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Abstract 

High-resolution Precipitation Nowcasts (HRPNs) – a type of close-up high-precision precipitation 

analysis and prediction – were introduced in 2014 primarily to support the observation and prediction 

of localized heavy rain. As such rainfall events caused by cumulonimbus clouds are generally 

short-term phenomena, HRPNs involve both extrapolation and spatially three-dimensional forecasting 

for heavy rain areas. These techniques enable practical prediction of rapidly developing heavy rainfall 

events. 

This paper describes the techniques used for precipitation analysis and prediction in HRPN 

generation as described in the Japan Meteorological Agency’s Weather Forecast Training Textbook (in 

Japanese). 

 

 

1. Introduction 

The Japan Meteorological Agency (JMA) works to enhance capacity for the observation and 

prediction of localized heavy rainfall using high-precision radar observation data. The Agency 

upgraded the data processing systems of all its radar sites in Japan and installed its High-resolution 

Precipitation Prediction System in FY 2012 and 2013. These enhancements helped JMA to develop 

High-resolution Precipitation Nowcasts, (HRPNs), which support close-up high-precision 

precipitation analysis and prediction. HRPNs involve the use of an X-band multi-parameter radar 

observation system (referred to here simply as X-band) called XRAIN operated by Japan’s Ministry of 

Land, Infrastructure, Transport and Tourism (MLIT). 

HRPNs, as the name suggests, are precipitation nowcasting products with the grid point interval 

shortened from the conventional 1 km to 250 m for higher resolution. Conventional precipitation 

nowcasts are generated using only observation data from JMA’s C-band Doppler Radar (referred to 

here simply as C-band), while HRPNs involve the use of varied observation radar data such as C-band 

and XRAIN in addition to the advanced application of observation data from the Automated 

Meteorological Data Acquisition System (AMeDAS) as well as upper-air radiosonde and wind 

profiler observation information. 

JMA has developed two key techniques for the generation of HRPNs: 1) a spatially 
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three-dimensional prediction approach for heavy rainfall domains, including prediction for heavy 

rainfall areas where no heavy rainfall is initially observed; and 2) an approach incorporating a 

relatively long temporal scale and a large spatial scale (for phenomena such as stationary linear heavy 

rainfall and rain generated by typhoons) to improve forecast accuracy for rain events. 

The advanced application of these observation data and techniques is based on concepts differing 

from those of conventional precipitation nowcasts. For instance, the data processing functions used for 

HRPN analysis and prediction were enhanced for optimal performance in the analysis and prediction 

of ground-level precipitation amounts and intensity. In other development for HRPN prediction 

techniques, data processing functions were innovated using methods including 1) a kinetic prediction 

approach in which phenomenon movement trends are extrapolated, and 2) a dynamical estimation 

approach for the prediction of short-term and significantly developing rain phenomena. 

Thus, HRPNs are a new precipitation nowcasting product based on the comprehensive use of 

observation data from various sources and the application of some of the world’s most advanced 

techniques. 

 

2. Algorithms  

As shown in Figure 1, the algorithms used for HRPN generation are analysis and prediction types. 

The former generates analysis data using two lots of information from radar and surface/upper-air 

observation. The resulting data are used as input for the prediction algorithm, which is then run to 

generate an HRPN. 

 

 

Figure 1 Algorithms used for High-resolution Precipitation Nowcast generation 

3. Analysis Algorithm 

The characteristics of the analysis algorithm can be summarized as follows: 

 The algorithm corrects echo positional errors based on wind profiler data showing horizontal 

wind at various altitudes under the assumption of wind-related echo drift within a short period 

in a limited area. 

 One target of HRPN analysis and prediction is rainfall amounts at the surface. The effects of 
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horizontal raindrop drift are corrected based on the calculation of such drift during descent 

from an altitude of around 1 to 2 km, which is the height used for radar-based rain intensity 

estimation. 

 Radar clutter is detected by analyzing a vertical radar beam pattern based on a clutter 

phenomenon by which the intensity of reflected radar beams rapidly decreases with height due 

to sources of clutter on or near the ground. 

 The altitude and thickness of radar’s bright bands are estimated from the size and shape of the 

ring-shaped echo observed at the maximum radar scan elevation, vertical speed as observed 

using wind profilers, and surface temperature from AMeDAS data. 

 The processes of radar composition are as follows: 

 In the C-band, rain intensity at a specific height for each radar is estimated using a method 

for linear interpolation between data of two scan elevation angles. A nationwide radar 

composition of rain intensity analysis is then calculated using the weighted average 

method, by which radar intensity for every radar is averaged with different weights. 

 In the X-band, a nationwide radar composition is calculated using the maximum method 

because the weighted average method may result in underestimation of rain intensity if 

rain-related radio wave attenuation is not estimated accurately. 

 In the final stage of radar composition processing, the X-band and C-band nationwide radar 

compositions are combined using the maximum method. The rain intensity estimation of 

the X-band, which involves dual-polarized observation data, is more accurate than that of 

the single-polarized C-band. Thus, the average 10 × 10-km rain intensity of the C-band 

nationwide radar composition is corrected based on X-band data before the final 

composition with the X-band. Re-analysis using this approach not only produces smooth 

composition at the end-edge of radar observations as shown in Figure 2 but also enables 

accurate X-band rain intensity estimation outside X-band observation areas. 

 Vectors can be summarized as follows: 

 Nationwide wind vectors are estimated in three vertical layers (altitudes: 1, 2 and 3 km) at 

horizontal intervals of 1 km. These vectors are converted to produce primary and secondary 

wind vector components with horizontal intervals of 10 km as calculated using an azimuthal 

histogram of 1-km wind vectors. Vorticity and divergence are also estimated using the same 

method. Wind vectors for heavy-rain regions are calculated with 250-m horizontal and 

150-m vertical intervals. 

 The horizontal motion of the rain intensity trend, as represented by trend vectors, is 

calculated. This trend is taken as the rain intensity change calculated over a half-hour period 

along a wind vector, making it the Lagrange differential of rain intensity. Vectors 

representing the trend of rain intensity are tracked over a period of an hour to elucidate the 
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longer-term scale change in an area of rain. 

 A multi-scale motion detection technique corresponding to the conventional method of echo 

motion vector calculation in Precipitation Nowcasts is adopted to highlight temporally and 

spatially varying scales of motion for echo motion vector estimation. 

 Figure 3 shows echo motion vectors heading northeastward or eastward, while the trend 

vectors indicate largely southward motion in an area of high rain intensity (red background). 

This suggests that heavy rain echoes are formed, move northeastward or eastward and then 

disappear periodically, while the area of rain moves southward. 

 

 

Figure 2 Radar composition (“C + X” indicates the analyzed composition of the C- and X-bands.) 

 

 

 

Figure 3 Motion vectors (gray arrows) and trend vectors (white arrows) 

Wind vectors calculated using Doppler velocity data from radars are shown as black arrows. The 

background of the figure shows superimposed rain intensity distribution based on analysis. 

 

4. Three-dimensional Prediction 

JMA’s approach to HRPN generation involves the selection of notable heavy rain regions and the 

use of high-resolution prediction in three spatial dimensions. Predictions outside the selected regions 
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are generated using a longer time step and fewer vertical calculations based on various types of 

two-dimensional information converted from the three-dimensional distribution of rain. This enables 

high-resolution, high-quality prediction with guaranteed timeliness for nowcasting products. 

 

5. High-resolution Three-dimensional Prediction 

High-resolution Three-dimensional Prediction involves extrapolation of precipitation analysis and 

prediction obtained from the Vertically One-dimensional Convection Model (VOCM). Analysis 

extrapolation is used to predict three-dimensional distribution of water content based on the 

integration of HRPN analysis with one-minute time steps using the time integration of the 

semi-Lagrangian method. The time integration is divided into two types: (1) that of water content 

exclusively in the vertical direction in proportion to the terminal velocity estimated on the basis of 

water content, and (2) that in all directions based on three-dimensional wind vectors calculated from 

radar Doppler velocity data. The results of calculation for these values are combined using the 

maximum method to generate predictions. In this way, it is possible to predict the movement, rotation, 

extent, growth and decline of rain areas because the water content of (2) is multiplied by a factor 

relative to the trend of growth/decline in the rain area or rainfall as predicted using the VOCM. This 

prediction method is outlined in Figure 4 for forecast times from 5 minutes to around 20 minutes with 

(1) and beyond 20 minutes with (2). 

 

 

Figure 4 Illustration of High-resolution Three-dimensional Prediction 

The top row of the figure shows analysis, the second shows (1) and (2) combined, the third shows 

(1), and the fourth shows prediction with (2). The figure gives an oblique view of the rain area from 

an elevated position to the southeast, with lighter colors representing higher liquid water content. 

Both the east-west and north-south sections show white dotted lines forming a grid of the area’s 

highest water content. This figure represents the area of cumulonimbus-related precipitation that 
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brought hail to the Mitaka area of Tokyo with an initial time of 14:30 on June 24 2014. The 

awning-shaped echo structures (called overhangs) in the figure suggest the presence of strong 

updrafts. It should be noted that practical prediction processing involves a supply of water content 

from (2) to (1), while the figure for (1) shows the results of calculation with zero supply for simple 

representation of how rain falls. 

 

The VOCM is a prediction model developed from studies by Simpson et al. (1965, 1969) and 

Yamagishi (1973). Figure 5 outlines the related prediction process. In the calculations of the VOCM, a 

climbing bubble passes a Lifted Condensation Level ((1) in the figure). Condensed water vapor then 

quickly transforms into cloud particles, which turn into raindrops via an auto-conversion mechanism. 

The raindrops thus generated grow due to the incorporation of surrounding cloud particles ((2)), and 

exit the bubble as raindrops upon reaching a certain size ((3)). The bubble climbs farther to an 

equilibrium level, where it stops due to a lack of buoyancy ((4)). Raindrops begin to fall from the 

bubble and cool the surrounding air due to the effect of evaporation. The remaining raindrops cool the 

ground surface when they fall ((6)). 

Up to 15 bubbles can be launched successively; total rainfall then increases in proportion to the 

number of bubbles launched. 

Water content prediction based on the VOCM is vertically weighted and composited for 

extrapolation prediction using the maximum method described above. 

 

Vertical atmospheric profile data are used as input for the VOCM. Initial data value generation is 

based on radiosonde observation results, and is updated using the method outlined in Figure 6. Several 

vertical profile candidates are generated by changing the temperature of the initial vertical profiles. 

This is followed by calculation of the bubble’s rate of ascent and its maximum altitude, the total 

rainfall and the maximum number of lightning strikes per unit time for each of the candidates. Based 

on this process, updating involves the selection of the vertical profile dataset that best accommodates 

analysis or observations. Data from the selected profiles are used to modify operational vertical 

profiles in and around the rain area. As this update processing takes place every five minutes, the 

updated vertical profiles can be used for prediction of the next initial time. These profiles also drift 

with time (as shown in Figure 7) due to the application of time integration based on the 

semi-Lagrangian method with 3-km-altitude winds. 
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Figure 5 Conceptual diagram of prediction processing using the Vertically One-dimensional 

Convection Model (VOCM) 

   The vertical axis represents altitude and the horizontal axis represents time for each bubble. 

 

 

 

Figure 6 Conceptual diagram of vertical atmospheric profile updating 

The horizontal axis of the top diagram in this figure represents time. The graph illustrates, from left 

to right, the generation of one cumulonimbus cloud followed by its growth, prime state and 

weakening. Six candidates for vertical profiles are seen at the bottom of the figure; the blue 

elements in the rightmost four columns correspond to observation data. Here, the second line from 

the top is selected as being closest to the observation data. 
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Figure 7 Vertical profile updating 

This figure shows the temperature at 5,000 meters above sea level on 23 July 2013. Areas with 

lower temperatures than their surroundings as revealed by vertical profile updating are seen at 15:00 

in the southern Kanto and Tokai districts. These regions drift southeastward under the influence of 

3-km-altitude winds, and are observed over the sea at 24:00. 

 

 

6. Low-resolution Three-dimensional Prediction 

The high-resolution three-dimensional prediction described in the previous section requires such 

massive resources for calculation that the number of heavy rain areas that can be predicted is limited to 

between 5 and 10 (although a maximum limit of 100 is set when use is exclusively for vertical profile 

updating). Accordingly, in cases where large numbers of cumulonimbi form, low-resolution 

three-dimensional prediction is used in conjunction with its high-resolution counterpart. 

Low-resolution three-dimensional prediction involves the use of a prediction model that correlates 

the vertical speed of bubbles to the trend of rainfall with the aim of enabling prediction for greater 

spatial regions. This model is based on an idea driven by the VOCM. In the model, an amount of liquid 

water content d(Mi)/dt is assumed to be generated in an air column per unit time in proportion to the 

vertically averaged vertical velocity w in the air column. This is because dM/dt is proportional to 

cloud liquid water content in the auto-conversion algorithm used for the VOCM, and this content 

increases with vertical velocity. Meanwhile, without consideration of the ice state, the relationship 

between d(Mi)/dt and vertically integrated liquid (VIL) water content (which indicates the total water 

content in the air column) is defined as shown in Equation 1, where R is a rain intensity value 

representing the water content drained from the bottom of the air column to the outside per unit time. 

 

RVIL
dt

d
Mi

dt

d
w   (Eq. 1) 

 

In addition, the VOCM predicts that bubbles rise and raindrops are generated, and rainfall is 

expected if the bubble accelerates vertically upward. Thus, w is a temporal value differentiated as  
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2

 (Eq. 2) 

 

As the right side of Eq. 2 is an index of vertical acceleration, it is assumed that the rainfall amount 

increases when the index is positive in the model. 

The model predicts that heavy rain will fall 20 to 30 minutes after vertical acceleration in an area 

where the index is large and cumulonimbi grow. Rainfall is also expected to be heavy beyond 20 to 30 

minutes if the spatial gradient of surface temperature or divergence is large, and to ease off if these 

values are small. 

Finally, the advective velocity values (u, v) for w, known as severe rain trend vectors, are obtained 

using Eq. 3. These vectors are combined with echo motion vectors for rain prediction. 
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7. Initiation Prediction 

JMA is also working to develop the technique used for HRPNs toward the prediction of 

cumulonimbus generation in order to enable longer lead times against rapidly developing heavy 

rainfall. This approach involves consideration of three phenomena as triggers for cumulonimbus 

generation: 

(1) Downflow caused by heavy rainfall 

When strong downflow is caused by heavy rainfall from cumulonimbus clouds, further 

cumulonimbus generation is predicted for positions where gust fronts and surrounding surface 

winds converge the most strongly. When multiple cumulonimbus clouds are present, further 

generation is predicted for the intersections of gust fronts from each one. 

(2) Temporal variations of surface temperature and water vapor 

Cumulonimbus generation is predicted for areas where surface winds (based on wind 

direction and AMeDAS wind speed observation data) converge in the boundary between 

growth and reduction in GPS water vapor observations, and also in the boundary between rises 

and falls in surface temperature. 

(3) Intersection of arch-shaped weak echoes 

The position and speed of weak linear or arch-shaped echoes related to local fronts or 

discontinuous lines are determined automatically. When two weak echoes intersect, 

cumulonimbus generation in the intersection region is predicted on the assumption of a 

temporary increase in updraft there. 

When these triggers are detected, rainfall is predicted using the VOCM. Vertical profiles are 
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adjusted directionally for stability when no new cumulonimbus clouds actually appear despite the 

appearance of triggers, when aerial conditions are unstable, and when cumulonimbus generation is 

predicted. 

Due to the presence of fewer AMeDAS observation stations on islands/mountains and difficulties in 

detecting weak echoes in mountainous areas, generation prediction based on the above techniques 

results in a probability of detection (POD) below 10%. Accordingly, further improvement is needed. 

8. Error Range Estimation 

HRPN distribution data consist of information on five-minute integral rainfall amounts and rain 

intensity. The data contain different types of information on analysis/prediction uncertainty.  

The integral rainfall amount data generally applied to quantitative forecasting contain an estimated 

error range ε. With P defined as the hourly rainfall amount forecast and O as the amount observed, 

the probability that P – O will be between –2ε and +ε is about 70%. As the hourly rainfall amount 

forecast error (P – O) can actually be determined after an hour, ε represents a prediction of the error 

range included in the rainfall amount forecast. 

Meanwhile, rain intensity data contain information on possible sources of error in rain intensity 

analysis, such as clutter, bright-band, upper-air echo or hail, as an alert to increased uncertainty on the 

assumption of visual application. 

 

9. Effective Application 

This section describes a half-hour rainfall amount forecast issued 15 minutes ahead as an effective 

example of HRPN application (Figure 8). 

 

 

Figure 8 Method of calculation for half-hour rainfall amount forecasts issued 15 min. ahead 

The assumed times are 2.5 minutes for nowcast generation, 2.5 minutes for dissemination and 10 

minutes for evacuation. 

 

Table 1 shows the number of grids (categorized by half-hour rainfall amount) for columns in which 
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the half-hour rainfall amount is added to 15-minute analysis amounts and forecasts issued 15 min 

ahead with the corresponding error range. The relevant row shows the total 30-minute analysis rainfall 

amount for the same period. The bottom table shows verification of results for rapidly developing 

heavy rainfall. A 70% probability of detection (POD) was achieved when half-hour rainfall amounts 

exceeding 50 mm were observed, but massive false alarms would still be issued with this percentage. 

Assuming that the observed rainfall is 30 – 50 mm when the prediction is for 50 mm+, the false alarm 

rate (FAR) could be below 40%. On the other hand, when 50 mm+ is considered correct, the frequency 

with which 50 mm+ is predicted but 30 – 50 mm is observed for the same grid square is once every 51 

days for a 1-km grid and four times every 51 days for a 5-km grid. A cumulative frequency exceeding 

70% of the total number of frequencies (excluding those with no prediction) is used as a threshold in 

this evaluation. The slight repetition of false alarms is reasonable because rapidly developing severe 

rain is generally observed in spatially small regions. Accordingly, the number of instances when rain is 

not as heavy as forecast but still heavier than usual will be relatively low during summer at a particular 

location if alarm information is based on spatially small units. It is therefore expected that the number 

of false alarms would not be excessive. 

 

Table 1 Verification of half-hour rainfall forecasts issued 15 min. ahead (with error range added to 

predictions) 

 

Error range estimation is combined with rainfall prediction by adding twice the value of ε to 

predictions from forecast times from 5 through 30 minutes with distribution in proportion to 

5-minute integral rainfall prediction multiplied by certain factors (0.069 for a forecast time (FT) of 5 

minutes, 0.071 for FT10, 0.074 for FT15, 0.077 for FT20, 0.079 for FT25 0.082 for FT30). The 

bottom, middle and top tables show figures for rapidly developing severe rain, continuous rain and 

all cases, respectively. The information consists of verification data covering the period from 10 
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July 2014 through 31 August 2014 at 10-min. intervals over land based on 1-km grid data converted 

from a 250-m grid via simple averaging. 

 

As described above, it is considered feasible to issue half-hour rainfall amount forecasts 15 minutes 

ahead with the smallest unit of information condensed to a 1-km grid with a high POD and a low false 

alarm rate. This allows the practical provision of reliable information with a short lead time. 

Data for heavy rainfall exceeding 100 mm per hour on 23 July 2013 in Tokyo’s Meguro Ward are 

shown in Figure 9. Based on comparison with the rainfall amount analysis at the top of the figure, it 

can be seen in the half-hour rainfall amount forecast 15 minutes ahead (shown at the bottom of the 

figure) that more than 50 mm of rain was expected over Meguro Ward in the forecast for 15:55 issued 

at 15:40. However, the red grid areas indicating rainfall exceeding 50 mm are delayed by about 5 

minutes in their enlargement. Figure 10 also shows localized heavy rain that caused landslides in 

Nagano Prefecture’s Nagiso Town on 9 July 2014. The red areas in the analysis indicate rainfall 

exceeding 50 mm. The forecast issued 15 minutes ahead also shows red grid areas with some 

fluctuation. 

 

 

Figure 9 Heavy rain exceeding 100 mm/h on 23 July 2013 in Tokyo’s Meguro Ward 
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Figure 10 Heavy rain causing landslides on 9 July 2014 in Nagano Prefecture’s Nagiso Town 

 

Nagiso Town is outside the range of X-band observation, but X-band data from near the town are 

available. HRPNs predicted the severe rain in the region where the landslides occurred thanks to the 

high accuracy of X-band rain rate estimation, which propagated beyond the X-band area. 

 

10. Conclusions 

HRPNs provide close-up, high-precision precipitation analysis and precipitation prediction. 

Although current HRPN performance does not match that of high-accuracy predictions regarding 

localized heavy rain caused by cumulonimbi, it allows practical prediction of rapidly developing 

heavy rain (e.g., half-hour rainfall amount predictions 15 minutes ahead). 

As weather phenomena caused by cumulonimbi are particularly hazardous to people who are active 

outdoors, JMA’s website (http://www.jma.go.jp/en/highresorad/) is designed to provide HRPNs 

with the minimum number of clicks/touches and to facilitate the retrieval of relevant information. 

Users are encouraged to make good use of these online resources for safety activities and learn how to 

protect themselves from disasters caused by cumulonimbus cloud-related phenomena (leaflet: 

http://www.jma.go.jp/jma/kishou/books/index.html; in Japanese). 
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