AOSHIMA Tadayoshi, NAKASHIMA Kouichi, KAWAMURA Hiroshi, KUMAMOTO Mariko, SAKAI Takeshi, KAWANO Saeko and JOKO Minoru RIC-Tsukuba, Japan Meteorological Agency (JMA) ### 1. Introduction •To aid <u>accurate measurement of air temperature</u>, various screens/ shields have been designed and used to <u>protect thermometers</u> from <u>sunshine</u>, <u>radiation</u>, <u>rain</u> and wind and so on. Fig. 1 Location of Tsukuba Fig. 2 Climatological normals for Tsukuba (upper: monthly temperature; lower: precipitation) Tsukuba has a temperate rainy climate and high temperatures in summer (Cfa) according to the Köppen-Geiger climate classification. - 2. Intercomparison Overview - 2.1 Type of screens/shields tested and sensors Photo. 1 Location of screens/shields in the intercomparison field (north – south side view) - · Reference is JMA-95(A), the screen/shield is used on operational surface observation. - This experiment was carried out in summer season, and in winter and spring season. - <u>unified platinum resistence</u> <u>thermometer Pt 100Ω (the size is 3mm</u> <u>in diameter)</u> because we wanted to evaluate only screens effect. Intercomparison field (west – east side view) ## 2.1 Type of screens/shields tested and sensors Photo. 2 Pictures of screens/shields (upper: side view; lower: view from underneath) ### Artificially ventilated screens/shields JMA-95(A) JS-256(A) PVC-03(A) PVC-02(A) PFT-02(A) #### Naturally ventilated screens/shields AV-040(N) YG-41003L(N) DTR503A(N) lower: view from underneath ### 3. Results ### 3.1 Statistical values Maximum ' 75 % ## 3.2 Influences of global solar radiation Fig. 4 Tdev differences related to Artificially ventilated screens/shield but no insulator positive influences /shield, Aug. 2009 ### 3.3 Influences of radiation budget Fig. 6 Time series representations of monthly mean Tdev and radiation budget #### 3.4 Influences of rainfall ### Fig. 7 Tdev differences related to rainfall intensity depending on each screen/shield ### 3.5 Comprehensive evaluation 1/3 Table 1 Characteristics and variation of Tdev related to various meteorological factors for each screen/shield | Maximum → | - | ← | 95 % | |-----------|------------|--------------|------| | A | + | \leftarrow | 75 % | | Average→ | \bigcirc | \leftarrow | 25 % | | Minimum → | _ | ← | 5 % | | | Ventilation | Artificially | | | | | | | Natural | | | | |----------------------|---|-----------------------------|--|-----------------------------|-----------------------------|--|---------------------------------|---|---|--|---|------------------------------------| | | Туре | JMA-95 (A)
(JS-258) | JS-256 (A) | E-834-Z (A) | TV-150 (A) | PVC-03 (A) | PVC-02 (A) | PFT-02 (A) | AV-040 (N) | YG-41003L (N) | DTR503A (N) | JMA-W1 (N) | | M | Manufacturer | Ogasawara | Ogasawara | Yokogawa | Ogasawara | Prede | Prede | Prede | Ogasawara | R. M. Young | Vaisala | Hidakosya | | | Form | Vertical type | | | | | Horizontal type
(pole) | Horizontal type
(roof) | 10 plates (flat)
+ snow umbrella | 14 plates (dish
upside down)
inner: curved
downward | 12 plates (dish)
rim: flat | Roof, blinds, base:
duplication | | screen | Inside structure | | | | Duplication tube | | | | | | - | | | o | Insulator/underneath shield plate | | | | | | - | | - | | | | | Structure | Material | Stainless steel
(SUS304) | Stainless steel
(SUS304)
Aluminium | Stainless steel
(SUS314) | Stainless steel
(SUS304) | Stainless steel
(SUS304)
Portion:
aluminium | Stainless steel
(SUS304) | Stainless steel
(Portion:
aluminium,
bakelite) | Shade: aluminium
Arm: steel plate
[Steel] | UV stabilized white thermoplastic plates Arm: aluminium | Polycarbonate
(20% glassfiber)
Reverse: black | Wood | | | Diameter[mm] | 117 | 117 | 100 | 89 | 88 | 88 | 76 | 200 | 130 ~ 120 | 105 | 1125 (W) | | | Length [mm] | 475 | 457 | 370 | 358 | 423 | 586 | 630 | 420 | 270 | 238 | 930 (L)
1511 (H) | | Ventilation | Measured | 5.0 m/s | 5.9 m/s | 4.7 m/s * | 4.3 m/s | 2.0 m/s | 2.5 m/s | 3.6 m/s | | • | | | | speed *) | Manufacturer | 4 - 7 m/s | 4 - 7 m/s | 4 - 8 m/s | 4 - 7 m/s | About 3 m/s | About 3-4 m/s | About 3 m/s | | • | • | | | deviation | Daily Tmean
6 months *1) | Standard | -0.1 - 0.0
(-0.2 - +0.1) | -0.1 - 0.0
(-0.2 - +0.1) | -0.1 - 0.0
(-0.2 - +0.1) | -0.1 - 0.0
(-0.2 - +0.2) | -0.1 - 0.0
(-0.2 - +0.2) | -0.1 - 0.0
(-0.3 - +0.3) | -0.1 - +0.2
(-0.3 - +0.5) | -0.1 - +0.1
(-0.2 - +0.3) | -0.2 - 0.0
(-0.4 - +0.2) | -0.1 - +0.1
(-0.3 - +0.3) | | | Daily Tmax Aug. | | 0.0 - +0.1 | -0.1 - +0.2 | -0.2 - +0.1 | 0.0 - +0.3 | +0.2 - +0.5 | +0.4 - +0.6 | +1.1 - +1.4 | +0.4 - +0.6 | +0.1 - +0.3 | +0.1 - +0.3 | | nre | Daily Tmin Jan. | | -0.3 - 0.0 | -0.3 - 0.0 | -0.2 - 0.0 | -0.30.1 | -0.30.1 | -0.40.2 | -0.70.4 | -0.30.1 | -0.50.3 | -0.1 - +0.1 | | Tdev : Temperature (| Effect of global solar radiation Aug. *2) | | -0.1 - +0.1 | -0.1 - +0.1 | -0.2 - 0.0 | 0.0 - +0.3 | +0.1 - +0.5 | +0.2 - +0.6 | +0.9 - +1.4 | +0.3 - +0.7 | 0.0 - +0.3 | +0.2 - +0.5 | | | Effect of radiation budget Jan. *3) | | -0.30.1 | -0.30.1 | -0.30.1 | -0.40.2 | -0.40.2 | -0.40.2 | -0.90.4 | -0.60.2 | -0.70.4 | -0.40.1 | | | Effect of rainfall *4) | | 0 | -0.1 - 0.0 | -0.1 - 0.0 | 0.0 | -0.20.1 | -0.1 - 0.0 | -0.1 | -0.1 - 0.0 | -0.30.2 | -0.1 - +0.1 | | Thermon | neter recommended | Pt 3 r | mm | Pt 6 i | | Pt 3 mm
HMP155 etc. | Pt 3 mm | Pt 3 mm
HMP155 etc. | Pt 6 mm | Pt 3 mm
HMP155 etc. | HMP155 | Pt 3 mm
HMP155 | | | Notes | JMA-95 for synoptic station | | JMA-89 for
old AWS | JMA-04 for
AWS | | Horizontal type
alike PVC-03 | | | | | JMA-1
louvered screen | ^{*1)} For the artificially ventilated screens/shields, the ventilation speed was measured using a Pitot tube indoors. This tube is the same length (100 mm) as the thermometer (Pt 100 Ω (3 mm in diameter)). In most cases, a 3.2 mm in diameter type was used. However, in case where this size could not be fixed, a shorter 3.1 mm in diameter tube was used. ^{*2)} Tdev is in a range between 25% and 75% assuming that the maximum value is 100% and the minimum is 0% for each meteorological element. Positive Tdev is shown in pink and negative in light blue in cases where the value is more than ±0.2 °C. *3) Daily average temperature for 6 months (August, December, January, February, March and April) from the 10-sec. data. The values in () show the minimum and maximum. *4) 1 minute average global solar radiation data when the global solar radiation was 700 W/m2 or more in # 3.5 Comprehensive evaluation 3/3 Table 2 Comparative table of operationally effective elements for each screen/shield | V | entilation/ | | Artificially ventilated | | | | | | Naturally ventilated | | | | |--------------------|-------------------------------------|-----------|-------------------------|-------------|-----------|-----------|-----------|-----------|----------------------|--------------|------------|-----------| | Category | Type | JMA-95(A) | JS-256(A) | E-834-Z1(A) | TV-150(A) | PVC-03(A) | PVC-02(A) | PFT-02(A) | AV-040(N) | YG-41003L(N) | DTR503A(N) | JMA-W1(N) | | Cost | Electric power supply | | | | | | | | | | | | | performance | Periodic replacement parts | | | | | | | | | | | | | | Ease of installation | | | | | | | | | | | | | Maintenance | Thermometer cleaning work | | | | | | | | | | | | | | Ease of maintenance | | | | | | | | | | | | | | Corrosion resistance | | | | | | | | | | | | | Weather resistance | Resistance to ultraviolet radiation | | | | | | | | | | | | | | Insect resistance | | | | | | | | | | | | better normal not so good ## 3.5 Comprehensive evaluation 2/3 Fig. 10 Radar charts of Tdev differences related to various meteorological factors for each screen/shield ## | Item Tx SR Tn ER Rain Tdev Class Daily Tmax (Aug.) Concerning global solar radiation (Aug.) Daily Tmin radiation budget (Jan.) Concerning language (| | | | | | | | |--|------|-----------|------------------------------|--------|------------------|---------------------|--| | Daily Tmax (Aug.) Daily Tmin Daily Tmin Daily radiation (Jan.) Daily Tmin D | Item | Tx | SR | Tn | ER | Rain | | | 9 +0.10.1 -
8 +0.20.20.1 -
7 +0.30.3 -
6 +0.40.40.2 -
5 +0.50.5 -
4 +0.60.60.3 -
3 +0.70.7 -
2 +0.80.80.4 - | [°C] | Tmax | global
solar
radiation | | radiation budget | Concerning rainfall | | | 8 +0.2 - -0.2 - 7 +0.3 - -0.3 - 6 +0.4 - -0.4 - -0.2 - 5 +0.5 - -0.5 - 4 +0.6 - -0.6 - -0.3 - 3 +0.7 - -0.7 - 2 +0.8 - -0.8 - -0.4 - | 10 | 0 | - | 0 | - | 0 - | | | 7 +0.30.3 -
6 +0.40.40.2 -
5 +0.50.5 -
4 +0.60.60.3 -
3 +0.70.7 -
2 +0.80.80.4 - | 9 | +0 | .1 - | -0. | | | | | 6 +0.40.40.2 -
5 +0.50.5 -
4 +0.60.60.3 -
3 +0.70.7 -
2 +0.80.80.4 - | 8 | +0 | .2 - | -0. | -0.1 - | | | | 5 +0.50.5 -
4 +0.60.60.3 -
3 +0.70.7 -
2 +0.80.80.4 - | 7 | +0 | .3 - | -0. | | | | | 4 +0.60.60.3 -
3 +0.70.7 -
2 +0.80.80.4 - | 6 | +0.40.4 - | | | -0.2 - | | | | 3 +0.70.7 -
2 +0.80.80.4 - | 5 | +0 | .5 - | -0. | | | | | 2 +0.80.80.4 - | 4 | +0 | .6 - | -0. | -0.3 - | | | | | 3 | +0 | .7 - | -0.7 - | | | | | 1 +0.90.9 - | 2 | +0 | .8 - | -0. | -0.4 - | | | | | 1 | +0 | .9 - | -0. | 9 - | | | ### 4. Discussion #### (1) Influences of global solar radiation in August: - Naturally ventilated screens/shields, - A maximum positive Tdev of +3.4°C for AV-040(N) is seen. - This influence produces the largest positive Tdev for AV-040(N) and the smallest for DTR503A(N) - → The reasons for this are that the <u>screen/shield material</u> has <u>good insulation</u> and <u>the plates on the reverse are</u> black - Artificially ventilated screens/shields, Tdev for PFT-02(A), PVC-02(A) and PVC-03(A) shows some influence - → as these screens/shields have no layer of insulating material. #### (2) Influences of radiation budget: - Naturally ventilated screens/shields, a <u>negative</u> Tdev is seen. These negative values are observed for AV-040(N), DTR503A(N) and YG-41003L(N), in that order. - → The reason is that the influence of radiative cooling differs because they have <u>different thermal capacities</u> and insulating materials. - Artificially ventilated screens/shields, some negative Tdev is seen - → due to differences in thermal capacity, insulating layers and the rate of ventilation. - Naturally ventilated screens/shields, higher rainfall intensity values give a more remarkably negative Tdev for DTR503A(N). - → The reason is that its structure allows the internal thermometer to be seen <u>between the plates</u> from outside, and that it has a structure in which <u>raindrops tend to remain</u> on the flat edges of the plates. - The structure of YG-41003L(N), in which no influence from rainfall is seen, has an internal thermometer <u>covered by plates</u>, In addition, the <u>plates gradually become smaller</u> from top to bottom and have an inverted dish shape, - Artificially ventilated screens/shields, no difference in the influence of rainfall is seen. ### 5. Conclusions - Naturally ventilated screens/shields - · superior in terms of economy and ease of maintenance. - However, in cases where they are used in <u>low-latitude regions</u>, care is required because some types might be <u>affected by strong global solar radiation</u>. - It is also necessary to carefully consider the <u>influence of the radiation budget</u>. - as some are <u>penetrated by rainwater</u> and do not allow accurate temperature measurement. Such screens/shields should also be used with a good understanding of <u>their structure and</u> characteristics, - Artificially ventilated screens/shields - an essential requirement to minimize the influence of global solar radiation and the radiation budget is an appropriate insulation structure (<u>insulation material</u>/a <u>heat-insulating layer of air</u>). - In addition, the horizontal type of artificially ventilated screens/shields requires care on rainy days because its configuration means that it is easily penetrated by wind and rainwater. ### References - Brandsma T., van der Meulen J.P., 2007: Thermometer screen intercomparison in De Bilt (the Netherlands), part II: Description and modeling of mean temperature differences and extremes, International Journal of Climatology. - · ISO (International Standardization Organization), 2007: Meteorology Air temperature measurements Test methods for comparing the performance of thermometer shields/screens and defining important characteristics (ISO 17714), First edition. - Lacombe Muriel, 2008: Acquisition system used by the Algerian ONM for WMO combined intercomparison of thermometer screens/shields in conjunction with humidity measuring instruments, TECO-2008. - · WMO, 2008: Guide to meteorological instruments and methods of observation, seventh edition, WMO-No. 8. Thank you for your time. We would like to measure temperature more accurately all over the world, for our and children's future on the earth. ## 3.2 Influences of global solar radiation Fig. 5 Time series representations of temperature for various screens/shields and solar radiation, 16 Aug. 2009 (summer) (b) Tdev for naturally ventilated screens/shields (c) Tdev for artificially ventilated screens/shields (d) Total global solar radiation