D − P∆φB (φB = φB(ζ)) (2.5.11)(
∆T
∆ps

)
U
≡

(
∆T
∆ps

)
− Q∆φB − R∆DU (2.5.12)

where P, Q, R are regression coefficients, φB is a modified balance mass variable derived from relative vorticity
described as follows. ∆ denotes the deviation from the first guess. This formulation is similar to that used in
ECMWF before (Derber and Bouttier 1999), they call the regression coefficients as the balance operator. The
regression coefficients are computed statistically using the NMC method (Parrish and Derber 1992) with 24/48-
hour forecast differences to estimate the total covariances for each total spectral coefficient.

In the following subsections, modified balance mass variable is described in Subsection 2.5.6.1, the regres-
sion coefficients are described in Subsection 2.5.6.2, the covariance matrix of background errors are described
in Subsection 2.5.6.3 and Subsection 2.5.6.4, and conversions from control variables to analysis variables are
described in Subsection 2.5.6.5.

2.5.6.1 Modified Balance Mass Variable

The geostrophic balance is well kept at midlevels in the troposphere in extratropics. In other areas the balance
is weak. To consider these relationships a modified balance mass variable is introduced. The statistical rela-
tionships among relative vorticity, divergence and temperature and surface pressure are calculated. First, the
singular value decomposition of the linear balance operator L3 is conducted.

∆φ̃B = L∆ζ = UWVT∆ζ (2.5.13)

where φ̃B is the original balance mass variable, W is a positive semi-definite diagonal matrix, U and V are
orthogonal matrices. The decomposed modes depend on latitude: a singular mode with a small singular value
has large amplitude in low latitude. Second, the regression coefficients between mass variables4, derived from
temperature and surface pressure, and balance mass variables are calculated as follows:

Dn =

〈 (
UT∆Φ

)m

n

(
UT∆φ̃B

)m

n

〉
〈 [(

UT∆φ̃B

)m

n

]2 〉 (2.5.14)

where 〈 〉, Dn and n denote statistical, zonal-wavenumber and vertical-level mean, a positive definite diagonal
matrix and index of singular vectors in latitudinal wave number respectively. The regression coefficients Dn

(0 − 1) indicates how much the geostrophic balance is satisfied. Then the modified balance mass variables are
constructed as follows;

3Each wave number components of L is denoted as

δφ̃B
m
n = cm

n δζ
m
n−1 + cm

n+1δζ
m
n+1 ((n, m) , (0, 0), n = m, m + 1, . . . , N) , cm

n = − 2Ωa2

n2

√
n2−m2

4n2−1
, δφ̃B

0
0 = 0

where Ω is angular velocity of the Earth, a Earth radius, n total wavenumber, m zonal wavenumber.
4The mass variable Φk on the k-th model level is defined by Φk = φk + RdT̄k ln pk.

where Φk is the geopotential height, T̄k is the reference (global mean) temperature, and pk is the pressure on the k-th level, and Rd is
the dry gas constant.
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∆φB = UDUT∆φ̃B = UDWVT∆ζ = L̃∆ζ (2.5.15)

Note that the modified balance operator L̃ consists of 1) the conversion from the spectral space to the
singular vector space, 2) the product of the regression coefficients D, and 3) the conversion from the singular
vector space to the spectral space. The correlation between the modified mass variables and unbalanced mass
variables (i.e. original mass variables – modified balance mass variables) could be neglected in all regions
including the tropics.

2.5.6.2 Regression Coefficients

The regression coefficient matrices P, Q, and R are calculated for each total wavenumber n as follows:

Pn =

〈
∆Dm

n

(
∆φ̃B

m
n

)T
〉〈
∆φ̃B

m
n

(
∆φ̃B

m
n

)T
〉−1

(2.5.16)
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〈 (
∆T m

n
∆(ps)m

n

) (
∆φ̃B
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n
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∆φ̃B

m
n

(
∆φ̃B

m
n

)T
〉−1

(2.5.17)

Rn =

〈[ (
∆T m

n
∆(ps)m

n

)
− Qn∆φ̃B

m
n

] (
(∆DU)m

n
)T

〉〈 (
(∆DU)m

n
) (

(∆DU)m
n
)T

〉−1

(2.5.18)

where 〈 〉 denotes statistical and zonal-wavenumber mean.

2.5.6.3 Background Error Covariance Matrix

The background error covariance matrices of the control variables are calculated for each total wavenumber n
and the matrix size is equivalent to the number of vertical levels for ζ, DU and ln q or the number of vertical
levels +1 for (T, Ps)U .

Bζ n =

〈
∆ζm

n ∆ζ
m
n

T
〉
, BDU n =

〈
(∆DU)m

n (∆DU)m
n

T
〉

(2.5.19)
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, Bln q n =

〈
∆ ln qm

n ∆ ln qm
n

T
〉

(2.5.20)

where 〈 〉 denotes statistical and zonal-wavenumber mean. Total variances of the control variables are rescaled
by a factor of 0.81.

2.5.6.4 Cholesky Decomposition of Background Error Covariance Matrix

The background error covariance matrix mentioned above is decomposed by the Cholesky decomposition. It
gives the independent and normalized (i.e. preconditioned) control variables ∆ym

n as follows:

J(x)
n =

n∑
m=−n

1
2

(
∆x̄m

n
)T B−1

n ∆xm
n =

n∑
m=−n

1
2

(
∆x̄m

n
)T

(
LnLT

n

)−1
∆xm

n =

n∑
m=−n

1
2

(
∆ȳm

n
)T
∆ym

n (2.5.21)

∆ym
n ≡ L−1

n ∆xm
n (2.5.22)

where J(x)
n is a background error term for a control variable x at total wavenumber n, Bn is a background

covariance matrix for x, Ln is a lower triangular matrix.
In summary, normalized control variables ∆ym

n (k) are independent completely, and normalized by the back-
ground error variance. The background term of the cost function is simplified as a summation of square of the
normalized control variables.
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2.5.6.5 Conversions from Preconditioned Control Variables to Analysis Variables

The conversions from the preconditioned control variables to the analysis variables are performed by the fol-
lowing procedures:

∆y
XCT2QD−−−−−−−→


∆ζ
∆DU

∆ (pS , T )U
∆ ln q

 RO2BMA−−−−−−−→


∆ζ
∆DU

∆ (pS , T )U
∆ ln q
∆φB


UPT2PT
UDI2DI
LNQ2Q−−−−−−−→


∆ζ
∆D

∆ (pS , T )
∆q

 (2.5.23)

First, the control variables (relative vorticity, unbalanced divergence, unbalanced temperature and surface
pressure, the logarithm of specific humidity) on each model level in the spectral space are reconstructed by
using Eq. (2.5.22) (XCT2QD in Eq. (2.5.23)). Then, the modified balance mass variable ∆φB is calculated
from the relative vorticity ∆ζ by Eq. (2.5.15). The temperature and the surface pressure and the divergence are
calculated by Eq. (2.5.11)-Eq. (2.5.12) from the unbalanced variables (UPT2PT and UDI2DI). The logarithm
of specific humidity is converted to specific humidity (LNQ2Q). If the specific humidity of the first guess in
the grid space is negative due to the wave-to-grid transform, ∆q is set to be zero.

2.5.7 Observation Terms

2.5.7.1 Observation Data

Assimilated observation types are shown in Table 2.2.1. Brief explanation for each data type and the quality
control procedures are found in Section 2.2 and Section 2.3.

Observational data and the departures (observation minus first guess) are given with the location and time
through pre-analysis procedure. Reported surface pressure data at the station height and sea surface pressure
data of surface observation are assimilated after converted onto the model surface height in prior to assimilation.
Scatterometer data are assimilated as the wind data at the lowest model level, although the data are considered
as wind data at 10 m height above the sea level. Satellite radiance data from MW sounders, MW imagers and
CSRs are directly assimilated using the K matrix model of RTTOV10 (Saunders et al. 2012). GNSS-RO data
are assimilated in the form of refractivity at the tangent point.

2.5.7.2 Observation Error

Observation errors (the diagonal part of the observation error covariance matrix) are estimated based on the
innovation statistics (Desroziers et al. 2005). The observation errors are summarized in Table 2.5.1. The error
at arbitrary reported pressure level is linearly interpolated in the logarithm of pressure (log(p)). The cross
correlations of the observation errors (off diagonal part of the observation error covariance matrix) are not
considered explicitly in the 4D-Var. To ignore the cross correlation term in the cost function, (horizontally or
vertically) dense observations are thinned spatially in the pre-analysis procedure and the observation errors are
inflated with the predefined factors.

2.5.7.3 Observation Operator

In the 4D-Var, observations at the given location and time are simulated by using the forecast variables at the
surrounding grids in the nearest forecast hour with the spatial inter/extrapolation and the variable conversion.
Observation operator consists of these consecutive procedures. Linear vertical interpolation is performed first
with respect to logarithm of pressure. Extrapolation under the model ground surface is also performed. Then
linear horizontal interpolation and extrapolation to the North and South poles are carried out.Then the variable
conversions such as u, v wind components to wind speed are performed.
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Table 2.5.1: The observation error tables used in the operational Global Analysis for (a) direct observations,
(b) AMV, (c) AMSU-A, (d) MHS, (e) SSMIS, (f) TMI and (g) CSR from five geostationary satellites . Ps, u, v,
T , RH and TB denote surface pressure, (u, v wind components), temperature, relative humidity and brightness
temperature, respectively. “x” in (c)-(g) denotes that the channel is not used.

(a) conventional observation (b) AMV
element Ps(hPa) u, v(m/s) T (K) RH(%) element u, v(m/s)

level(hPa) level(hPa)
1000 2.3 1.7 6.4 1000 4.5

850 2.4 1.2 15.9 850 4.5
700 2.5 1.0 19.8 700 4.5
500 2.5 0.8 31.5 500 4.5
300 2.7 0.9 31.7 300 5.3
200 2.8 1.1 24.1 200 5.8
100 0.7 3.1 1.2 3.8 100 6.8
50 3.0 1.4 1.4 50 7.0
30 3.0 1.5 1.3 30 7.2
10 3.9 2.5 1.3 10 7.6

1 4.6 5.4 1.3 1 9.1
0.4 7.7 7.6 1.3 0.4 10.6
0.1 7.7 7.6 1.3 0.1 10.6

(c) AMSU-A TB (K)
satellite Aqua Metop-A NOAA-15 NOAA-16 NOAA-18 NOAA-19
channel

4 x 0.45 0.45 x 0.45 0.45
5 x 0.3 0.3 0.3 0.3 0.3
6 0.45 0.3 0.3 0.3 0.3 0.3
7 x x 0.3 x 0.3 0.3
8 0.3 0.3 0.3 x 0.3 x
9 0.3 0.3 0.3 0.3 0.3 0.3

10 0.3 0.3 0.3 0.3 0.3 0.3
11 0.3 0.45 x 0.45 0.45 0.45
12 0.64 0.64 0.64 0.64 0.64 0.64
13 1.02 1.02 0.85 0.85 1.02 1.02

(d) MHS TB (K) (e) SSMIS TB (K) (f) TMI TB (K)
satellite Metop-A NOAA-18 NOAA-19 satellite DMSP-F16 DMSP-F17 DMSP-F18 satellite TRMM
channel channel channel

3 18 18 x 13 7.6 7.6 7.6 3 7.2
4 13.5 13.5 13.5 14 10 10 10 5 10
5 9 9 9 16 8 8 8 6 7.2

17 8.8 8.8 8.8 8 8.8

(g) CSR TB (K)
satellite GOES-13 GOES-15 Meteosat-7 Meteosat-9 MTSAT-2

1.5 1.5 1.5 1.5 1.5
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2.5.7.4 Variational Bias Correction

As mentioned in the Subsection 2.3.4, biases of satellite radiance data are corrected by variational bias cor-
rection (VarBC). In the 4D-Var with VarBC, the observation operators are extended to include bias correction
terms and the control (analysis) variables are extended to include bias correction (regression) coefficients. The
coefficients are optimized as control variables in each analysis.

The extended form of the cost function Eq. (2.5.1) is defined as follows.

J (∆z0) =
1
2
∆xT

0BBB−1∆x0+
1
2
∆βTBBBβ

−1∆β+
1
2

n∑
i=0

HHHi∆xi +

m∑
j=0

∆β j pi, j − di

T

RRR−1
i

HiHiHi∆xi +

m∑
j=0

∆β j pi, j − di

+ JC

(2.5.24)
where,

∆z0 ≡
[
∆x0

T,∆βT
]T
, BBBβ ≡ diag

(
Fin f

2

Nvar
, . . . ,

Fin f
2

Nvar

)
, Nvar ≡


N

log10
N

N0
+1

(N ≥ N0)

N0 (N < N0)

∆z0 is the extended increments which consists of the low resolution model variables’ increments ∆x0 and
the bias correction coefficients’ increments ∆β, BBBβ is the background error covariance matrix for the bias
correction coefficients β, pi, j is the predictors for the bias correction, m is the number of all the predictors for
all the radiance observation types, Fin f is the inflation factor defined arbitrarily, N is the number of data and
N0 is the threshold for valid number of data.

The second term of the right hand side of Eq. (2.5.24) is the background term for the bias correction
coefficients and the term

∑m
j=0 ∆β j pi, j is the bias correction term. This equation is used in the 4D-Var instead

of the Eq. (2.5.1).

2.6 Meso-scale Analysis

2.6.1 Introduction
The Meso-scale Analysis (MA) produces initial conditions for the Meso-scale Model (MSM, Section 3.5) every
three hours, aimed at incorporating information from observations into the model to assist in better forecasting
weather phenomena, with emphasis on high impact events.

In March 2002, a 4-dimensional variational (4D-Var) scheme was introduced as the data assimilation
scheme of the MA (Ishikawa and Koizumi 2002) in place of a 3-dimensional optimal interpolation (3D-OI)
scheme. This is the first operational limited-area 4D-Var system in the world. After the MSM forecast model
was upgraded to a non-hydrostatic model (JMA-NHM; Saito et al. 2006) in September 2004, a non-hydrostatic
model-based 4D-Var, the “JMA Nonhydrostatic model”-based Variational Analysis Data Assimilation (JNoVA;
Honda et al. 2005), replaced the former hydrostatic 4D-Var in April 2009, allowing the MA to produce initial
conditions more consistent with the revised MSM forecast model.

Various observations are used to contribute to improve accuracy of predictions for meso-scale weather
events, including those from weather radars, satellite observations, and ground-based GNSS. Assimilating
these observations with an advanced data assimilation scheme of 4D-Var, the MA is designed to produce
highly-balanced initial conditions consistent with the model equations.

2.6.2 Operational System
The MA adopts the JNoVA system and produces initial conditions for the MSM forecasts every 3 hours (00,
03, 06, 09, 12, 15, 18 and 21UTC). Figure 2.6.1 shows a schematic depiction of the MA process. This process
is carried out as follows (ordinal numbers correspond to those in Figure 2.6.1):

1. Initialized with the previous MA, run the high-resolution (5km) forecast model within the data assimila-
tion window (0 to 3-hours) to obtain the first guess.
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2. Perform quality-control of observations (see Section 2.3 for details) and calculate deviations of the ob-
servations from the first guess.

3. Execute the JNoVA to assimilate the observations on a low-resolution (15km) space.

4. Add analysis increments (on the low-resolution space) to the (high-resolution) first guess through an
interpolation process, and make an initial condition for the next step.

5. With the initial condition made in the previous step, run the high-resolution (5km) forecast model within
the data assimilation window to obtain an initial condition for the MSM.

In the MA, the first and the last steps in which the high-resolution forecast model is run are called “outer
loop”, and the step in which the JNoVA on the low-resolution space is executed is called “inner loop”. The
forecast model used in the two outer loops is identical to the model used in the MSM, namely, JMA-NHM. The
analysis domain is shown in Figure 2.6.2, with a topographic map at a 5-km resolution used in the MA. Lateral
boundary conditions are given by the Global Spectral Model (GSM) forecasts, while the initial conditions of
the first guess are taken over from the previous MA (3-hour forecast in the last outer loop). In other words, the
MA frames a cycle analysis being nested into the GSM.

The data assimilation window is set to 3 hours, and the end of the window corresponds to an analysis
time. The cut-off time of the inputted observation data for the MA is 50 minutes after each analysis time. The
received observational data by the cut-off time are distributed to 4 time-slots by rounding off the observation
time to hours (as described by 4 starry shapes under curly braces in Figure 2.6.1). Therefore, the data observed
within the period from 3.5 hours before to 0.5 hours after the analysis time are assimilated in the inner loop.

Figure 2.6.1: Schematic procedure of the MA (an exam-
ple of 03UTC analysis)

Figure 2.6.2: Analysis domain and topography
of the MA

The JNoVA in the inner loop, as mentioned above, is a data assimilation system based on the 4-dimensional
variational (4D-Var) method, detailed in the following Subsection 2.6.3. The variational method is based on
the maximum likelihood estimation, and the optimal values (i.e. analysis fields) are determined by minimizing
the “cost function” (see Subsection 2.6.3.1 for details). In this minimizing procedure, the cost function and its
gradient require to be calculated iteratively (about 32 times on average) and it needs considerable computa-
tional costs. For the purpose of reducing these costs, the operational JNoVA adopts the incremental approach
(Courtier et al. 1994). In this approach, a low-resolution model relative to the model used in the outer loop
(equivalent to the MSM) is used in the minimization of the cost function. Operational formulation of minimiz-
ing the cost function with this incremental approach is explained in Subsection 2.6.3.1. The model used in the
minimization process in the JNoVA is called “inner model”, and its specifications are described in Subsection
2.6.3.3. As for the model resolution, we use the horizontal grid spacing of 5km (721 × 577 grid points) with
50 vertical layers in the outer loops. On the other hand, larger horizontal grid spacing of 15km (241 × 193 grid
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points) with 40 vertical layers are used in the inner loop. In daily operation, the calculation time of the inner
loop is about 21 minutes, while the outer loops are about 3 minutes each.

2.6.3 Basic Formulation
2.6.3.1 Cost Function

In the MA system, 4D-Var data assimilation is used to seek the model trajectory in a phase space by minimizing
its deviation from observations and the first guess. The deviation is measured using a cost function J, defined
as

J(x0) = Jb + Jo + Jp =
1
2

(
x0 − xb

0

)T
B−1

(
x0 − xb

0

)
+

N∑
t=0

1
2

(
H(xt) − yt

)T
R−1

(
H(xt) − yt

)
+ Jp , (2.6.1)

where subscript T indicates transpose.
The first and the second terms of Eq. (2.6.1) are called the background and the observation terms, which

measure the deviation from the first guess and the observations, respectively. x0 is the model state at the
beginning of the data assimilation window (time level t = 0) to be optimized5, xb

0 the first guess of the model
state at t = 0, yt a column vector consisting of observational data available at t (t = 0, ...,N). xt is a model state
at t which is forecasted from the initial condition x0, that is

xt = Mt(x0) , (2.6.2)

where Mt denotes the forecast operator. H is an observation operator which converts a model state space to
an observation space. The H typically consists of conversions from model variables to observed parameters
and interpolations from model grid points to observation points. The error covariance matrixes, B and R,
specify error profiles (uncertainty and error correlation) of xb

0 and yt, respectively(see Subsection 2.6.3.2 and
Subsection 2.6.4.2).

The third term of Eq. (2.6.1) Jp is the penalty term based on a digital filter to suppress high frequency
noises (mainly gravity wave noises)(Gauthier and Thépaut 2001). The penalty term is given as

Jp =
λ

2

∣∣∣∣∣∣∣∣δxN/2 − δxN/2

∣∣∣∣∣∣∣∣2
E
, (2.6.3)

where λ denotes a weighting factor, δxN/2 the model state analysis increment at the center of the data assimi-
lation window (t = N/2), δxN/2 digital-filtered analysis increment at t = N/2, || · · · ||E the moist total energy
norm suggested by Ehrendorfer et al. (1999).

For a time series of the model states over the data assimilation window, {x0, ..., xN}, the digital-filtered state
x at t = N/2 is given as

xN/2 =

N∑
k=0

hN/2−kWk xk , (2.6.4)

where

hk =
sin kθc

kπ
, (2.6.5)

denotes the low-pass filter that removes time oscillations exceeding a cutoff frequency θc. The Dolph-Chebyshev
window function Wk (Lynch 1997) is also used to suppress the noise from the Fourier truncation (Gibss oscil-
lation).

In the MA, the incremental approach is adopted to reduce the computational costs. Some implementations
to reduce the computational costs of 4D-Var scheme are proposed by Courtier et al. (1994). In the MA, the

5The vector to be optimized, x0, can also include lateral boundary conditions over the data assimilation window, but this is not adopted
in the operational MA.
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Remark5 of Section3 in the Courtier et al. (1994) is used6. In the incremental approach of MA, the optimization
is performed using a inner model (see Subsection 2.6.3.3) to obtain an analysis increment in the low resolution
model space (inner loop). A low resolution version of an analysis increment at t = 0, δw0, and background
error covariance BW are given as

δw0 = S(x0 − xb
0) , (2.6.6)

BW ≈ SBST , (2.6.7)

where S denotes a conversion operator from the high resolution to the low resolution. As a result, the low
resolution cost function can be expressed as

J(δw0) =
1
2
δwT

0 B−1
W δw0 +

1
2

∑
t

[
G(wt) − ŷt

]T
R−1

[
G(wt) − ŷt

]
+Jp , (2.6.8)

wt = Lt(w0) , (2.6.9)

where G denotes the low resolution observation operator, Lt the inner model forecast operator. The observation
vector yt is modified as

ŷt = yt − H(xb
t ) +G(wb

t ) , (2.6.10)

to input the high resolution departures yt − H(xb
t ) to the inner loop. The high resolution analysis at t = 0 is

given as

x0 = xb
0 + S−Iδw0 , (2.6.11)

where S−I denotes an interpolation operator from the low resolution to the high resolution model space. The
final analysis xN is obtained by running forecast with the high resolution model over the data assimilation
window (outer loop).

xN = MN(x0) . (2.6.12)

2.6.3.2 Background Error Covariance

As mentioned above, the background error covariance B specifies error profiles of the first guess (Subsection
2.6.3.1). However, calculations using explicit B are unfeasible, because of an extremely large dimension of the
model state space. In practice, drastic simplifications are applied on B to make the problem tractable.

A group of parameters are defined as control variables, and their background errors are treated to be uncor-
related with each other. The control variables used in the MA are as follows.

• u: x-component of horizontal wind
• v: y-component of horizontal wind
• (θ, ps): potential temperature and surface pressure
• q̃v = qv/qbs

v : pseudo relative humidity (qv: specific humidity, qbs
v : saturation specific humidity of the first

guess)

For each control variable (denoted by φ), spatial structure of the background error covariance Bφ is modeled as

Bφ = Bφ1/2
v Cφ1/2

h Cφ1/2T
h Bφ1/2T

v . (2.6.13)

The Bφ1/2
v is a square root of the vertical background error covariance Bφ

v (= Bφ1/2
v Bφ1/2T

v ), which is diagonal
with respect to horizontal locations, and is assumed to be homogeneous over the domain, that is, the matrix
element corresponding to a pair of spatial points (i, j, k) and (i′, j′, k′), Bφv(i, j,k)(i′ j′k′), is expressed as

Bφv(i, j,k)(i′ j′k′) = δii′δ j j′B
φcol
vkk′ . (2.6.14)

6This method approximates a propagation in time of the perturbation (δx0 = x0 − xb
0) using the non-linear inner model in the lower

resolution, by taking a finite difference of inner model forecasts of observables from perturbed and unperturbed states (w0 = wb
0 + δw0 and

wb
0 ), that is, by taking G(wt) −G(wb

t ) as seen from Eq. (2.6.9) and Eq. (2.6.10).
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Therefore, taking a single vertical column, we discuss properties of Bφcol
v for simplicity. The Bφcol

v can be
written as an eigenvalue decomposition

Bφcol
v = VDVT , (2.6.15)

where columns of V are eigenvectors of Bφcol
v , and D is the diagonal matrix of eigenvalues. The form of the

Bφcol1/2
v used in the MA is given as

Bφcol1/2
v = VD1/2 . (2.6.16)

Thus, the matrix element of Bφ1/2
v is given as

Bφ1/2
v(i, j,k)(i′ j′κ′) = δii′δ j j′B

φcol1/2
vkκ′ , (2.6.17)

where κ′ denotes an vertical eigenmode.
The Cφ1/2

h is a square root of the horizontal background error correlation, Cφ
h(= Cφ1/2

h Cφ1/2T
h ), which is

diagonal with respect to eigenmodes of Bφcol
v . The matrix element of Cφ1/2

h is expressed as

Cφ
h(i, j,κ)(i′, j′,κ′) = δκ,κ′C

φκ
h(i, j)(i′, j′) , (2.6.18)

where (i, j) and (i′, j′) denotes horizontal coordinates, and κ and κ′ denote vertical eigenmodes. A Gaussian
form is assumed for the horizontal correlation between points (i, j) and (i′, j′) for an eigenmode κ, that is, a
matrix element Cφκ

h(i, j)(i′, j′),

Cφκ
h(i, j)(i′, j′) = exp

[
− 1

2

{( i − i′

σ
φκ
x

)2
+
( j − j′

σ
φκ
y

)2}]
= Cφκ

hxii′C
φκ
hy j j′ . (2.6.19)

The horizontal correlation length in x- and y-directions σκx and σκy are also assumed to be homogeneous over
the domain. In the MA, Cφ1/2

h is given as

Cφ1/2
h(i, j,κ)(i′, j′,κ′) = δκ,κ′C

φκ1/2
h(i, j)(i′, j′) = δκ,κ′C

φκ1/2
hxii′ Cφκ1/2

hy j j′ , (2.6.20)

where Cφκ1/2
hx (Cφκ1/2

hy ) is taken to be the Cholesky decomposition of Cφκ
hx (Cφκ

hy), that is, a lower triangular matrix.
The final background error covariance B in the model state space is given as

B = B1/2B1/2T , (2.6.21)

B1/2 = K diag(Bu1/2,Bv1/2,B(θ,ps)1/2,Bq̃v1/2) , (2.6.22)

where K is a linearized transform from the space of control variables to the model state space. In the transform
K, pressure is determined from the control variable (θ, ps), assuming hydrostatic balance.

Based on this simplified B, a variable transform is made from the analysis increment in the model state δx0
to a new variable λ, which is related to δx0 by B1/2

δx0 = x0 − xb
0 = B1/2λ . (2.6.23)

and the variational optimization is performed with respect to λ. This transform, called as a preconditioning,
simplifies the background term of the cost function J (see Eq. (2.6.1) and Eq. (2.6.9). For simplicity, the
present discussion does not deal with Jp). The cost function and its gradient after the transform are given as 7

J(λ) =
1
2
λTλ +

N∑
t=0

1
2

(
H(Mt(xb

0 + B1/2λ)) − yt

)T
R−1

(
H(Mt(xb

0 + B1/2λ)) − yt

)
, (2.6.24)

7Here, the resolutions of the inner model is set to be the same with that of the outer model for simplicity. The actual operational imple-
mentation uses two different resolutions based on the incremental approach as discussed previously (see Eq. (2.6.9)). The formulation in
line with the operational implementation is obtained by making replacements, (δx0, x0, xb

0,B
1/2, yt ,Mt ,H)→ (δw0,w0,wb

0,B
1/2
w , ŷt , Lt ,G),

in Eq. (2.6.23), Eq. (2.6.24), and Eq. (2.6.25).
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∇λJ = λ +
N∑

t=0

B1/2T MT
t HT R−1

(
H(Mt(xb

0 + B1/2λ)) − yt

)
, (2.6.25)

where MT
t and HT are the adjoint model and the adjoint of the observation operator.

The parameters that characterize the error profile, Bφ
v , σφκx , and σφκy , are estimated using the NMC method

(Parrish and Derber 1992). Differences between 6h and 12h MSM forecasts valid at the same time are calcu-
lated for different cases, and used as statistical samples of the background error. The samples are generated
for the first ten days of each month of 2005, two pairs of the MSM forecasts a day, with each pair using the
same boundary condition. The background error statistics, Bφ

v , σφκx , and σφκy , are obtained by taking an average
over all these samples. The MA uses constant error statistics throughout the year, without taking into account
seasonal variation of the error profiles.

2.6.3.3 Inner Model

In the JNoVA, a simplified nonlinear version of the JMA-NHM (NLM, Mt in Subsection 2.6.3.1 and Subsection
2.6.3.2) is used in the inner loop to provide trajectories at every iteration instead of the tangent linear model
(TLM) of the NLM due to discontinuity and nonlinearlity of the JMA-NHM. The adjoint model (ADM, MT

t
in Subsection 2.6.3.2) of the NLM provides gradient information Eq. (2.6.25). The TLM has been developed
only for use in the process of the ADM development. In addition to the use of simplified model, the inner loop
of the JNoVA is executed using the NLM and ADM with a lower resolution (15 km horizontal grid spacing
and 40 vertical layers) to reduce computational cost. In this subsection, the specification of the inner model in
the JNoVA is surveyed focusing on schemes different from those of the MSM and also briefly listed in Table
2.6.1.

The version of the JMA-NHM in the NLM and ADM is not same as the MSM. In order to develop the TLM
and ADM, the version of the JMA-NHM was fixed at the time when the development started in 2002. After
that, some improvements of the MSM were included in the JNoVA. However, only some of the improvements
have been adopted because of the development cost of the TLM and ADM. The NLM in the JNoVA gives the
basic fields of the ADM, and all the grid point values at each time step are saved within the memory at the
operation. The forecast variables are momentum (3 components), potential temperature, pressure and mixing
ratio of water vapor. Additionally, temperature and evaporation efficiency at the land surface are predicted
(those at the sea surface are assumed to be constant). Prognostic variables of the ADM are the same as those
of the NLM except for evaporation efficiency.

In the NLM and ADM, fully compressible elastic equations are only supported as governing equations. The
vertical coordinate is z*-coordinate, which is different from hybrid coordinate of the MSM. For this reason, the
vertical interpolation from the outer loop to the inner loop is necessary. Regarding to the advection scheme,
flux form fourth-order centered difference, same as the MSM, is adopted, but the advection correction scheme
is only used for the NLM. In the horizontally explicit, and vertically implicit (HE-VI) scheme of the NLM
and ADM, gravity wave and sound wave are split and calculated in a smaller time step. The smaller time step
interval divides one larger time step (40 sec.) to seven small steps. In the JNoVA, all prognostic variables of the
smaller time step are reserved and used for the ADM integration. As for the nonlinear computational diffusion,

DNL ∝
∂

∂x

(∣∣∣∣∣∂φ∂x

∣∣∣∣∣ ∂φ∂x

)
is used in MSM and NLM(Nakamura (1978)), however, the perturbation of

∣∣∣∣ ∂φ∂x

∣∣∣∣ is not considered in ADM.
Targeted moisture diffusion is adopted in the NLM, but not available in the ADM. Except for the advection
correction, the nonlinear computational diffusion and targeted moisture diffusion, the dynamical processes of
NLM are strictly linearized in the ADM.

For the moist processes, the large-scale condensation (LSC) scheme for the grid scale precipitation are
used in the NLM and ADM. As a sub-grid scale convective parameterization, the NLM adopts the modified
Kain-Fritsch scheme and the ADM does not considered.

As a turbulence scheme, the diagnostic-type Deardorff scheme (Deardorff 1980) is used in the NLM and
ADM. Perturbations of turbulent kinetic energy in the ADM is not considered, resulting in no perturbation for
the diffusive coefficients.
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For a surface process in the NLM and ADM, Louis et al. (1982) for the land surface and Kondo (1975) for
the sea surface, which were previously used in the MSM, are adopted. In the both schemes of the ADM, the
perturbations of the bulk coefficients are not considered.

The NLM and ADM also use the four-layer heat diffusive model for ground temperature same as the MSM,
but the perturbation is only considered at the highest layer which is close to the lowest layer of the atmosphere.
The evaporation efficiency is given by the climate value in the NLM and ADM for simplicity.

The scheme for the radiation process in the NLM is slightly different from that in the MSM. The cloud is
diagnosed by not partial condensation scheme but relative humidity. A method to evaluate the effective radius
of a cloud ice particle in the NLM is based on Ou and Liou (1995) without modification by McFarquhar et al.
(2003) . Additionally, Räisänen (1998) have been adopted for a method to calculate long wave radiation at
each cloud layer in the MSM, whereas, it has not been adopted in the NLM. In the ADM, the radiation process
is not considered for simplicity.

Table 2.6.1: Specification of MSM and models employed in JNoVA
MSM NLM ADM

Resolution 5km, 50layers 15km, 40layers 15km, 40layers
Horizontal advection Flux form fourth-order

with advection correc-
tion

Flux form fourth-order
with advection correc-
tion

Flux form fourth-order

Solver of pressure
equation

HE-VI HE-VI HE-VI

Targeted moisture dif-
fusion

Considered Considered Not considered

Moist physics 3-ice bulk microphysics LSC LSC
Convection modified Kain-Fritsch modified Kain-Fritsch None
Turbulence Mellor-Yamada-

Nakanishi-Niino
level-three

Deardorff Deardorff

Surface flux Beljaars and Holtslag Louis(land) and
Kondo(sea)

Louis(land) and
Kondo(sea)

Ground temperature 4-layer thermal diffu-
sion

4-layer thermal diffu-
sion

4-layer thermal diffu-
sion

Radiation Considered Considered Not considered

2.6.4 Observation Terms

2.6.4.1 Observation Data

Assimilated observation types are shown in Table 2.2.1. Brief explanation for each data type and the quality
control procedures are found in Section 2.2 and Section 2.3.

2.6.4.2 Observation Error

Observation error covariance matrix R in Eq. (2.6.1) is assumed to be a diagonal matrix and the cross correla-
tion between the different observations are not considered. The observation errors (diagonal components of R)
are estimated based on the innovation statistics (Desroziers et al. 2005). The observation errors for conventional
observations and wind profilers, and AMV are summarized in Table 2.6.2. The errors for satellite radiances
are the same as the Global Analysis (See Table 2.5.1(c)-(g)). The errors for GNSS-PWV and radial velocity is
3 mm and 3.3 m/s, respectively. The error at an arbitrary reported pressure level is linearly interpolated in the
logarithm of pressure (log(p)). The cross correlations of the observation errors between different observations
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Table 2.6.2: The observation error tables used in the operational Meso-scale Analysis for (a) direct observations
and (b) AMV. Ps, u, v, T and RH denote surface pressure, (u, v wind components in MSM Lambert projection
space), temperature and relative humidity respectively.

(a) conventional observation and wind profiler (b) AMV
element Ps(hPa) u(m/s) v(m/s) T (K) RH(%) element u(m/s) v(m/s)

level(hPa) level(hPa)
1000 2.1 1.9 1.3 9.8 1000 4.1 3.3

925 2.0 1.9 0.9 10.3 850 2.9 2.3
850 2.0 2.0 0.9 12.7 700 3.2 2.6
700 2.0 1.9 0.9 12.8 500 3.7 3.0
500 1.9 1.9 0.7 12.9 300 4.6 3.7
400 2.2 2.2 0.7 13.3 200 3.8 4.9
300 2.6 2.6 0.9 13.5 100 4.4 6.0
250 0.7 2.7 2.6 1.0 14.4 50 3.5 5.1
200 2.7 2.6 1.1 13.7 30 5.1 6.2
150 2.6 2.6 1.1 16.6 10 6.2 7.2
100 3.2 3.0 1.5 15.1
70 3.7 3.1 1.9 13.6
50 3.2 2.8 1.9 12.1
30 3.2 2.8 1.9 11.8
10 3.2 2.8 1.9 12.2

are not considered explicitly in the 4D-Var. To ignore the cross correlation terms in the cost function, dense
observations are thinned spatially and the observation errors are inflated in the pre-analysis procedure.

2.6.4.3 Special Treatment for Precipitation Data

The observation terms of the cost function Eq. (2.6.1) assume that the probability density function (PDF) for
observation errors is a Gaussian function. However, the PDF for precipitation amount data does not follow the
Gaussian function. Therefore, the following observation term is used for one-hour precipitation amount data
(Koizumi et al. 2005).

Jo
PREC(x) =

n∑
j (where ro

j≥0.5)

(
H j(x) − ro

j

)2

2σo(ro
j )

2 (2.6.26)

where, H j(x) denotes the observation operator that converts the state variables x to one-hour accumulated
precipitation at the j-th grid point, and ro

j the observed precipitation at the grid point. n is the number of grid
points in the inner model. σo(ro

j ) is the observation error which is defined as follows.

σo(ro
j ) ≡

Csat max(rmin, ro
j )

(
H j(x) ≤ ro

j

)
CsatCa max(rmin, ro

j )
(
H j(x) > ro

j

) , Ca = 3, Csat = 1 for R/A
Ca = 5, Csat = 2 for satellite retrievals

, rmin ≡ 1mm/h

(2.6.27)
where, Csat is an observation error inflation factor for satellite retrievals, Ca is the tuning factor for the asym-
metric structure of the departure frequency distribution around 0.

The observations of one-hour precipitation less than 0.5 mm are not assimilated, since the quality of such
observations is rather poor in snowfall cases. The observation error of the satellite retrievals is considered to
be larger than R/A because the retrieval is not from one-hour accumulated observations but from instantaneous
observations.
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2.6.4.4 Variational Quality Control

Variational quality control (VarQC, Andersson and Järvinen 1999) is applied in the 4D-Var for the conventional
observations. With VarQC, PDF of the observation error is supposed to be not a Gaussian function but a sum-
mation of a Gaussian function and a positive constant in the certain range. The constant means the probability
of “rough error”.

The following observation term and its gradient are used for the conventional observations in the cost
function Eq. (2.6.1) in the 4D-Var with VarQC.

jVarQC
o = − log

(
γ + exp (− jo)

γ + 1

)
, γ ≡ A

√
2π

(1 − A) 2d
(2.6.28)

∇ jVarQC
o = WVarQC∇ jo, WVarQC ≡ 1 − γ

γ + exp (− jo)
(2.6.29)

where, A is a prior probability of rough error, d is the maximum standard deviations below which rough error
is possible, jVarQC

o is the observation term for a single observation component with VarQC and jo is the term
without VarQC

Eq. (2.6.29) means that ∇ jVarQC
o is almost the same (effective) as ∇ jo when jo is small (WVarQC ≈ 1) and

∇ jVarQC
o is almost 0 (not effective) when jo is large (WVarQC << 1). The observations with WVarQC < 0.25 are

regarded to be rejected by the VarQC.

2.7 Local Analysis

2.7.1 Introduction
The Local Analysis (LA), in operation starting from August 2012, produces initial conditions for the Local
Forecast Model (LFM) (see Subsection 3.6.1) at a horizontal resolution of 2km.

Aimed at providing initial conditions to the high-resolution forecast model targeting small-scale severe
weather events, the LA is designed to allow rapid production and frequent update of the analysis at a resolution
of 5km (Subsection 2.7.2). An analysis cycle with hourly 3-dimensional variational (3D-Var) data assimilations
is executed every time for the last 3 hours to incorporate information from newly received observations in each
case.

As in the Meso-scale Analysis (MA), high density remote sensing data including those from weather radars
and ground-based GNSS are hourly assimilated in the LA as important sources of detailed information that can
contribute to a better forecast of high-impact phenomena (Subsection 2.7.4). Capability of high-resolution
NWP to capture small-scale variations of topography is expected to help to reduce representativeness errors
in assimilation of surface observations. Based on this viewpoint, the LA also assimilates automated surface
station (AMeDAS) data ahead of other operational data assimilation systems in lower resolutions, in order to
appropriately reflect effects from local-scale environments near the surface.

With these features, the LA is characterized as a data assimilation system for a high-resolution and high-
frequency NWP.

2.7.2 Operational System
The LA is performed 8 times(00,03,06,09,12,15,18,21 UTC) a day to produce initial conditions for the LFM.
The domain of the LA covers Japan and its surrounding areas at a horizontal resolution of 5 km with 441 × 551
grid points and 50 vertical layers (shown with the solid line in Figure 2.7.1.) In order to help the LFM provide
severe weather forecasting promptly, the system configuration of the LA has to complete calculations within
limited computational time, especially in view of our next plan to upgrade the LA operation on an extended
domain as higher frequency of 24 times a day. In addition, the 4D-Var used in the MA(Subsection 2.6.1) is
more advanced than the three dimensional variational data assimilation(3D-Var), but the computational time
of the 4D-Var is much longer than that of the 3D-Var. Therefore, the LA employs an analysis cycle based on
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the 3D-Var scheme(see Subsection 2.7.3 in detail). The 3D-Var is a part of JMA Nonhydrostatic model-based
Variational Data Assimilation (JNoVA,Honda et al. (2005)).

In this subsection, FT=0(hour) is each LFM initial time. The data cut-off time of the LA is set to FT=0.5.
The LA waits for observations to arrive by the data cut-off time, and starts the analysis cycle to assimilate
observations from FT=-3.5 to 0.5(Subsection 2.7.4).

The flow of the 3-h analysis cycle of the LA is shown in Figure 2.7.2. In Figure 2.7.2, (a), (c), (e) and (g) are
3D-Var analyses, and (b), (d) and (f) are 1-h JMA-NHM forecasts(LF1). LF1 is made with MSM forecasts as
boundary conditions and the previous 3D-Var analysis, and is used as the first guess by the following analysis.
The first 3D-Var analysis of the cycle((a) in Figure 2.7.2) uses the latest forecast of the MSM(Subsection
3.5.1) as the first guess. 3D-Var analyses and LF1s are repeated in turn for 3 hours((a)-(g) in Fig.2.7.2). Each
analysis assimilates observations within 0.5 hours before and after the analysis time. Quality control is applied
on observations before each analysis, using the first guess of the analysis as a reference, and only observations
that passes the quality checks are used in each analysis. Hydrometeors are not updated but taken over from
the MSM forecasts at the beginning of the analysis cycle and just propagated throughout the cycle. All the
processes are accomplished in about 15 minutes.

Figure 2.7.1: The domain of
LA(bounded by the solid line), that
of LFM (bounded by the broken
line).

Figure 2.7.2: A schematic figure of the LA analysis cycle.

2.7.3 Basic Formulation
2.7.3.1 Cost Function

The LA uses a 3D-Var scheme for data assimilation. The 3D-Var optimizes the model state x to minimize its
deviation from observations y and the first guess xb, measured in terms of a cost function J,

J(x) = Jb + Jo =
1
2

(
x − xb

)T
B−1

(
x − xb

)
+

1
2

(
H(x) − y

)T
R−1

(
H(x) − y

)
. (2.7.1)

The background term Jb and the observation term Jo measure deviations of the model state x from the first
guess xb and observations y, respectively. The observation operator H is a function from the model state space
to observation space, and typically consists of collection of conversions from model variables to observed
parameters and interpolations from model grid points to observation points. The background and observation
error covariance matrices, B and R, specify error profiles of the first guess and observations, respectively (see
Subsection 2.7.3.2 and Subsection 2.7.4).
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2.7.3.2 Background Error Covariance

Simplifications of B similar to those used in the MA are also applied in the LA. The control variables of the
LA are

• u: x-component of horizontal wind
• v: y-component of horizontal wind
• (θ, ps): potential temperature and surface pressure
• q̃v = qv/qbs

v : pseudo relative humidity (qv: specific humidity, qbs
v : saturation specific humidity of the first

guess)
• θg : ground potential temperature

In addition to the MA control variables, θg is also included, which is found to help appropriately assimilate
surface temperature observations. The spatial structure of the background error covariance Bφ of a control
variable φ is modeled as

Bφ = UBφ1/2
v Cφ1/2

h Cφ1/2T
h Bφ1/2T

v UT , (2.7.2)

where U denotes a vertical coordinate transformation, which is introduced to limit terrain effect of the vertical
coordinate within the lower troposphere. As in the MA, assuming the vertical background error covariance, Bφ

v ,
is homogeneous over the domain, we introduce a single column vertical covariance Bφcol

v (see Eq. (2.6.14)).
Using an eigenvalue decomposition of the Bφcol

v (see Eq. (2.6.15)), the square root matrix Bφcol1/2
v used in the

LA is given as
Bφcol1/2

v = VD1/2VT , (2.7.3)

which is taken to be a symmetric square root, compared to Eq. (2.6.16). Using this form of Bφcol1/2
v , the

horizontal background error correlation is specified for each vertical level, instead of each eigenmode. Thus,
the horizontal correlation length in x- and y-directions σk

x and σk
y, corresponding to those in Eq. (2.6.19) are

now defined on a vertical level k. In the LA, a recursive filter technique is used in calculation of Cφ1/2
hx and

Cφ1/2
hy (Purser et al. 2003).

The background error covariance B in the model state space is similar with that in the MA (Eq. (2.6.21)
and Eq. (2.6.22)), and is given as

B = B1/2B1/2T , (2.7.4)

B1/2 = K diag(Bu1/2,Bv1/2,B(θ,ps)1/2,Bq̃v1/2,Bθg1/2) , (2.7.5)

where K is a linearized transform from the space of control variables to the model state space.
The optimization is performed with respect to λ as in the MA (see Eq. (2.6.23), Eq. (2.6.24), and Eq.

(2.6.25)),
δx = x − xb = B1/2λ , (2.7.6)

J(λ) =
1
2
λTλ +

1
2

(
H(xb + B1/2λ) − y

)T
R−1

(
H(xb + B1/2λ) − y

)
, (2.7.7)

∇λJ = λ + B1/2T HT R−1
(
H(xb + B1/2λ) − y

)
, (2.7.8)

where HT is the adjoint of the observation operator.
The background error statistics, Bφ

v , σφk
x and σ

φk
y are estimated applying the NMC method (Parrish and

Derber 1992) to the same data set with that used in the MA. However, the error profiles in lower levels are
modified to localize spatial correlations, so that surface observations are assimilated more appropriately. As in
the MA, a seasonal variation of the background error statistics is not taken into account.

2.7.4 Observation Terms
2.7.4.1 Observation Data

Assimilated observation types are shown in Table 2.2.1. Brief explanation for each data type and the quality
control procedures are found in Section 2.2 and Section 2.3.
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2.7.4.2 Observation Error

Observation error covariance matrix R in Eq. (2.7.1) is assumed to be a diagonal matrix and the cross correla-
tion between the different observations are not considered. The observation errors (diagonal components of R)
are the same as those for the Meso-scale Analysis (See Subsection 2.6.4.2).

2.7.4.3 Observation Operator

Observation operator for surface observations is based on the surface diagnostic scheme of the JMA-NHM
described in Subsection 3.5.8. Observed parameters such as wind at 10 m height and temperature at 1.5 m
height are diagnosed using transfer coefficients based on Beljaars and Holtslag (1991). In the adjoint operator,
perturbations of the transfer coefficients are not considered in the diagnostic equations Eq. (3.5.120) and Eq.
(3.5.121), but only those of ua, θva and θvs are considered.

2.8 Snow Depth Analysis
The global snow depth analysis is executed every day separately from the global atmosphere analysis. Global
snow depth with 1.0◦ latitude/longitude resolution is analyzed using SYNOP snow depth data on the day.

A two-dimensional optimum interpolation (OI) is employed for the analysis method. The first guess is
prepared as follows,

G = C +
1
2

AC (2.8.1)

where G, C and AC are the first guess, the climatological value interpolated to the analysis day from monthly
climatological data, and the analyzed anomaly from the climatological value on the previous day, respectively.
The monthly climatological data used from September to June are the climatology compiled by USAF/ETAC
(Foster and Davy 1988), and those for July and August are interpolated from the climatology for June and
September.

Following type grids are the exception of this analysis; no probability of snow cover, evergreen broadleaves
tree vegetation type, and land ice. The snow depth is 0 cm on the first and second type grids, and C is assigned
on land ice grids. The snow cover probability is estimated from a past SSM/I observation statistic.

The analyzed snow depth with 1.0◦ latitude/longitude resolution is interpolated to the resolution of the GSM
model grid (TL959), which is converted to snow water equivalent as an initial condition for the land-surface
process (SiB) in GSM. In addition, snow water equivalents on Japan land girds are replaced with interpolated
latest observation value of AMeDAS snow depth as well as Japanese SYNOP.

2.9 Non-real-time Quality Control

2.9.1 Operational Activities as a GDPFS RSMC
JMA is a Regional Specialized Meteorological Center (RSMC) of the World Meteorological Organization
(WMO) Global Data-processing and Forecast System (GDPFS), namely RSMC Tokyo. In March 1991, the
Commission for Basic Systems (CBS) of WMO designated RSMC Tokyo as a lead center for monitoring the
quality of land surface observations in Region II (Asia). As a part of its operational activities, JMA produces a
6-monthly report containing a consolidated list of stations suspected of reporting low-quality observation data
of station level pressure, mean sea level pressure and geopotential height during the 6-month periods ending
June and December. The report on the quality of the land surface observations can be obtained from the website
of JMA8.

In addition, RSMC Tokyo produces monthly statistics on the quality of all observations received in time
for use in its final global analyses. Copies of these reports are provided to major GDPFS centers and to the
WMO Secretariat. The reports are also available in the website of JMA9.

8http://qc.kishou.go.jp/clsf.html
9http://qc.kishou.go.jp/mmr.html
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The data qualities are evaluated based on the differences between the observations and the first guess fields
(3 to 9-hours forecasts) from the global model. These statistics are produced in accordance with the standards
for the exchange of monitoring results recommended by WMO CBS.

2.9.2 Operational Activities as a PMOC
The objective of the Data Buoy Cooperation Panel (DBCP) which was established jointly by WMO and the
Intergovernmental Oceanographic Commission (IOC) is to improve the quality of buoy data on the Global
Telecommunication System (GTS) available to real-time users. DBCP requests some agencies or institutions
to volunteer as a Principal Meteorological or Oceanographic Center (PMOC) responsible for controlling Argos
GTS data on an operational basis for given variables. JMA as a PMOC undertakes the quality monitoring and
makes recommendations on the recalibration and/or removal of buoy sensor data on GTS. The QC information
is exchanged with DBCP and other PMOC centers through Internet in a standardized format.

2.9.3 Management of Blacklist
As mentioned in the Section 2.3, the low quality observations can lead the large forecast degradation. The cause
of the low quality might be an instrumental failure and the failure can continue long time. Such observations
should be excluded in the first step of QC. Blacklist is constructed to meet such a need. Blacklist management
is one of the most important activities for QC. The quality for all the observations is evaluated based on the
differences between the observations and the first guess fields from the global model (3 to 9-hours forecasts)
and the meso-scale model (0 to 3-hours forecasts). The problematic observations are enlisted in the blacklist.

2.10 JMA Climate Data Assimilation System
JMA Climate Data Assimilation System (JCDAS) is an atmospheric global analysis for operational climate
use and has been operational since March 2006. It was transitioned from Japanese 25-year Reanalysis (JRA-
25) which covered 26 years from 1979 to 2004 and was produced by JMA and the Central Research Institute
of Electric Power Industry (CRIEPI) (Onogi et al. 2007). JCDAS has been using the same data assimilation
system as that of JRA-25. It has a spectral resolution of T106, equivalent to a horizontal grid size around
110 km, and 40 vertical layers with the top level at 0.4 hPa. The data assimilation method of JCDAS is
the three dimensional variational (3D-var) assimilation which had been used in the operational global analysis
until February 2005. The background error statistics were taken from the operational global analyses as of 2003
which were the latest statistics available at the time when JRA-25 production had started. For surface variables,
surface pressure is assimilated simultaneously with upper air variables in the 3D-var; other surface variables
of temperature, wind and relative humidity are assimilated separately with a uni-variate 2-dimensional optimal
interpolation (2D-OI).

JRA-25 and JCDAS have many advantages. Firstly, predicted 6-hour global total precipitation distribution
and amount are well reproduced both in space and time. Especially after July 1987, assimilating retrieved pre-
cipitable water from SSM/I radiance data contributed to the good performance. Furthermore, tropical cyclones
(TCs) are properly analyzed owing to the assimilation of reconstructed wind profile around TCs.

JRA-25 and JCDAS jointly provide long-term consistent and high quality global analysis fields since 1979.
JRA-25 and JCDAS are used to create a new climate normal value and is being used as a basic reference data
for operational climate monitoring services. Reanalysis data, produced by the model whose characteristics are
the same as the seasonal forecast model, can provide consistent initial field and verification data for the seasonal
forecast and hindcast. Consequently the JRA-25 and JCDAS data greatly contributes to the development of the
seasonal forecast model.

JMA is conducting the 2nd reanalysis named the Japanese 55-year Reanalysis (JRA-55) (Ebita et al. 2011).
JRA-55 covers 55 years, extending back to 1958, with the four dimensional variational data assimilation (4D-
var). It aims at providing a comprehensive atmospheric climate dataset by producing a more time-consistent
dataset for a longer period than JRA-25. JRA-55 will be completed in the first half of 2013 and the current
JRA-25 based JCDAS will be replaced with the JRA-55 version in 2014.
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