Background of Symposium/Workshop

1

Yuhei Takaya

ytakaya@met.kishou.go.jp

Climate Prediction Division Japan Meteorological Agency

Outline

- Background of Dynamical Seasonal Forecast
- Introduction of JMA Operational System
- Role of Indian Ocean and Western Pacific for Seasonal Forecast in Asian Region.
- Improvement of Asian Monsoon Forecast with CGCM. - JMA's practices -
- Required Research Activities for Future Seasonal Forecast System

Dynamical Seasonal Forecasting

Predictability of the Second Kind (Charney-Shukla Hypothesis)

On the basis of the available evidence it is suggested that a large part of the low-latitude variability is due to boundary anomalies in such qualities as sea-surface temperature, albedo and soil moisture, which, having longer time constants, are more predictable than the flow instabilities. Additional variability due to long-period natural fluctuations would likewise be more predictable.

Charney and Shukla (1981) Monsoon Dynamics

Forecast systems	periods	descriptions
1-month ensemble forecast	34 days	JMA-GSM (AGCM), T _L 159L60, BGM+LAF (50 mem), Prescribed SST anomaly, Land surface analysis
3-month, seasonal ensemble, ENSO forecast model	7 months	JMA/MRI-CGCM with land surface analysis, some modified configurations T _L 95L40, LAF+BGM (trop)+prtb. Ocean analysis (50 mem/1 month)

History of Coupled Forecast System at JMA

International Workshop on Development of Atmosphere-Ocean Coupled Models towards Improvement of Long-Range Forecast, Tokyo Japan, 8-10 December

5

JMA Coupled Forecast System

Coupled Model (JMA/MRI-CGCM)

AGCM	JMA/MRI Unified AGCM
	 T_L95L40 (horizontal resolution ~ 180km)
OGCM	MRI.COM
	Ishikawa <i>et al</i> . (2005)
	75S-75N, 0-360E
	• horizontal resolution: lon 1° , lat 0.3-1 $^\circ$
	 vertical resolution : 50 levels
	(23 levels in the upper 200m)
Coupler	 coupling interval : 1 hour
	 flux adjustment for heat and momentum flux

所家家

Long-Range Forecast, Tokyo Japan, 8-10 December

Ocean Data Assimilation System (MOVE/MRI.COM-G)

MOVE (Multivariate Ocean Variational Estimation) System

Usui et al. (2006)

- Ocean Model : MRI Community Ocean Model (MRI.COM)
- 3D-VAR(T,S)
 Observation Data: T, S on GTS, SST (COBE-SST, Ishii *et al.* 2005), SSH (TOPEX/POSEIDON, JASON-1, JASON-2, ERS-1&2, ENVISAT)
 Vertical Coupled Temperature-Salinity EOF modes
- Fujii and Kamachi(2003)
- Incremental Analysis Update (IAU)

Improvement of the thermocline variability

NINO.3.4 SST Correlation

Hindcast with the new seasonal forecast system

Forecast Skill of SST in WTP

SST Skill wrt Lead Time

(象研究)

海洋运行者同开剧目中国

Forecast scores (ACC, JJA forecast starting from February)

Based on hindcast with the new seasonal forecast system (1984-2005)

海洋政策府的财

Forecast scores (ACC, DJF forecast starting from August)

14 International Workshop on Development of Atmosphere-Ocean Coupled Models towards Improvement of Long-Range Forecast, Tokyo Japan, 8-10 December

Teleconnection (Regression on Nino3 SST)

Improvement of Monsoon Forecast

Boreal Summer (JJA) Forecasts of Asian Monsoon Indices

いた 法論 正合く

Predictability from the Teleconnection (Pacific-Japan Pattern, Nitta 1987)

ζ' (150 hPa) 20N 10N EQ 80F 120F 140E 1608 180 160W 140W 1209 100W (b) $\rightarrow 1 \text{ m}^2 \text{ s}^2$ 60N ζ' (850 hPa) 50N 40N 30N 20N 10N ΕÓ 140E 180 150W 140W 120W 100W (c) 60N SLP 50N 401 30N 201 O 140E 160W 140W 120W

Kosaka and Nakamura 2008

Composited anomalies of 32 strongest monthly event in 1979-2003

Global View of Tropics-Extratropics Teleconnection in Boreal Summer

Kosaka and Nakamura 2009, J. Clim.

South China Flood in 2010

Precipitation in June 2010

Ratio to Normals

20 International Workshop on Development of Atmosphere-Ocean Coupled Models towards Improvement of Long-Range Forecast, Tokyo Japan, 8-10 December

法主法法 正白

Precipitation Forecasts for June 2010 (I.C. : May)

Major modes of East Asian Summer Monsoon

Major modes of East Asian Summer Monsoon

Index of 1st Mode

East Asian Summer Monsoon Forecast

Long-Range Forecast, Tokyo Japan, 8-10 December

Indian Ocean Capacitor Effect

2010 JJA forecasts (Init: 2010/05/11)

法主法法 正合

Indian Ocean Capacitor Effect

Hot 🔨 Summer 2010

Future best practices/prospects

- Representing the known sources of the predictability as accurately as possible
 - Improving components of the seasonal EPS.
 ie. ocean assimilation, coupled model, other analysis (atmosphere(stratosphere), land, sea-ice)
 - Enhancing/optimizing observations related to these sources.

Narrowing the gap between the current skill and expected (potential) predictability

- Exploring new additional sources of predictability
- Understanding processes/mechanism of the climate variability
 - Developing better metrics to evaluate the model behavior. product to undestand what model does.

Related component

- Processes
 - Land Surface
 - Snow, Land Analysis
 - Sea-ice
 - Stratosphere
 - Ocean Wave
 - ENSO
 - Anything Else?
- Application

 \tilde{c}

- Dynamical sea-ice will be tested in our next system.
- Increase resolution (TL159L80 and higher model top.)

END

Thank you for your attention.

