International Workshop on Development of Atmosphere–Ocean Coupled Model towards Improvement of Long-Range Forecast Japan Meteorological Agency, Tokyo, Japan, December 8–10, 2010

CFES: Coupled GCM for the Earth Simulator —Current status and future directions—

N. Komori,¹ T. Enomoto,¹ B. Taguchi,¹ A. Kuwano-Yoshida,¹ H. Sasaki,¹ M. Nonaka,² Y. Sasai,² M. Honda,^{2,3} K. Takaya,² A. Ishida,² Y. Masumoto,² W. Ohfuchi,¹ and H. Nakamura^{2,4}

¹ Earth Simulator Center (ESC), JAMSTEC

² Research Institute for Global Change (RIGC), JAMSTEC
³ Faculty of Science, Niigata University
⁴ Department of Earth and Planetary Science, University of Tokyo

CFES Project

CFES is developed to study *mechanisms* and *predictability* of highimpact phenomena especially in the *mid-latitudes* and their relation to global-scale circulations (rather than for global warming issues)

- The mid-latitude region
 - ... is affected from both the *tropical* and *polar* regions
 - ... has its own basin-scale and **local** air-sea interactions
- Necessity of a global, high-resolution, coupled atmosphere-ocean model including land-surface and sea-ice processes

CFES will be used as a platform for *observing system (simulation) research* using ensemble-based data assimilation methods (rather than for operational prediction)

Outline of Talk

Model Development & Simulation Research

- Component Models of CFES
- Set Up for CFES
- Some Results
- Ongoing Efforts and Future Directions

Ensemble Data Assimilation & Observing System Research

- Current Status: AFES-LETKF
- Future Directions: CFES-LETKF

Outline of Talk

Model Development & Simulation Research

- Component Models of CFES
- Set Up for CFES
- Some Results
- Ongoing Efforts and Future Directions

Ensemble Data Assimilation & Observing System Research

- Current Status: AFES-LETKF
- Future Directions: CFES-LETKF

Component Models of CFES

AFES (AGCM for the ES): Atmosphere & Land-Surface Component

- ... is adopted from **CCSR/NIES AGCM 5.4** and rewritten for the ES
- ... is improved for high-resolution and coupled simulations
- ... has better reproducibility of marine boundary-layer clouds
- In detail, see *Ohfuchi et al. (2004)*, *Enomoto et al. (2008)*, and *Kuwano-Yoshida et al. (2010)*, respectively.

OFES (OGCM for the ES): Ocean & Sea-Ice Component

- \bullet ... is based on **GFDL MOM 3.0** and optimized for the ES
- ... contains dynamic-thermodynamic sea-ice model
- In detail, see *Masumoto et al. (2004)* and *Komori et al. (2005).*

Atmosphere & Land-Surface Component

Horizontal Discretization: spherical harmonics

Vertical Coordinate: sigma-coordinate, Lorenz grid

Physical Processes

- radiation: mstrn-X (Sekiguchi and Nakajima, 2008)
- cumulus convection: Emanuel and Zivkovic-Rothman (1999)
- **grid-scale cloud**: use of joint-Gaussian PDF of liquid water potential temperature and total water content *(Kuwano-Yoshida et al., 2010)*

Ocean-Surface Processes

• **surface wind stress**: dependency on ocean surface currents

Land-Surface: MATSIRO (Takata et al., 2003)

Figure 5. Annual mean low cloud fraction (%) for (a) ISCCP, (b) surface observation climatology by Hahn and Warren (2007), (c) T79L48 OLD, (d) T79L48 NEW, and (e) NEW-OLD, respectively.

Kuwano-Yoshida et al. [2010, QJRMS]

Ocean & Sea-Ice Component

Coordinate System

- horizontal: latitude-longitude, Arakawa's B-grid
- vertical: *z*-coordinate with partial bottom cell

Advection: 2nd-order central diff. (momentum); QUICKER (tracer)

Horizontal Mixing

- biharmonic (CFES std.)
- Laplacian + GM thickness diffusion (CFES mini)

Vertical Mixing: turbulent closure scheme (Noh & Kim, 1999)

Shortwave Penetration: dependency on sea surface height

Sea-Ice: EVP rheology, 2-category, 0-layer thermodynamics (with snow)

Set Up for CFES

	High-Res. Version (CFES std.)	Medium-Res. Version (CFES mini)
atmosphere	<mark>T239</mark> L48	T119 L48
ocean	1/4º x 1/4º, 54 levels	1/2º x 1/2º, 54 levels
coupling interval	20 min	1 hour
integration period	23 years	> 150 years

Covariations of SST and wind over the Kuroshio

Nonaka & Xie (2003, J. Climate)

Influence of the Gulf Stream on the troposphere

Minobe et al. (2008, Nature)

Associations among storm tracks, jet streams, and midlatitude oceanic fronts

Nakamura et al. (2004, AGU monogr.)

CFES T239L48 & 0.25deg.54lev. (Case91) Sea Surface Temperature (0023.01.01)

CFES T239L48 & 0.25deg.54lev. (Case91) Outgoing Longwave Radiation (0023.01.01 00Z-06Z)

Wind Stress Curl

Wind Stress Divergence

Impacts of a SST Front on Distributions of Surface Heat Flux and Air Temperature

Color: SLP, Contour: SAT, Vector: Surface Winds Color: SAT-SST, Contour: SST

Nonaka et al., [2009, J. Climate]

Surface Temperature & Sea Level Pressure (0004.02.28 06Z-12Z)

CFES Papers

High-Resolution (but Earlier) Version

- Komori et al. (2008): Deep ocean inertia-gravity waves simulated in a high-resolution global coupled atmosphere—ocean GCM. *Geophys. Res. Lett.*, **35**, L04610.
- Nonaka et al. (2009): Air-sea heat exchanges characteristic of a prominent midlatitude oceanic front in the South Indian Ocean as simulated in a high-resolution coupled GCM. J. Climate, 22 (24), 6515–6535.

Medium-Resolution Version

• Richter et al. (2010): On the triggering of Benguela Niños: Remote equatorial versus local influences. *Geophys. Res. Lett.*, **37**, L20604.

Ongoing Efforts and Future Directions

Improvement and extension of CFES

- modification of Emanuel's convective parameterization
- coupling with an NPZD-type marine ecosystem model

Sensitivity experiments (CFES mini)

• e.g., Atlantic Niño, Indian summer monsoon, Baiu-front

New reference simulations using the improved version of CFES

- **CFES mini**: several centuries
- CFES std.: several decades

Data assimilation system using **CFES mini** (**CFES-LETKF**)

Development of **eddy-resolving** version of CFES (???)

Ongoing Efforts

Outline of Talk

Model Development & Simulation Research

- Component Models of CFES
- Set Up for CFES
- Some Results
- Ongoing Efforts and Future Directions

Ensemble Data Assimilation & Observing System Research

- Current Status: AFES-LETKF
- Future Directions: CFES-LETKF

AFES-LETKF

Data assimilation system combining **AFES** with **local ensemble transform Kalman filter** (*Miyoshi and Yamane, 2007*)

ALERA: AFES-LETKF Experimental Ensemble Reanalysis *(Miyoshi, Yamane, and Enomoto, 2007)*

- collaborative research among JMA, JAMSTEC, and Chiba Inst. Sci.
- data are available from http://www.jamstec.go.jp/esc/afes/
- observing system researches based on ALERA
 - impact of observations from Arctic drifting buoys (Inoue et al., 2009)
 - precursory signals in ensemble spread (Enomoto et al., 2010)

ALERA 2 is now running on the Earth Simulator 2.

Application to Observing System Design

Evaluation of Pressure Measurement by Arctic Buoys

Impact of Sonde Observations manifested as "Matsuno-Gill" Pattern

-1 -0.5 0 0.5 1 2 3

SPREAD Z (EX1) (1000-100hPa) AVE:00Z220CT-12Z02DEC 60N 50N 40N 30N MISMO 2006/10-12 20N EQ Indian Ocean 10S 20S 100 30S · 150 150 40S 200 300200 250 250 (a) 3ÓW 3ÓE 6ÓE 9ÔF 120E 180 150W 120W affects SPREAD Z (EX2) (1000-100hPa) AVE:00Z220CT-12Z02DEC 60N 50N reproducibility of 40N 30N typhoon generation 20N EQ 10S-20S 30S 40S 300 250 50S (b 150W 6ÓE 9ÓE 150F 180 120W 50 90 100 110 120 130 ERR Z (EX1-EX2) (1000-100hPa) AVE:00Z220CT-12Z02DEC 50N 30 20N 10N EQ 105 20S · 30S · 40S 50S (C) Moteki et al. [*QJRMS*, in revision] 60S 90W 150W 120W 6ÓE 150E 180 3ÓV 3ÓE 9ÓE 120E

w/o MISMO sonde

ALERA (w/ MISMO sonde)

w/o MISMO sonde – ALERA

ALERA vs. ALERA 2

	ALERA	ALERA 2
resolution	T159 L48	T119 L48
ensemble member	40	63 + 1
localization	21 x 21 x 13	400 km/0.4 lnp
spread inflation	0.1	
observational data	JMA	NCEP
boundary condition	NOAA OISST weekly 1°	NOAA OISST daily 1/4°

CFES-LETKF

Extension of **AFES-LETKF** data assimilation system to **CFES**

• at the beginning phase, only atmospheric observational data will be assimilated into a coupled atmosphere—ocean model

Need to develop data assimilation methods for precipitation, land-surface (soil moisture, snow), and sea-ice processes

- common difficulties
 - phase change »»» non-linear system
 - non-negative value *»»» non-Gaussian* error statistics
- new satellite data will be available in future (SMOS, CryoSat, ICESat)

