第3章 各種資料

3.1 地震資料(主な地震の震源要素)*

熊本地震発生から 2017 年 4 月 30 日までに震源 域周辺で発生した, M5.0 以上もしくは最大震度 5 弱以上の地震の震央分布を, 第 3.1.1 図に示す. 第 3.1.1 表には, 第 3.1.1 図に示した地震(計 26 個) の震源要素を示す.

第3.1.1 図 熊本地震震源周辺で発生した地震の震央分布図(M5.0以上もしくは最大震度5弱以上)

^{*} 地震火山部地震予知情報課 小松 陽子

第3.1.1 表 震源要素(M5.0以上もしくは最大震度5弱以上, 2016/4/14~2017/4/30)

(JST)

	DAT	ГE	01	RIG	IN TIM	МE	Ι	LAT.		Ι	LON.		DEP		MAGN	I TUDE	C*	(D,	R)	D=DISTRIC	CT. R=H	REGI	ON
Y	M	D	Н	М	S	+/-	D	М	+/-	D	М	+/-	KM +	-/-	1	2				REGION NA	4ME		
2016	4 1	14	21	26	34.4	0.0	32	44.5	0.1	130	48.5	0.1	11	1	6.5D	6.2W	7	(7,2	69)	NW KUMAMO	OTO PRI	EF	
			22	07	35.2	0.0	32	46.5	0.1	130	50.9	0.2	8	1	5.8D	5.4W	С	(7,2	69)	NW KUMAMO	OTO PRI	EF	
			22	38	43.5	0.0	32	40.6	0.1	130	44.1	0.1	11	1	5.0D	4.9W	А	(7,2	69)	NW KUMAMO	OTO PRI	EF	
			23	43	41.1	0.0	32	46.0	0.1	130	49.6	0.1	14	1	5.1D	5.OW	А	(7,2	69)	NW KUMAMO	OTO PRI	EF	
2016	4 1	15	00	03	46.4	0.0	32	42.0	0.1	130	46.6	0.2	7	2	6.4D	6.OW	D	(7,2	69)	NW KUMAMO	OTO PRI	ĒF	
			00	06	21.3	0.0	32	41.7	0.1	130	45.1	0.1	11	1	5.0V		В	(7,2	71)	SOUTHERN	KUMAM	0T0	PREF
			01	53	01.4	0.0	32	42.0	0.1	130	45.1	0.1	12	1	4.8D	4.7W	А	(7,2	69)	NW KUMAMO	OTO PRI	ĒF	
2016	4 1	16	01	25	05.4	0.0	32	45.2	0.1	130	45.7	0.2	12	1	7.3D	7.OW	7	(7,2	69)	NW KUMAMO	OTO PRI	EF	
			01	25	37.7	0.1	33	16.4	0.3	131	21.1	0.3	12	1	5.7v			(7,2	80)	NORTHERN	OITA J	PREF	
			01	30	51.9	0.0	32	38.9	0.1	130	42.5	0.1	11	1	5.3V		4	(7,2	71)	SOUTHERN	KUMAM	OTO	PREF
			01	44	07.4	0.0	32	45.1	0.0	130	45.6	0.1	15	1	5.4D	5.3V	А	(7, 2)	69)	NW KUMAMO	OTO PRI	EF	
			01	45	55.4	0.0	32	51.7	0.1	130	53.9	0.1	11	1	5.9D	5.8W	С	(7, 2)	69)	NW KUMAMO	OTO PRI	EF	
			03	03	10.7	0.0	32	57.8	0.1	131	05.2	0.1	7	1	5.9D	5.6W	В	(7,2	70)	NE KUMAMO	OTO PRI	EF	
			03	09	29.8	0.0	32	58.1	0.1	131	05.2	0.1	10	1	4.2V		А	(7, 2	70)	NE KUMAMO	OTO PRI	EF	
			03	55	53.0	0.0	33	01.5	0.1	131	11.4	0.1	11	1	5.8D	5.6W	D	(7, 2	70)	NE KUMAMO	OTO PRI	EF	
			07	11	37.4	0.0	33	16.2	0.1	131	23.7	0.1	6	1	5.4D	5.1W	А	(7,2	80)	NORTHERN	OITA I	PREF	
			07	23	54.3	0.0	32	47.2	0.1	130	46.4	0.1	12	1	4.8D	4.6W	А	(7, 2)	69)	NW KUMAMO	OTO PRI	EF	
			09	48	32.6	0.0	32	50.8	0.0	130	50.1	0.1	16	1	5.4D	5.2W	С	(7,2	69)	NW KUMAMO	OTO PRI	EF	
			09	50	06.2	0.0	32	51.1	0.0	130	49.7	0.1	15	1	4.5D	4.5V	А	(7,2	69)	NW KUMAMO	OTO PRI	EF	
			16	02	01.0	0.0	32	41.9	0.1	130	43.2	0.2	12	1	5.4D	5.1W	А	(7,2	69)	NW KUMAMO	OTO PRI	EF	
2016	4 1	18	20	41	57.9	0.0	33	00.1	0.1	131	11.9	0.1	9	1	5.8D	5.5W	В	(7,2	70)	NE KUMAMO	OTO PRI	EF	
2016	4 1	19	17	52	13.6	0.0	32	32.1	0.1	130	38.1	0.1	10	1	5.5D	5.3W	В	(7,2	71)	SOUTHERN	KUMAM	OTG	PREF
			20	47	03.3	0.0	32	34.3	0.2	130	39.1	0.2	11	1	5.OD	4.9W	А	(7,2	71)	SOUTHERN	KUMAM	OTG	PREF
2016	4 2	29	15	09	34.3	0.0	33	15.4	0.1	131	22.0	0.1	7	1	4.5D	4.4W	В	(7,2	80)	NORTHERN	OITA I	PREF	
2016	6 1	12	22	08	15.0	0.0	32	26.9	0.1	130	40.8	0.1	7	1	4.3D	4.5V	А	(7,2	71)	SOUTHERN	KUMAM	ОТС	PREF
2016	8 3	31	19	46	02.7	0.0	32	43.3	0.1	130	37.0	0.1	13	1	5.2D	4.9W	А	(7, 2)	69)	NW KUMAMO	OTO PRI	ΕF	

*最大震度 A:震度 5 弱, B:震度 5 強, C: 震度 6 弱, D:震度 6 強

3.2 地震資料(主な地震の検測値)^{*}

熊本地震発生から 2017 年 4 月 30 日までに発生 した M5.9 以上の地震,及び 2016 年 4 月 16 日に 大分県で発生した M5.7 の地震の検測値を第 3.2.1 表に掲載する.

第3.2.1表 主な地震の検測値

2016Y 4M 14D 21H 26M 34.43S +/-0.05 NW KUMAMOTO PREF R=(7,269) MAXI=7 LAT=32 44.50N +/-0.13 LONG=130 48.52E +/-0.18 DEPTH= 11KM +/-0.90 MAGI=6.5D MAG2=6.2W REMARK: THE FORESHOCK OF "THE 2016 KUMAMOTO EARTHQUAKE", 8 PEOPLE KILLED AT MASHIKI TOWN, ONE PERSON KILLED AT KUMAMOTO CITY.

STATION	PHA	TIME	RES PHA	TIME	RES N-S	AMP	E-W AME	Р	U-D AM	IP	DELTA	AZM	MAG	MRES
N.MSIH	IP	21 26 36.61	-0.1		0.5		0.S.		0.S.		6.2	9.7		
N. TYNH	IP	21 26 37.50	0.0		0.5		0. S.				13.0	204.0		
KU.KMP	IP	21 26 38.38	0.0						0.S.		19.5	296.5		
KUIZU3	ΙP	21 26 38.70	0.0						0.S.		21.4	179.0		
KUIZU3	М	21 26			1140	9 2.8	8318	3.3		*	21.4	179.0		
N. YABH	Р	21 26 38.80	-0.1 S	26 42.51	0.5 962.	2 0.8	1033	0.8	1078	0.7	22.7	116.5		
N. MSMH	ΙP	21 26 39.30	-0.2 S	26 43.75	0.7 181	3 0.4	1245	0.2	807.2	0.6	26.9	240.9		
N. HKSH	ΙP	21 26 39.66	-0.1		998.	3 0.2	1111	0.4	847.8	0.3	28.5	74.2		
N. KKCH	IP	21 26 39.75	-0.0 S	26 43.73	0.2 106	6 0.3	1574	0.4	816.5	0.9	28.5	4.0		
V. AS02	ΙP	21 26 39.90	0.0								29.2	58.1		
N.IZMH	IP	21 26 40.04	0.1		827.	4 0.4	991.2	0.5	999.9	0.4	29.3	162.1		
N. ASVH	Р	21 26 40.06	-0.0 S	26 44.64	0.6 0.8		3238	0.1	2236	0.6	30.5	40.3		
N. TMNH	ΙP	21 26 40.94	-0.0 S	26 45.98	0.5 760.	8 0.6	782.9	1.0	764.7	0.6	35.8	319.7		
TAMANA	Р	21 26 40.94	-0.1						0. S.		36.1	313.9		
TAMANA	М	21 26			462	5 2.8	4843	2.8		*	36.1	313.9	6.3D	-0.2
KU.ITK	ΙP	21 26 41.37	0.0		298.	0 0.3	513.0	0.3	462.3	1.1	38.2	185.2		
N. GKSH	IP	21 26 41.57	-0.1 S	26 46.94	0.2 860.	7 0.5	1070	0.5	728.2	0.5	40.3	103.9		
N. SBAH	IP	21 26 41.77	0.0		405.	2 0.4	273.8	0.3	371.8	0.9	40.5	136.7		
NAKATS	М	21 26			342	5 3.4	6297	4.6		*	43.0	8.5	6.4D	-0.1
KU. TAI	ΤP	21 26 42 25	0.0 S	26 47.97	0.3 0.5		0. S.		281.3	0.4	43.5	7.5		
N. NMNH	TP	21 26 42 31	-0.2		341	2 0 3	289.1	0.7	187.3	0.5	45.3	58.3		
N OGNH	TP	21 26 43 17	0.2.5	26 49 32	0 3 132	5 0 4	973 2	0.3	697 3	1.2	48 4	29.3		
KU OMT	TP	21 26 42 81	-0.3.5	26 49 59	0.4 0.5	0.1	0.5	0.0	0.5		49 0	317 5		
N ASKH	TP	21 26 43 83	-0.2.5	26 52 62	1 9 100	204	851 0	0 4	602 5	1 0	54 4	203 6		
KU TKD	TP	21 26 43 87	-0.2.5	26 51 41	0.6.0.5		738 2	0.4	0.5	1.0	54 9	81 0		
KU SMT	TP	21 26 43 97	-0.6.5	26 52 18	0.5 512	203	0.5	0.1	454 7	0.4	57.9	233 9		
N UKHH	IP	21 26 45 02	-0.0.5	26 53 94	1 5 622	9 0.6	290 5	0.7	291 2	0.1	60.7	0.7		
κττακά	M	21 26 40.02	0.00	20 00.04	1.0 022.	5 0.0	250.0	5.0	201.2	v. v *	61.6	101 7	6 2D	-0.3
N TKKH	TP	21 26 45 50	-0.3.5	26 54 17	0 4 405	9 0.5	2510	1.2	200.4	0.4	65 3	286 8	0.20	0.0
N SNTH	TP	21 26 46 47	0.5 5	20 54.17	0. 4 403.	3 0.0	1/8 0	1.2	200.4	1 4	66 3	40.3		
N UMWH	TP	21 26 46 22	-0.2		379	4 0.4	634 3	0.5	375 4	0.5	68.9	80.8		
OKUCUI	M	21 20 40.22	0.2		270	9 0.9 0 1 0	7062	5.1	515.4	0.0	60.2	106.9	6 7D	0.2
HONDO	M	21 20			435	6 5 1	2208	5.5		*	70.2	244 6	6 5D	-0.0
N NDAH	TD	21 20 21 26 46 01	0.3		997	7 0 3	2200	0.0	305 0	03	70.2	149.0	0.00	0.0
N USEU	TD	21 20 40.91	-0.3		207.	0.0	213.9	0.9	149 7	0.3	70.3	221 5		
N. ПЭГП N. МТИЦ	TD	21 20 47.70	-0.2		190.	7 0 0	101 6	0.0	142.7	0.3	10.0	551.5		
KU STO	1 F T D	21 20 40.27	0.3		134.	1 0.9	210.0	0.0	149.4	0.3	02.0	100.2		
NU. STU	1 F M	21 20 49.13	0.4		320.	4 0.3	010.0	5.0	220.2	0.5	03. I 94 E	140.0	6 9D	0.9
TEUNO	M	21 20			100	4 2.0 E 9.6	1520	0.9		*	04.0	112.0	6.3D	-0.2
TTAVA	M	21 20			19.	0 5.0 0 5.0	1120	1.0		*	00.0 96 0	129.0	6 9D	0.2
DEDDUA	M	21 20			20:	0 0.2 6 4 1	4959	1.4		*	00. U 96. 4	40 1	0. 3D 6 GD	-0.2
N NCCH	M	21 20	0.4.5	97 00 74	0 4 146	4.1	4200	0.4	910 0	^ ∩ 4	00.4	40.1	0.00	0.1
IDECUT	M	21 20 49.20	0.43	21 00.14	0.4 140.	4 0.5	900E	1 7	210.0	0.4	00.0 90.7	201.3	6 ED	0.0
UKESHI N MVTU	M	21 20	0 1		290	0 2.5	2890	1. (940 1	*	89.7	296.2	6. SD	0.0
N. MYJH	1P TD	21 26 49.92	-0.1	07 01 01	381.	5 0.9	263.4	0.5	240.1	0.4	91.0	202.3		
N. UMIH	IP	21 26 50.05	-0.4 S	27 01.61	-0.1 191.	3 0.4	390.2	0.4	220.3	0.2	94.0	345.2	a	0.0
USUKI	M	21 26			108	5 4.5	1784	5.2		*	95.1	67.3	6.2D	-0.3
NOMOZA	M	21 26	0	05 00 00	130	z 2.3	1995	7.6	050 0	*	95.5	263.0		
G. SIBI	1P 1F	21 26 50.60	-0.1 S	27 03.93	1.7 691.	0 0.4	446.3	0.5	259.6	0.5	95.7	206.9		
TAKAZA	1P	21 26 51.28	0.4				0500		192.1	0.7	96.4	164.2		0.0
TAKAZA	M	21 26		0.5	239	3 3.6	2598	4.1		*	96.4	164.2	6.5D	-0.0
N. BZNH	1P TP	21 26 51.06	-0.2 S	27 03.12	-0.0 279.	2 0.5	531.8	0.5	177.5	0.2	99.1	17.8		
KU. SBR	1P	21 26 50.80	-0.5		252.	8 0.3	211.5	0.4	157.2	0.5	99.3	328.7		
N. SBSH	ΙP	21 26 51.47	-0.4 S	27 04.90	0.8 277.	4 1.0	391.2	1.3	190.2	1.5	102.6	294.8		

* 地震火山部地震予知情報課 小松 陽子

STATION	PHA	TIME		RES	PHA	TIME	RES	N-S AM	Р	E-W A!	MP	U-D AMP		DELTA	AZM	MAG	MRES
AKAIKE	М	$21 \ 26$						1862	3.8	1766	4.9		*	108.0	359.2	6.4D	-0.1
KUNIMI	М	$21 \ 26$						3159	3.8	2215	5.7		*	121.7	35.3	6.6D	0.1
NICHIN	М	$21 \ 26$						2010	7.3	1455	1.9		*	131.1	155.8		
SUZUYA	М	$21 \ 26$						1256	3.9	2066	6.5		*	140.7	193.9		
NARU	М	$21 \ 26$						2051	3.0	1527	6.2		*	141.2	162.0		
IKI	Р	$21 \ 26$	59.16	-0.5										154.4	319.7		
IKI	М	$21 \ 26$						2192	2.2	2372	2.6		*	154.4	319.7	6.7D	0.2
KOSHIK	Р	21 26	58.63	-1.3										156.4	221.6		
KOSHIK	М	$21 \ 26$						1004	3.9	1267	4.2		*	156.4	221.6	6.4D	-0.1
ΥΤΟΥΟΤ	М	$21 \ 27$						931	5.8	1755	5.3		*	170.7	7.9	6.5D	0.0
TASHR2	М	$21 \ 27$						541	5.2	528	3.8		*	174.6	176.5	6.1D	-0.4
KUDAMA	М	$21 \ 27$						1102	7.6	1518	3.5		*	176.2	33.8		
HIROMI	Р	$21 \ 27$	02.57	-0.3										177.5	72.2		
HIROMI	М	21 27						772	4.2	694	4.6		*	177.5	72.2	6.3D	-0.2
NAGAHA	М	21 27						813	3.4	419	3.4		*	180.1	59.3	6.2D	-0.3
TOSASH	Р	21 27	04.36	0.3										186.9	85.3		
TOSASH	М	21 27						931	8.4	715	4.2		*	186.9	85.3		
FUKUE2	M	21 27						562	9.0	1043	8.1		*	193.5	267.8		
KUBOKA	Р	21 27	08.75	0.3										219.7	72.6		
KUBOKA	М	21 27						765	4.2	875	5.8		*	219.7	72.6	6.4D	-0.1
MITSUS	Р	21 27	06.86	-1.8										221.0	323.6		
MITSUS	М	21 27						579	4.2	710	6.2		*	221.0	323.6		
KURAHA	Р	21 27	08.40	-0.5										222.8	45.3		
KURAHA	М	21 27						802	6.4	830	6.5		*	222.8	45.3		
HIKIMI	M	21 27						669	6.5	766	6.4		*	224.3	27.2		
HAGIMI	Р	21 27	08.66	-0.9										228.5	7.7		
HAGIMI	М	21 27						1517	5.2	1454	3.4		*	228.5	7.7	6.7D	0.2
TANEG3	Р	21 27	09.66	-0.3										231.5	176.0		
TANEG3	M	21 27						504	6.4	467	7.6		*	231.5	176.0		
TSUSHM	Р	21 27	08.81	-2.0										237.5	326.9		
TSUSHM	M	21 27						577	3.8	552	7.3		*	237.5	326.9		
TANBAR	Р	21 27	11.02	0.1										238.3	60.4		
TANBAR	M	21 27						585	5.4	248	4.0		*	238.3	60.4	6.2D	-0.3
KUCHIE	M	21 27						403	3.8	451	6.1		*	259.0	193.2	a	
MITANE	M	21 27	10 50					389	4.9	429	5.1		*	260.0	178.1	6.2D	-0.3
TOYOHI	Р	21 27	13.73	-0.0				005		710	7 1		.4.	260.4	34.5		
TOYOHI	M	21 27						685	5.7	712	7.1		*	260.4	34.5		
NARUUT	M	21 27	15 79	0.4				529	5.8	895	6.2		*	200.1	10.5		
YAKUHI	Р	21 27	15.73	-0.4				000	0 9	975	10 0			279.0	185.9		
TAKUHI	M	21 27	10.00	0.0				283	8.3	315	12.3		*	279.0	185.9		
GUISUZ	Р м	21 27	18.92	-0.2				470	10.0	0.07	Б. С.		.1.	301.0	30.9		
GUISUZ	M	21 27						470	7.5	807	5.0 5.0		*	301.0	30.9		
JUUGE	M	21 27						1992	1.5	564 077	5.6		*	302.8	45.Z		
MUNUDE	M	21 27						1321	4.0	911	0.0		*	300.Z	76 1		
CALIVO	M	21 27						000 600	0.1	011	9.1		*	319.3 220.1	20.0		
NAKANO	M	21 27						214	7.6	250	16 5		*	029.1 000 0	105 9		
SAKAID	M	21 27						469	7.0	216	10.5		~ ~	241 7	57 1		
MIMANA	M	21 27						402	7.0	177	6 1		*	241.7	64.9		
ATOT	M D	21 27	96 91	-0 1				400	7.0	177	0.1		*	042.0 950 7	70.0		
ATOT	г М	21 27	20.31	0.1				471	4 4	551	5.2		*	250.7	70.0	6 6D	0 1
SAKAUD	M D	21 27	25 70	_0 8				471	4.4	001	0.0		Ŧ	250.7	21.0	0.00	0.1
CARAUR	I M	21 27	20.10	0.8				506	76	1020	75		*	250.2	21 0		
TRIMA	M	21 27						600	5.6	1039	7.0		~ ~	269.2	31.0 33.0	6 OD	0.4
ATDA	M D	21 27	21 19	0 1				005	5.0	1277	5.0		*	205.0	50.0	0.90	0.4
AIDA	M	21 27	51.12	0.1				126	6 0	200	0.9		*	205 1	50.9		
KURAVO	M M	21 27						430	0.0 5.2	308 791	9.2 8.7		т *	393. I 409 E	00.9 40-7		
AWINCS	M M	21 27 91 97						091	0.0 4.9	201	0.1 Q 1		т Ф	400.0	42.1 61 0		
ΤΔΚΔΡΛ ΤΔΚΔΡΛ	M M	21 21 91 97						159	વ.ર વ.વ	204	0.4 15 7		т ж	420.2 196 9	01.9 201 F		
MINARE	m P	21 27	35 33	-1 E				192	J. J	304	10.7		-r.	420. 3 440 G	201.0 72 F		
MINARE	M	21 27	JJ. JJ	1.0				967	5 0	221	5 2		*	440.0 110 C	72.0 72 5	6 50	0.0
MINADE	m M	21 21 91 97						201 199	J.9 7 Л	970	0.0 6 9		т ж	440.0 110 5	12.0 55.9	<u>о.</u> эр	0.0
OKI9	m P	21 27	36 80	-1 G				400	1.4	219	0.0		-r.	440.0 459 0	20.2 20.0		
01114	1	61 61	00.00	1.0										404.9	4J. U		

STATION	PHA	TIME		RES	PHA	TIME RI	ES	N-S AM	Р	E-W AM	ſP	U-D AMP		DELTA	AZM	MAG	MRES
OKI2	М	21 2	7					198	6.9	440	11.5	5	*	452.9	29.0		
MIKI	М	21 2	7					507	6.2	251	8.3	3	*	454.9	58.6		
TANABE	Р	21 2	7 37.95	-1.7										462.9	73.7		
KOUYA	М	21 2	7					342	4.5	329	5.2	2	*	473.6	68.4	6.6D	0.1
KASUMI	Р	21 2	7 41.24	-0.0										475.3	47.3		
KASUMI	М	21 2	7					516	7.1	390	7.0)	*	475.3	47.3		
AMAMI	Р	21 2	7 44.20	0.7										493.3	193.9		
AMAMI	М	21 2	7					68	5.0	119	9.6	5	*	493.3	193.9		
HEGURI	М	21 2	7					224	7.9	266	7.2	2	*	499.1	63.5		
YASAKA	Р	21 2	7 44.84	-0.7										509.1	49.8		
YASAKA	М	21 2	7					603	7.0	322	11.1		*	509.1	49.8		
WACHI	Р	21 2	7 44.95	-0.6										509.2	55.1		
WACHI	М	21 2	7					444	6.9	180	11.3	3	*	509.2	55.1		
AMAMIN	М	21 2	7					47	17.7	119	11.8	3	*	522.7	197.9		
KATADA	Р	21 2	7 51.33	-1.1										563.7	65.6		
KATADA	М	21 2	7					259	8.0	192	6.0)	*	563.7	65.6		
MIHAMA	М	21 2	7					360	4.6	158	5.3	3	*	568.5	55.6	6.7D	0.2
ISE	М	21 2	7					261	5.7	187	4.8	3	*	577.1	69.9	6.6D	0.1
TOKUNO	Р	21 2	7 55.02	0.9										577.2	198.5		
TOKUNO	М	21 2	7					47	11.7	107	8.7	7	*	577.2	198.5		
EIGENJ	М	21 2	7					251	4.3	155	5.8	3	*	580.1	61.2	6.6D	0.1
ATSUMI	М	21 2	7					138	8.0	141	4.9)	*	623.3	68.6		
ICHIAK	М	21 2	8					325	9.0	210	4.7	7	*	625.3	61.3		
TANIAI	Р	21 2	8 00.81	-0.1										631.2	58.3		
TANIAI	М	21 2	8					289	6.1	193	5.7	,	*	631.2	58.3		
OKIERJ	Р	$21 \ 2$	8 02.21	0.9										634.1	200.5		
OKIERI	M	21 2	8					68	7.4	114	13.9)	*	634.1	200.5		
KAGA	M	21 2	8					249	6.4	200	7.8	}	*	640.9	50.7		
OBARA	M	21 2	8					250	7.2	169	6.4		*	657.8	63.0		
SSYABE	M	21 2	8					115	5.5	84	7 0)	*	665 0	66.9		
YORONI	M	21 2	8					50	9.2	91	11 7	7	*	673 2	200 4		
TAKISA	M	21 2	8					115	5.6	93	5.6	5	*	681.3	68.0	6.4D	-0.1
KUROKA	M	21 2	8					214	8 7	109	6.6	5	*	681.6	60 4	0.10	
THEYA	M	21 2	8					68	8.2	133	13 3	}	*	689 0	204 2		
KUNIGA	Р	21 2	° 8 10 17	0.8				00	0.5	100	10.0			698.8	201 2		
KUNIGA	M	21 2	8					47	13 6	64	12.0)	*	698.8	201 2		
SINONB	M	21 2	8					230	7 4	288	6.6	, }	*	701 1	69 5		
NTUKAW	M	21 2	8					162	7 7	143	7 6	Ś	*	711_3	55.3		
VASUOK	M	21 2	8					188	5 4	194	79	,)	*	712 7	64 0		
SAGARA	M	21 2	8					199	4 8	345	5 1		*	716.2	70 5		
HAKUT	M	21 2	8					181	8 7	147	3.8	-	*	716.5	48 0		
KUROMA	M	21 2	8					147	7 3	124	5.0)	*	731_0	67 3		
TTATEY	M	21 2	8					207	5 1	209	10.2	2	*	735_3	52.5		
NAGOT	M	21 2	8					33	15 4	71	15 6	5	*	740 4	202.1		
KDAITO	M	21 2	8					33	8.0	34	21.4	ļ	*	754.1	176.3		
ΤΑΚΑΤΟ	M	21 2	8					178	8.6	150	6.3	}	*	758 1	60 7		
AGUNT	M	21 2	8					92	10 7	105	12 0)	*	763.8	207 8		
MINAM2	р	21 2	。 8 17 37	-0.8	ES	29 35 69 -	-1 2	01	10.1	100	10.0	,		768.0	176.9		
SHIMOB	M	21 2	8 8	0.0	50	20 00.00	1.0	239	6 1	119	96	5	*	775.9	64 7		
FINAKA	M	21 2	8					341	6.4	227	4 3	}	*	776.8	67.3		
IZUSIM	M	21 2	8					63	3.2	70	4 8	, }	*	778.8	71 4		
NSAKAI	M	21 2	8					159	6.0	105	5.3	}	*	782 5	56 7		
TAMAG3	M	21 2	8					118	5 4	129	19 7	7	*	787 7	202 6		
KOZUSH	M	21 2	8					83	3 1	110	3.8	3	*	790_1	76.0		
SUZU	P	21 2	° 8 20 85	-0 4				00	0.1	110	0.0	·	·	793 1	47 0		
SUZU	M	21 2	8 8	0.1				87	15 3	95	3 2)	*	793 1	47 0		
HEGURA	M	21 2	8					119	14 6	126	12 2	-)	*	,50.1 79२ २	42 7		
HATUMA	M	21 2	~ 8					125	3.9	119	7 8	-	*	797 A	69.8		
SIKINE	M	21 2	~ 8					85	6.6	103	4 0	-)	*	799.8	75 0		
NILIOH	M	21 2	8					81	6.4	100	10 7	7	*	806.0	74 9		
KIME T2	M	91 9	8					65	9.4 9.5	50	19 1		*	810 P	200 S		
TOSTMA	M	21 2	8					186	5.0	140	7 0)	*	810.9	209.0 73.6		
ODAWA2	P	21 2	- 8 23 84	-0 0				100	J. V	110			•	813 0	67 6		
oprina –	1	<u> </u>	J 20.04	0.0										010.0	01.0		

STATION	PHA	TIME	RES PHA	TIME RES	N-S AMP	E-W AMP	U-D AMP	DELTA	AZM	MAG	MRES
ODAWA2	М	21 28			147 7.7	94 8.0) *	813.9	67.6		
NAKAMA	М	21 28			110 10.8	89 5.5	5 *	827.5	52.2		
RYOKAM	Р	21 28 25.95	0.3					827.7	61.7		
RYOKAM	М	21 28			107 8.7	65 6.3	} *	827.7	61.7		
OSHIM3	М	21 28			126 7.5	91 8.4	ł *	828.0	72.3		
KUNI	М	21 28			164 5.5	142 5.0) *	833.1	57.2		
SAGAMI	М	21 28			123 8.1	104 6.7	′ *	836.5	65.4		
AOGASM	М	21 28				63 8.8	} *	840.8	89.7		
HACHJK	М	21 28			45 7.7	35 8.1	*	841.4	85.1		
HACHJ3	М	21 28			62 8.6	50 7.1	*	842.9	84.7		
HANNOU	М	21 28			118 9.5	115 4.7	′ *	852.4	63.8		
YOKOSK	М	21 28			340 6.0	160 9.3	} *	862.8	68.9		
MIYOSH	М	21 28			160 8.8	242 7.7	⁷ *	877.0	70.7		
TOKYO	М	21 28			523 6.5	442 8.0) *	886.4	65.9		
ASHIKA	М	21 28			80 7.4	51 6.4	ł *	891.6	60.3		
KATASH	М	21 28			79 9.3	61 12.0) *	891.9	57.6		
IZUMOZ	М	21 28			289 9.6	249 6.0) *	894.3	51.3		
SADO	М	21 28			54 16.6	51 8.3	} *	895.8	46.9		
UCHIUR	М	21 28			89 5.3	73 5.7	* *	908.0	70.3		
NAGARA	М	21 28			438 7.9	276 13.7	* *	915.7	68.5		
IYASAT	М	21 28			86 5.2	47 8.3	} *	944.1	63.2		
SHIOBA	М	21 28			118 5.3	102 5.8	} *	955.3	58.1		
SASAKA	М	21 28			42 7.7	53 9.0) *	956.5	51.5		
YANAIZ	М	21 28			62 7.1	47 7.3	} *	961.6	55.0		
ITAHOR	М	21 28			221 3.4	149 4.7	* *	962.2	65.5		
YAMAUE	М	21 28			67 6.4	56 10.5	5 *	981.7	63.3		
TENNOD	М	21 28			51 5.3	48 11.0) *	981.7	67.7		
HITACH	М	21 28			53 8.2	44 6.6	; *	991.3	61.6		
AWASHI	М	21 28			60 6.3	51 20.6	; *	992.6	47.9		
FURUDN	М	21 28			40 10.1	35 9.5	5 *	1012.6	58.8		
OTAMA	Р	21 28 50.49	1.4					1016.4	55.9		
OTAMA	М	21 28			62 17.0	46 13.5	5 *	1016.4	55.9		
IKEMAJ	М	21 28			54 10.5	84 8.8	} *	1021.6	213.4		
OKIGUS	М	21 28			93 9.8	150 11.4	*	1028.9	212.2		
IWAKMZ	М	21 28			43 11.5	41 13.5) *	1032.4	59.3		
YATSUM	М	21 28			39 16.4	21 12.7	*	1034.2	48.6		
IRABU	М	21 28			36 8.3	53 9.1	*	1034.6	213.5		
MIYKJ3	М	21 28			78 10.6	120 9.9) *	1035.0	212.5		
SHIRAT	М	21 28			37 13.5	30 6.9) *	1036.0	51.5		
KAWAUC	М	21 28			45 7.2	30 5.0) *	1050.9	58.0		
TOBISH	М	21 28			80 13.2	49 9.7	*	1064.6	45.3		
MSOUMA	М	21 28			44 9.7	35 17.9) *	1070.2	56.1		
MARUMO	М	21 28			35 13.6	40 8.4	. *	1070.3	55.1		
TARAMA	M	21 28			40 12.9	58 13.7	*	1076.8	215.1		
YGYUZA	M	21 28			196 8.7	122 6.4	Į *	1077.5	47.2		
OKURA	M	21 28			48 17.4	30 17.4	L *	1088.7	52.3		
YKANEY	M	21 28			44 17.4	32 15.0) *	1100.8	48.8		
ISHIGH	M	21 28			32 12.2	39 11.1	*	1103.7	216.7		
FUSAKI	M	21 29			117 4.0	84 3.8	\$ * •	1121.1	51.7		
YUWA	M	21 29			74 14.3	52 7.4	+ *	1132.3	45.6		
156162	M	21 29			30 13.0	32 12.3	\$* 7	1133. Z	210.7		
OUD I	M	21 29	1.0		63 18.6	42 13.7	*	1133.4	42.8		
OURI	P	21 29 06.91	1.9		40 17 0	06 7 0)	1145.0	53.4		
VORT	M	21 29			43 17.0	36 7.3) * ·	1145.0	53.4		
KOBUCH	M	21 29			24 11.2	33 15.5) *	1146.0	54.4		
KUNUGU	M	21 29			53 17.7	26 8.9	, *	1151.4	47.3		
NUKUSH	M	21 29			45 17.6	38 11.1	*	1152.5	210.9		
ICUINY	M	21 29			30 10.3	42 12.6) *	1159.6	218.4		
MOTOVO	M M	21 29			34 14.0	27 14 0	. *	1104.0	00.8 50.0		
MUIUIU	M	41 49 91 90			41 14.0 50 14 9	57 14.2 58 10 0	, *)	11/4.9	04.0 917 9		
TOKIWA	M M	21 29			JU 14.3	50 IU.2	, *	1180.7	411.4		
VONACU	NI M	21 29 21 20			10 12.0	00 0.1	. *	1184.0	44.4 991 7		
TOWAGO	IN1	41 49			40 II.0	24 1.9	, *	1191.4	441. I		

STATION	PHA	TIME	RES	PHA	TIME	RES	N-S AMP	E-W A	MP	U-D AMP		DELTA	AZM	MAG	MRES
SIZUKU	М	21 29					$53 \ 14$	4.0 29	6.9	9	*	1196.4	46.7		
IWASAK	М	21 29					31 10	0.0 29	9 12.1	l	*	1196.7	40.7		
YONAGK	М	21 29					35-10	0.5 29	8.3	3	*	1197.0	221.9		
OHASAM	М	21 29					34 12	2.1 1	5 13.8	3	*	1202.2	48.6		
OFUNAI	М	21 29					42 18	8.1 30	0 17.3	3	*	1205.0	51.2		
HINAI	М	21 29					29 18	8.3 18	3 10.4	1	*	1206.4	44.0		
HYAKUZ	М	21 29					58 5	5.3 53	5.9	9	*	1222.9	41.4		
KUZUMA	М	21 29					33-19	9.1 23	3 11.1	l	*	1238.4	46.6		
MIYKNA	М	21 29					26 15	5.9 38	3 16.3	3	*	1246.2	49.4		
SHIUR2	М	21 29					32 10	0.6 2	5 10.2	2	*	1257.1	40.0		
CHIJI3	М	21 29					18 1	1.2 1	5.9)	*	1262.8	116.7		
OMATSU	М	21 29					14 13	3.8 10	6 11.1	l	*	1270.6	37.3		
TANOHA	М	21 29					41 16	6.2 1	5 8.7	7	*	1272.1	48.0		
NANGO	М	21 29					30 15	5.7 33	2 11.3	3	*	1277.3	45.4		
TENMAB	М	21 29					31 1	1.8 20	5 12.8	3	*	1277.5	42.7		
EDANAR	М	21 29					33-18	8.1 28	8 17.3	3	*	1279.1	46.6		
OKUSHM	М	21 29					20 11	1.9 23	2 9.8	3	*	1288.4	33.9		
HAHAJ2	М	21 29					23 10	0.2 1	5 10.6	3	*	1290.2	118.7		
SHIRIU	М	21 29					30 12	2.9 14	12.8	3	*	1294.6	38.4		
ROKKAS	М	21 29					24 16	6.0 23	3 14.2	2	*	1312.5	42.7		
OHATA	М	21 29					26 9	9.3 1'	7 14.1	l	*	1320.6	40.5		
AOHIGA	М	21 29					24 9	9.8 23	9.3	3	*	1329.7	41.7		
SETANA	М	21 29					17 13	1.4 1	9. 4	1	*	1338.6	34.0		
YAKUM2	Р	21 29 30.77	2.1									1339.5	36.3		
YAKUM2	М	21 29					18 1	1.3 13	3 10.8	3	*	1339.5	36.3		
KAYABE	М	21 29					15 18	8.8 1	11.2	2	*	1358.8	38.7		
SHIMAM	М	21 29					13 11	1.7 9	9 15.4	1	*	1366.3	33.8		
NOBORI	Р	21 29 39.51	2.9)								1405.6	36.9		
NOBORI	М	21 29					17 11	1.9 9	9 8.9)	*	1405.6	36.9		
SHAKOT	М	21 29					14 13	3.8 1	12.4	1	*	1449.6	32.9		
ENIWA	М	21 29					21 20	6.8 20	8.6	3	*	1458.8	36.7		
ATSUMA	М	21 29					38-16	6.4 33	3 11.6	5	*	1468.4	38.5		
SINHDK	М	21 29					20 7	7.4 10	5 16.7	7	*	1484.7	40.4		
NOBUKA	М	21 29					20 1	1.4 13	3 15.0)	*	1492.5	41.4		
SHIPPU	М	21 29					27 11	1.8 23	2 5.1	l	*	1492.6	35.4		
ERIMO	М	21 29					15 19	9.0 20) 13.8	3	*	1499.0	43.1		
BIRAT2	М	21 29					17 9	9.4 11	2 8.5	5	*	1506.5	39.0		
THIROO	М	21 29					$12 \ 10$	6.6 10) 14.8	3	*	1527.6	42.5		
HOKURY	М	21 29					22 6	6.7 20	9.6	5	*	1547.9	34.8		
FURANO	Р	21 29 55.99	2.2									1549.8	38.3		
FURANO	М	21 29					$11 \ 14$	4.8 '	7 16.4	1	*	1549.8	38.3		
YAGISH	М	21 29					23 13	3.4 10	5 13.4	1	*	1590.5	32.3		
ASHORO	Р	21 30 02.55	-0.6	i								1629.7	40.3		
MARUSE	Р	21 30 06.77	0.1									1659.6	37.5		
TOKORO	Р	21 30 08.90	-1.1									1688.5	38.6		
RAUSU	Р	21 30 18.22	0.1									1758.9	40.9		

 2016Y
 4M
 15D
 0H
 3M
 46.45S
 +/-0.05
 NW
 KUMAMOTO
 PREF
 R=(7,269)
 MAXI=D

 LAT=32
 42.04N
 +/-0.18
 LONG=130
 46.66E
 +/-0.24
 DEPTH=
 7KM
 +/-1.64
 MAG1=6.4D
 MAG2=6.0W

STATION	PHA	TIME	RES PHA	TIME	RES	N-S AMP	E-W AMP	U-D AMP	DELTA AZM MAG MRES
N. TYNH	Р	00 03 48.26	-0.0 ES	03 50.32	0.7	2902 0.1	0.S.		7.7 198.0
KUIZU3	Р	00 03 49.81	0.0					0. S.	17.1 168.9
KUIZU3	М	00 03				13392 5.2	7961 4.6	*	17.1 168.9
KU.KMP	Р	00 03 49.71	-0.5 ES	03 52.92	0.2			0. S.	19.6 312.3
N.MSMH	Р	00 03 50.49	-0.1 ES	03 54.22	0.7	870.3 0.2	480.7 1.4	406.5 0.9	22.3 247.4
N. YABH	Р	00 03 50.69	-0.2			429.7 0.3	675.1 0.7	427.9 0.3	23.9 103.5
N.IZMH	ΙP	00 03 51.44	0.2			717.3 0.6	736.1 0.7	345.3 1.0	26.2 152.9
N.HKSH	Р	00 03 52.34	-0.0 ES	03 57.32	0.8	425.6 0.4	810.6 0.3	608.4 0.6	32.7 67.9
N. KKCH	ΙP	00 03 52.61	0.1 ES	03 56.94	0.2	350.0 0.5	771.2 1.0	286.9 0.7	33.4 8.4
KU.ITK	ΙP	00 03 52.60	0.1			262.2 1.4	340.9 0.9	323.1 1.1	33.5 181.0
V. ASO2	Р	00 03 52.71	0.1						34.1 54.2
N. ASVH	Р	00 03 52.92	0.0			1582 0.6	940.8 0.4	1208 0.6	35.9 39.1

STATION	PHA	TIM	1E		RES	PHA	TIME	RES	N-S A	MP	E-W AM	IP	U-D AM	ЛР	DEI	LTA	AZM	MAG	MRES
TAMANA	ΙP	00	03	53.27	0.1	ES	$03\ 58.46$	0.6					219.7	0.8		37.5	322.0		
TAMANA	М	00	03						5641	8.0	5438	4.4			*	37.5	322.0		
N. TMNH	IP	00	03	53.36	0.1	ES	$03\ 58.68$	0.7	425.9	0.8	351.4	0.9	234.8	1.0		37.7	327.5		
N. SBAH	ΙP	00	03	53.61	0.1				376.7	0.5	334.0	0.6	428.6	0.9		39.6	129.1		
N.GKSH	IP	00	03	53.86	-0.2	ES	03 59.73	0.4	445.8	0.5	434.9	0.6	449.5	0.5		42.3	97.0		
N.KHKH	ΙP	00	03	54.67	0.0	ES	$04 \ 00.40$	0.1	271.1	0.2	303.4	0.2	358.9	0.7		45.9	350.3		
NAKATS	М	00	03						2361	3.6	5335	4.2			*	48.0	11.1	6.3D	-0.1
KU.TAI	ΙP	00	03	55.19	0.1	ES	$04 \ 01.68$	0.6	292.5	0.7	399.9	0.4	263.1	0.8		48.5	10.2		
N. ASKH	ΙP	00	03	55.05	-0.1	ES	$04 \ 02.09$	0.9	676.0	0.3	716.2	0.3	486.7	1.3		49.1	202.6		
N.NMNH	ΙP	00	03	55.09	-0.3				152.8	0.9	129.3	0.7	78.0	0.5		50.2	55.6		
KU. OMT	ΙP	00	03	55.27	-0.2				0.S.		0. S.		0. S.			50.7	323.4		
KU.SMT	ΙP	00	03	55.32	-0.5	ES	$04 \ 02.78$	0.4	552.5	0.5	514.1	0.4	411.3	0.3		52.9	236.0		
N. OGNH	ΙP	00	03	56.21	0.3				560.0	0.8	528.9	1.0	388.5	0.8		53.8	29.6		
N.MRTH	Р	00	03	56.37	0.0	ES	04 03.60	0.4	303.1	0.7	386.0	0.5	361.1	0.4		56.1	111.0		
KU. TKD	ΙP	00	03	56.40	-0.4	ES	04 04.47	0.5	356.9	0.3	332.4	0.2	366.5	0.5		58.6	77.0		
KITAKA	М	00	03						3556	7.0	1186	4.3			*	63.7	97.1		
N. TKKH	ΙP	00	03	57.35	-0.3	ES	04 06.05	0.5	174.9	0.6	155.2	0.8	114.3	0.2		64.0	291.5		
OKUCHI	М	00	03						4663	3.9	10578	4.4			*	64.1	195.5	6.8D	0.4
N.UKHH	ΙP	00	03	57.97	0.1	ES	04 06.43	0.5	266.7	1.3	153.2	0.9	133.3	0.7		65.4	3.2		
HONDO	М	00	03						6144	4.9	2518	4.2			*	65.6	247.1	6.6D	0.2
N. NRAH	ΙP	00	03	58.76	0.4				246.1	1.2	221.0	0.6	119.1	0.9		68.1	144.7		
N. SNIH	ΙP	00	03	58.88	-0.1				86.52	0.7	99.72	0.4	99.86	1.0		71.5	48.0		
N.UMWH	ΙP	00	03	58.82	-0.3				196.6	0.7	284.8	0.6	266.5	0.6		72.7	77.6		
N. HSFH	ΙP	00	04	00.37	-0.2				105.3	0.8	89.2	0.8	95.7	0.7		81.5	334.8		
TSUNO	М	00	04						6250	5.5	4158	6.2			*	84.5	126.1		
HICHIY	М	00	04						4577	6.2	1829	6.2			*	85.6	109.3		
N.MYJH	ΙP	00	04	01.34	0.0				324.5	0.7	225.9	0.4	249.2	1.1		85.7	201.6		
ITAYA	М	00	04						1057	5.6	911	5.4			*	88.8	335.8	6.0D	-0.4
URESHI	М	00	04						4823	6.7	1839	8.3			*	89.3	299.7		
BEPPUA	М	00	04						2372	6.5	2698	5.5			*	91.8	39.7		
NOMOZA	М	00	04						1535	6.6	1225	5.9			*	92.1	265.6		
TAKAZA	Р	00	04	03.09	0.6								162.8	1.1		92.9	161.7		
TAKAZA	М	00	04						1530	4.3	4796	3.9			*	92.9	161.7	6.6D	0.2
N.UMIH	Р	00	04	02.89	-0.4				102.7	0.4	95.7	0.5	101.1	0.8		97.7	347.5		
USUKI	М	00	04						1062	3.5	814	3.8			*	99.6	65.5	6.1D	-0.3
KU. SBR	Р	00	04	03.40	-0.5				184.0	0.6	102.5	0.9	76.2	0.7		101.8	331.4		
N. SBSH	Р	00	04	03.98	0.0				142.0	0.3	107.2	0.3	84.3	0.4		102.0	297.8		
N. BZNH	ΙP	00	04	04.42	0.1				129.7	0.3	207.8	0.6	105.4	0.8		104.4	18.5		
SKAMAE	М	00	04						1467	5.9	874	4.9			*	105.8	83.8	6.2D	-0.2
AKAIKE	М	00	04						1204	4.4	2115	5.2			*	112.5	0.7	6.4D	0.0
KUNIMI	М	00	04						1605	8.1	1842	7.1			*	127.1	35.1		
NICHIN	М	00	04						2199	4.9	4067	6.0			*	128.2	153.7	6.7D	0.3
SUZUYA	М	00	04						2309	4.2	2996	6.8			*	135.6	193.2		
NARU	М	00	04						2370	4.5	4102	4.7			*	137.8	160.2	6.8D	0.4
KOSHIK	М	00	04						1319	7.9	1765	5.5			*	151.1	221.9		
IKI	Р	00	04	11.62	-0.7											156.1	321.6		
IKI	М	00	04						1464	5.6	3139	5.7			*	156.1	321.6	6.7D	0.3
TASHR2	М	00	04						608	4.8	894	4.4			*	170.2	175.5	6.3D	-0.1
YTOYOT	М	00	04						780	5.8	1525	8.1			*	175.6	8.6		
KUDAMA	М	00	04						667	9.3	1314	5.9			*	181.6	33.8		
HIROMI	Р	00	04	15.25	-0.6											181.7	71.1		
HIROMI	М	00	04						920	7.0	395	4.2			*	181.7	71.1		
NAGAHA	Р	00	04	15.41	-0.9											184.9	58.5		
NAGAHA	М	00	04						553	5.6	420	6.1			*	184.9	58.5		
TOSASH	М	00	04						898	4.8	478	4.3			*	190.3	84.0	6.3D	-0.1
FUKUE2	М	00	04						950	5.8	541	7.1			*	190.4	269.2		
MITSUS	Р	00	04	19.78	-1.6										4	223.0	324.9		
MITSUS	M	00	04						376	7.6	849	8.9			* :	223.0	324.9		
KUBOKA	Р	00	04	21.29	-0.2				_	_					-	223.9	71.7		
KUBOKA	M	00	04						785	5.3	416	4.7			* :	223.9	71.7	6.3D	-0.1
TANEG3	Р	00	04	21.74	-0.2											227.2	175.2		
TANEG3	М	00	04						651	6.9	770	7.3			*	227.2	175.2		
KURAHA	Р	00	04	21.40	-0.7											228.1	45.0		

STATION	PHA	TIME	RES	PHA TI	ME RES	N-S AM	Р	E-W AM	Р	U-D AMP		DELTA	AZM	MAG	MRES
KURAHA	М	00 04				909	6.9	715	5.9		*	228.1	45.0		
HIKIMI	М	00 04				811	7.4	908	9.0		*	229.6	27.3		
HAGIMI	М	00 04				940	5.4	1536	6.3		*	233.4	8.2		
TSUSHM	Р	00 04 21.73	-1.9									239.7	328.1		
TSUSHM	М	00 04				501	5.8	628	6.7		*	239.7	328.1		
TANBAR	М	00 04				725	6.6	253	5.5		*	243.0	59.8		
KUCHIE	М	00 04				540	6.5	664	11.2		*	253.9	192.8		
MITANE	Р	00 04 25.41	-0.2									255.6	177.4		
MITANE	М	00 04				452	5.0	787	7.3		*	255.6	177.4		
TOYOHI	Р	00 04 26.75	-0.2									265.8	34.5		
TOYOHI	М	00 04				654	6.5	731	9.3		*	265.8	34.5		
KHARUN	М	00 04				870	5.2	388	4.4		*	269.3	69.8	6.5D	0.1
YAKUHI	М	00 04				260	11.6	546	7.5		*	274.2	185.4		
GOTSU2	Р	00 04 32.20	-0.1									307.0	30.9		
GOTSU2	М	00 04				491	7.5	746	6.9		*	307.0	30.9		
JOUGE	М	00 04				908	7.4	477	7.9		*	308.1	45.0		
MONOBE	Р	00 04 32.00	-0.8									310.6	67.6		
MONOBE	М	00 04				1158	5.8	394	7.0		*	310.6	67.6		
KIRAGA	М	00 04				369	8.8	331	5.4		*	323.2	75.4		
NAKANO	М	00 04				554	7.7	680	7.7		*	328.1	195.5		
SAIJYO	Р	00 04 35.52	-0.3									334.4	39.6		
SAIJYO	М	00 04				450	6.5	671	5.5		*	334.4	39.6		
SAKAID	М	00 04				439	7.1	395	6.5		*	346.6	56.7		
MIMANA	М	00 04				217	11.2	311	6.2		*	347.4	63.7		
AIOI	М	00 04				842	5.6	282	6.8		*	363.0	69.5		
SAKAUR	Р	00 04 39.33	-0.3									364.6	31.0		
SAKAUR	М	00 04				711	7.6	937	8.4		*	364.6	31.0		
IKUMA	М	00 04				705	7.7	996	7.0		*	373.3	33.1		
AIDA	М	00 04				485	6.3	280	8.6		*	400.2	50.6		
KURAYO	М	00 04				598	5.8	578	7.0		*	408.8	42.5		
TAKARA	М	00 04				227	7.3	340	8.1		*	421.0	201.3		
AWJNGS	М	00 04				418	7.4	265	6.5		*	430.9	61.5		
MINABE	Р	00 04 47.91	-2.0									444.8	72.1		
MINABE	М	00 04				395	5.7	173	7.7		*	444.8	72.1		
KASAI	М	00 04				478	7.5	247	7.7		*	453.5	54.9		
OKI2	М	00 04				166	7.6	368	8.0		*	458.3	29.0		
MIKI	М	00 04				476	7.5	172	5.6		*	459.8	58.2		
TANABE	Р	00 04 50.59	-2.1									467.0	73.3		
TANABE	М	00 04				308	6.1	253	6.8		*	467.0	73.3		
KUSIMO	М	00 04				483	6.2	227	5.3		*	472.2	78.5		
KOUYA	Р	00 04 52.61	-1.5									478.0	68.0		
KOUYA	М	00 04				242	5.4	191	11.5		*	478.0	68.0		
KASUMI	Р	00 04 53.61	-0.8									480.5	47.1		
KASUMI	М	00 04				481	6.6	292	7.8		*	480.5	47.1		
AMAMI	М	00 04				97	8.6	157	14.3		*	488.1	193.6		
HEGURI	М	00 04				269	8.8	111	6.0		*	503.7	63.2		
MMIHAM	М	00 04				244	6.1	174	6.7		*	504.3	74.3		
TENKAW	М	00 04				188	5.9	168	6.3		*	505.4	68.5		
WACHI	М	00 04				418	7.3	204	8.3		*	514.2	54.8		
YASAKA	Р	00 04 57.59	-1.1									514.3	49.6		
YASAKA	М	00 04				504	7.3	269	7.3		*	514.3	49.6		
AMAMIN	М	00 04				72	7.0	128	9.1		*	517.4	197.7		
KIHOKU	Р	00 05 00.57	-1.2									538.5	70.0		
KIHOKU	М	00 05				244	5.4	193	6.3		*	538.5	70.0		
KATADA	М	00 05				220	6.1	159	7.0		*	568.2	65.3		
TOKUNO	М	00 05				62	7.4	122	11.8		*	572.0	198.4		
MIHAMA	М	00 05				413	8.9	142	5.7		*	573.5	55.4		
ISE	М	00 05				262	6.0	152	7.1		*	581.4	69.5		
EIGENJ	М	00 05				233	6.7	90	8.9		*	584.8	60.9		
ATSUMI	М	00 05				119	6.4	148	8.3		*	627.6	68.3		
OKIERJ	М	00 05				73	8.7	118	10.7		*	628.8	200.3		
ICHIAK	М	00 05				340	7.3	116	3.5		*	630.0	61.1		
TANIAI	Р	00 05 13.45	-0.6									636.1	58.1		

第3.2.1 表 続き

STATION	PHA	TIME	RES PHA	TIME RES	N-S AMP)	E-W AMP	U-D AMP		DELTA	AZM	MAG	MRES
TANIAI	М	00 05			353	7.6	172 7.	7	*	636.1	58.1		
KAGA	Р	00 05 14.45	-0.9							646.0	50.5		
KAGA	М	00 05			262	9.4	225 8.	5	*	646.0	50.5		
OBARA	М	00 05			202	8 1	169 8	5	*	662 5	62.8		
VORONI	M	00 05			81	7 0	97 14	5	*	667 9	200.3		
COVADE	M	00 05			01	1.9	110 0	5	-1- -1-	007. 9 007. 5	200.3		
SSIABE	M	00 05			98	5.5	112 8.	6	*	669.5	66.7		
IHEYA	М	00 05			80	7.1	144 12.	7	*	683.6	204.1		
TAKISA	М	00 05			74	6.1	114 8.	8	*	685.8	67.7		
KUROKA	М	00 05			247	7.9	92 10.	6	*	686.4	60.2		
KUNIGA	М	00 05			51	9.4	67 14.	2	*	693.5	201.1		
SINONB	М	00 05			257	7.8	263 7.	9	*	705.4	69.2		
NTUKAW	М	00 05			148	97	148 8	0	*	716 2	55 1		
VASUOK	M	00 05			230	8 /	193 7	° 7	*	717 3	63.8		
CACADA	м	00 05			200	7.0	120 1.	і С	-1-	700 5	70.0		
SAGAKA	M	00 05			203	1.0	299 9.	0	*	720.5	10.3		
HAKUI	М	00 05			126	6.6	123 11.	2	*	721.7	47.8		
NAGOT	М	00 05			40	8.0	69 10.	6	*	735.1	202.0		
KUROMA	М	00 05			135	6.9	131 10.	0	*	735.5	67.0		
TTATEY	М	00 05			198	5.3	129 7.	5	*	740.4	52.4		
KDAITO	М	00 05			46	9.6	58 10.	4	*	749.8	176.0		
AGUNT	М	00 05			76 1	2.4	125 9.	2	*	758.4	207.7		
ΤΑΚΑΤΟ	М	00.05			152	7 0	66 10	8	*	762 9	60.5		
MINANO	M	00 05			102	0.5	47 0	9	-1-	762.7	176 6		
MINAMZ	M	00 05			29	9.5	41 0.	3	Ť	103.1	170.0		
SHIMOB	М	00 05			250	7.8	139 6.	6	*	780.5	64.4		
FJNAKA	М	00 05			291	6.4	194 6.	1	*	781.2	67.1		
TAMAG3	М	00 05			85	8.0	162 8.	6	*	782.4	202.5		
IZUSIM	М	00 05			53	4.5	77 10.	8	*	783.0	71.2		
NSAKAI	М	00 05			174	7.1	106 7.	3	*	787.4	56.5		
KOZUSH	М	00 05			68	5.8	90 5.	2	*	794.0	75.7		
SUZU	M	00 05			73 1	3.0	104 13	0	*	798 3	46.9		
UECUDA	л	00 05 04 17			10 1	5.0	104 15.	0		700.0	40.5		
HEGURA	P	00 05 34.17	-0.3							798.0	42.6		
HEGURA	М	00 05			115 1	3.3	145-10.	0	*	798.6	42.6		
HATUMA	М	00 05			89	8.3	110 11.	8	*	801.7	69.5		
MATSUS	Р	00 05 34.00	-1.1							803.1	55.9		
SIKINE	М	00 05			69 1	2.8	131 9.	0	*	803.8	74.7		
KUMEJ2	Р	00 05 35.93	0.6							804.9	209.7		
KUME 12	М	00 05			42	8.6	66 9.	4	*	804.9	209.7		
NILIOH	М	00 05			86	64	115 9	4	*	810_0	74 6		
TOSIMA	M	00 05			105	6 6	114 6	a a	*	814 9	73 3		
ODAWA9	D	00 05 27 42	0 5		100	0.0	114 0.	5	•	014.5	67 4		
ODAWAZ	Г	00 05 57.42	0.5		151	0.0	100 10	-		010.0	07.4		
ODAWA2	М	00 05			151	8.0	103 12.	7	*	818.3	67.4		
MIKURA	М	00 05			84	8.4	73 9.	5	*	831.0	78.5		
OSHIM3	М	00 05			93	6.9	100 7.	6	*	832.2	72.0		
RYOKAM	М	00 05			140	8.4	59 8.	0	*	832.4	61.5		
NAKAMA	М	00 05			99	9.1	91 7.	8	*	832.6	52.0		
KUNI	М	00 05			132	5.2	132 5.	8	*	838.0	57.1		
SAGAMI	М	00.05			158	83	74 11	q	*	841 0	65.2		
AOCASM	M	00 05			86	8.9	70 7	2	*	843.8	80.4		
HAGUTK	M	00 05			00	0.2	10 1.	2	т 	043.0	09.4		
HACHJK	M	00 05			60	8.9	43 9.	5	*	844.7	84.8		
НАСНЈЗ	М	00 05			91	8.1	59 9.	4	*	846.2	84.4		
HANNOU	М	00 05			153	8.4	71 9.	2	*	857.0	63.6		
YOKOSK	М	00 05			282	7.9	223 6.	9	*	867.2	68.7		
MIYOSH	М	00 05			178	7.3	276 8.	6	*	881.3	70.4		
TOKYO	М	00 05			517	7.3	471 8.	0	*	891.0	65.7		
ASHTKA	Р	00 05 45 63	-1 1							896 4	60_1		
ASHTKA	М	00 05			110	78	19 6	7	*	896.4	60 1		
KATACU	M	00 05			50	1.0	45 0.	1 0	-1- -1-	050.4	57.4		
KATASH Lauras	M	00 05			59	0.8	40 9.	0	*	896.8	51.4		
IZUMOZ	М	00 05			313	7.5	176 6.	9	*	899.4	51.2		
SADO	М	00 05			57 1	1.7	56 11.	5	*	901.0	46.8		
UCHIUR	М	00 05			84	7.4	97 11.	6	*	912.3	70.0		
NAGARA	М	00 05			476	7.0	515 8.	1	*	920.0	68.3		
IYASAT	М	00 05			53	9.6	53 8.	6	*	948.7	63.0		
SMATSU	М	00 05			739	6.7	309 8	1	*	948.9	67.2		
SHIOBA	M	00.05			07	7.0	62 7	- 9	*	060.0	57 0		
SHIODA	191	00 00			31	1.0	04 1.	4	-1-	300.2	51.9		

STATION	РНА	TIME	RES	PHA	TIME	RES	N-S AMP	E-W A	MP	U-D AMP		DELTA	AZM	MAG	MRES
SASAKA	M	00 05	REC	1 1111	1 IMB	REG	41 18.	1 39	8.9)	*	961.6	51.4	MITO	MILES
YANAIZ	M	00 05					51 13.1	2 31	7.8	3	*	966.6	54.8		
ITAHOR	M	00 05					157 5.	5 118	5.3	3	*	966. 8	65.3		
TENNOD	М	00 05					49 7.	2 46	10.9)	*	986.2	67.5		
YAMAUE	М	00 05					74 10.	5 60	7.8	5	*	986.3	63.1		
HITACH	М	00 05					58 7.	9 46	8.5	5	*	996.0	61.5		
AWASHI	М	00 05					50 12.	5 52	10.9)	*	997.8	47.8		
IKEMAJ	М	00 06					60 10.	5 83	8.7	7	*	1016.2	213.4		
FURUDN	М	00 06					40 7.3	3 28	9.5	5	*	1017.5	58.7		
OTAMA	М	00 06					49 11.	3 57	10.4	1	*	1021.4	55.8		
OKIGUS	М	00 06					124 9.) 155	9.4	1	*	1023.5	212.1		
ARCADI	М	00 06					35 11.1	2 39	8.0)	*	1028.7	53.2		
IRABU	М	00 06					42 10.	62	7.8	3	*	1029.2	213.5		
MIYKJ3	М	00 06					94 9.	5 144	9.5	5	*	1029.6	212.5		
IWAKMZ	М	00 06					51 8.	5 39	7.7	7	*	1037.2	59.1		
YATSUM	М	00 06					37 12.	3 39	9.0)	*	1039.4	48.5		
SHIRAT	М	00 06					33 15.	5 28	13.7	7	*	1041.1	51.4		
KAWAUC	М	00 06					48 8.	5 27	8.8	3	*	1055.8	57.8		
TOBISH	М	00 06					102 13.	9 47	14.0)	*	1069.9	45.2		
TARAMA	М	00 06					31 9.	5 46	11.1	1	*	1071.4	215.1		
MSOUMA	М	00 06					38 11.	3 34	14.8	3	*	1075.1	56.0		
MARUMO	М	00 06					39 12.	1 38	7.8	3	*	1075.3	55.0		
YGYUZA	М	00 06					217 11.	5 138	9.6	3	*	1082.7	47.1		
OKURA	М	00 06					35 15.1	2 21	14.8	3	*	1093.8	52.2		
ISHIGH	М	00 06					24 10.	4 42	11.2	2	*	1098.3	216.7		
YKANEY	М	00 06					44 11.	9 31	12.1	l	*	1106.0	48.7		
FOSAKI	М	00 06					57 4.	5 46	5.9)	*	1126.2	51.6		
ISHIG2	М	00 06					26 10.) 28	11.6	5	*	1127.8	216.8		
YUWA	М	00 06					87 13.) 54	11.7	7	*	1137.6	45.5		
OGA3	М	00 06					63 11.) 66	11.7	7	*	1138.7	42.8		
KUROSH	М	00 06					36 11.	7 43	7.7	7	*	1147.1	216.9		
OURI	М	00 06					36 10.3	3 23	9.7	7	*	1150.1	53.3		
KOBUCH	М	00 06					30 19.	3 22	16.0)	*	1151.0	54.3		
IRIOMF	М	00 06					30 12.	5 44	11.6	3	*	1154.2	218.4		
ROKUGO	Р	00 06 20.80	1.8									1156.6	47.3		
ROKUGO	М	00 06					52 11.1	2 30	8.3	3	*	1156.6	47.3		
ICHINM	М	00 06					33 14.) 19	11.5	5	*	1169.7	50.7		
HATERS	M	00 06					35 10.	9 47	8.8	3	*	1175.3	217.2		
МОТОУО	M	00 06					39 14.	ə 30	13.8	3	*	1180.0	51.9		
YONAGU	M	00 06					45 9.) 36	9.0)	*	1186.1	221.7		
TOKIWA	M	00 06					75 11.	5 64 5 67	6.9)	*	1187.3	42.3		
YONAGK	M	00 06					49 10.	5 37	9.4	1	*	1191.6	221.9		
SIZUKU	M	00 06					52 16.	5 36	1.2	2	*	1201.6	46.6		
TWASAK	M	00 06					25 9.	3 43 C 10	11.8	5	*	1202.1	40.6		
OFUNAT	M	00 06					42 12.1	01 0	13.0	5	*	1207.4	48.0		
UFUNAT	M	00 06					42 15. 95 14	1 29	9.1	1	*	1210.1	01.1 42.0		
HUNARUZ	M	00 06					25 14.	5 25 7 49	12.8	<i>1</i>	*	1211.0	45.9		
RUZUMA	M	00 06					26 14 ·	1 45 5 90	10.2	<i>1</i>	*	1220.2	41.4		
MIVENA	M	00 06					25 12	5 40 5 20	0.5	5	* *	1245.0	40.0		
SUTUD9	M	00 00					42 10	7 32 2 99	9.0	1	*	1201.0	49.3		
CULITS	M	00 00					45 10.	5 JJ 2 19	10.4	± 1	*	1202.0	40.0		
OMATSU	M	00 00					16 10	7 15	11.7	1	*	1203.3	27.2		
TANOHA	M	00 06					42 11	1 10 R 16	0.0)	*	1270.0	47 0		
NANGO	M	00.06					42 11.	- 10 7 91	9.2 19.9	-	*	1211.0 1989 G	45 4		
TENMAR	M	00 06					35 11 s	, JI 3 26	13 4	, 1	*	1202.0	чэ.ч 49-7		
FDANAR	M	00 06					33 15	5 30	10.4 Q 6	3	*	1202.0	46 5		
HAHA T2	M	00 06					20 11	, 52) १२	10.7	, 7	*	1204.4	118 5		
OKUSHM	M	00 06					20 11	5 20	11 4	1	*	1293 8	33.9		
SHIRIU	M	00 06					34 11	5 20	10 5	- 5	*	1300.0	38 3		
ROKKAS	M	00 06					29 14	5 26	11 8	- 3	*	1317 8	42.6		
OHATA	M	00 06					40 11	4 18	13 4	-	*	1326 0	40.5		
AOHIGA	M	00 06					33 10	7 26	12 6	-	*	1335 0	41.6		
							00 10.	20	(-				

STATION	PHA	TIME	RES I	PHA	TIME	RES	N-S AMP	E-W A	MP	U-D AMP		DELTA	AZM	MAG	MRES
SETANA	М	00 06					17 17	.1 16	13.3	5	*	1343.9	34.0		
YAKUM2	Р	$00 \ 06 \ 43.75$	1.9									1344.9	36.3		
YAKUM2	М	00 06					20 13	. 2 21	11.2	:	*	1344.9	36.3		
KAYABE	М	00 06					21 11	.5 14	14.0)	*	1364.2	38.7		
SHIMAM	М	00 06					20 10	. 2 15	11.7	,	*	1371.7	33.8		
NOBORI	Р	00 06 52.56	2.8									1411.0	36.9		
NOBORI	М	00 06					30 11	.1 16	11.0)	*	1411.0	36.9		
SHAKOT	М	00 06					16 11	. 0 11	12.2	:	*	1455.0	32.9		
ENIWA	М	00 06					32 10	. 8 17	16.0)	*	1464.2	36.7		
ATSUMA	М	00 06					44 11	.1 37	13.1		*	1473.8	38.5		
SINHDK	М	00 06					19 8	.6 18	15.8	:	*	1490.0	40.3		
NOBUKA	М	00 07					16 10	.6 15	15.4	Ł	*	1497.8	41.4		
SHIPPU	М	00 07					29 8	.9 24	9.5	;	*	1498.0	35.4		
ERIMO	М	00 07					14 15	.3 24	13.0)	*	1504.3	43.1		
BIRAT2	М	00 07					14 16	.5 15	10.2	:	*	1511.8	39.0		
THIROO	М	00 07					11 12	. 5 19	12.6	;	*	1532.9	42.5		
HOKURY	М	00 07					26 12	.9 16	10.4	L	*	1553.3	34.7		
FURANO	М	00 07					12 14	.0 9	12.7	,	*	1555.1	38.3		
CHURUI	М	00 07					11 11	. 3 16	15.3	5	*	1560.1	41.5		
ASHIBE	М	00 07					17 10	. 6 13	9.3	1	*	1561.0	36.5		
YAGISH	М	00 07					25 12	. 3 23	12.3	:	*	1595.9	32.3		
ONBETS	М	00 07					27 13	. 3 9	14.6	;	*	1610.4	41.6		
SHOSAN	М	00 07					44 12	. 5 33	12.5	5	*	1615.3	33.3		
KAMIK2	М	00 07					13 13	.9 6	11.7	,	*	1619.9	36.6		
KAMIAS	М	00 07					10 14	.1 12	12.3	5	*	1631.2	35.6		
ASHORO	М	00 07					10 10	.9 8	10.8	:	*	1635.1	40.3		
RISHIR	М	00 07					66 14	.1 63	14.4	Ł	*	1652.7	30.3		
MARUSE	М	00 07					8 13	. 3 6	12.9)	*	1665.0	37.5		
REBUNT	М	00 07					18 11	. 5 29	11.9)	*	1666.8	29.1		
AKKESH	М	00 07					15 11	.9 11	16.3	5	*	1671.2	42.9		
TOKORO	М	00 07					11 13	.7 7	14.0)	*	1693.9	38.6		
WAKKA3	М	00 07					38 11	.1 35	12.7	,	*	1696.5	31.1		
SOYAES	М	00 07					14 10	.1 10	12.5	i	*	1700.2	33.4		
HAMNAK	М	00 07					9 15	. 2 10	18.9)	*	1707.0	43.4		
NAKASH	М	00 07					8 8	.9 6	10.5	i	*	1714.2	41.2		
SHIBET	М	00 07					17 12	.1 12	14.2	:	*	1745.5	41.1		

2016Y 4M 16D 1H 25M 5.47S +/-0.05 NW KUMAMOTO PREF

R=(7,269) MAXI=7

LAT=32 45.27N +/-0.14 LONG=130 45.78E +/-0.20 DEPTH= 12KM +/-0.84 MAG1=7.3D MAG2=7.0W REMARK: THE MAINSHOCK OF "THE 2016 KUMAMOTO EARTHQUAKE". OVER 150 PEOPLE KILLED AT MASHIKI, MINAMI-ASO , NISHIHARA, KUMAMOTO, KASHIMA, MIFUNE AND YATSUSHIRO IN KUMAMOTO PREFECTURE. ABOUT 2,500 PEOPLE INJURED IN KUMAMOTO, OITA, MIYAZAKI, FUKUOKA AND SAGA PREFECTURE. AT LEAST 8,300 HOUSES COMPLETELY DESTROYED, ABOUT 175 THOUSAND HOUSES DESTROYED OR DAMAGED. THE ASO SHRINE AND KUMAMOTO CASTLE WERE HEAVILY DAMAGED. THE JANES RESIDENCE, THE FIRST WESTERN-STYLE BUILDING IN KUMAMOTO AND KNOWN AS THE ORIGIN OF THE RED CROSS IN JAPAN, WAS COMPELTELY COLLAPSED. AND MANY CULTURAL PROPERTY DAMAGED. THE ASO OHASHI BRIDGE IN MINAMI-ASO COLLAPSED INTO THE KUROKAWA RIVER FROM A QUAKE-TRIGGERED LARGE LANDSLIDE. LANDSILEDE OCCURED AT ABOUT 200 PLACES AROUND THE ASO-SAN VOLCANO. THE KYUSHU SHINKANSEN TRAIN SERVICE WAS SUSPENDED AFTER A TRAIN DERAILED. RAILWAYS AND MANY ROADS WERE DESTORYED AROUND ASO. SURFACE FAULTING OBSERVED IN A ZONE ABOUT 34 KM LONG WITH A MAXIMUM OFFSET OF ABOUT 2.2 M.

STATION	PHA	TIME	RES PH	IA TIME	RES	N-S AMF	P E-W AM	IP	U-D AMF)	DELTA	AZM	MAG	MRES
N.MSIH	Р	01 25 07.92	-0.1 ES	25 09.7	7 0.1	0.S.	0.S.		0.S.		7.1	48.7		
N. TYNH	Р	01 25 08.79	0.1 S	25 11.1	7 0.3	0.S.	0.S.				13.4	184.4		
KU.KMP	Р	01 25 08.97	0.1 S	25 10.9	1 -0.3				0.S.		15.0	298.8		
KUIZU3	Р	01 25 10.17	0.1						0.S.		23.3	168.4		
KUIZU3	М	01 25				24822	4.3 16625	4.5		*	23.3	168.4		
N.MSMH	Р	01 25 09.98	-0.2 S	25 13.0	0 -0.5	3114	0.1 2726	0.2	1671	0.5	24.1	232.9		
N. YABH	IP	01 25 10.56	-0.1			2157	0.1 2606	0.4	0.S.		27.2	115.1		
N. KKCH	Р	01 25 10.86	0.1 S	25 13.8	9 -0.5	0.S.	0.S.		2402	0.5	27.7	13.0		
N. TMNH	Р	01 25 11.47	0.1			1946	0.1 1643	0.4	1059	0.6	32.0	323.8		
TAMANA	Р	01 25 11.43	0.0						0.S.		32.1	317.3		
TAMANA	М	01 25				22553	5.9 35132	6.1		*	32.1	317.3		

STATION	PHA	ΤI	ΜE		RES	PHA	TIME		RES	N-S AM	ſP	E-W AM	МР	U-D AM	ſΡ	DELTA	A	AZM	MAG	MRES
N.IZMH	Р	01	25	11.57	0.1					1664	0.1	1735	0.3	1073	0.3	32	2.2	155.6		
V.ASO2	Р	01	25	11.47	0.0	S	25 15.	59	-0.0							31	2.2	64.2		
N. HKSH	Р	01	25	11.25	-0.2	S	25 15.	14	-0.5	0.S.		0.S.		0. S.		32	2.3	78.7		
N. ASVH	Р	01	25	11.51	0.0					0.S.		0.S.		0.S.		32	2.5	47.7		
KU.ITK	Р	01	25	12.71	0.1	S	25 17.	31	-0.3	0. S.		0. S.		0.S.		39	э. 4	178.8		
N. KHKH	Р	01	25	12.71	0.0	S	25 17.	56	-0.1	1130	0.5	1613	0.6	2096	1.1	39	э. 8	350.8		
NAKATS	ΙP	01	25	13.35	0.3									0.S.		42	2.4	14.5		
NAKATS	М	01	25							0. S.		46600	9.4			* 42	2.4	14.5		
KU. TAI	Р	01	25	13.31	0.1					0. S.		0. S.		0. S.		42	2.9	13.4		
N. SBAH	ΙP	01	25	13.40	-0.0					1008	0.4	782.1	0.6	1163	0.4	44	4.5	133.9		
N.GKSH	ΙP	01	25	13.33	-0.1					1866	0.4	1752	0.1	2218	0.9	44	4.8	104.3		
KU. OMT	ΙP	01	25	13.32	-0.2	ES	25 18.	55	-0.6	0. S.		0. S.		0. S.		45	5.2	320.2		
N. NMNH	Р	01	25	13.83	-0.2	S	25 18.	40	-1.6	2183	0.1	1678	0.1	1407	0.2	48	3.3	62.4		
N. OGNH	ΙP	01	25	14.41	0.2	S	25 18.	48	-1.9	0.S.		0.S.		0. S.		49	9.5	34.4		
N. ASKH	ΙP	01	25	14.94	-0.1	S	25 22.	53	0.8	1423	0.1	1158	0.5	1130	0.7	54	4.2	198.8		
KU.SMT	Р	01	25	14.74	-0.5	S	25 22.	47	0.4	0.S.		0.S.		0.S.		55	5.4	230.1		
N.UKHH	Р	01	25	15.94	0.1					1819	0.3	1235	0.6	1580	0.7	59	9.5	4.8		
N. TKKH	Р	01	25	15.67	-0.4					1407	0.2	681.6	0.4	564.9	0.8	60	J. 8	286.7		
KITAKA	М	01	25							55920	5.7	54230	5.0			* 60	3. 0	102.1	7.6D	0.3
HONDO	М	01	25							8845	4.1	8812	5.2			* 6'	7.0	241.9	6.8D	-0.5
N. SNIH	Р	01	25	17.39	0.0					1762	0.5	1286	0.4	1203	0.6	68	3.7	52.5		
OKUCHI	М	01	25							9566	5.4	12698	4.2			* 69	9.5	193.1	7.OD	-0.3
N. UMWH	Р	01	25	17.88	-0.2					873.3	0.8	1026	0.1	1292	0.4	73	3.0	82.4		
N. NRAH	Р	01	25	18.48	0.3					831.3	1.0	861.6	0.6	479.6	0.5	73	3.8	146.5		
N. HSFH	Р	01	25	18.29	-0.2					543.8	0.8	987.8	0.9	492.2	0.7	75	5.5	333.8		
ITAYA	М	01	25							12345	6.1	11258	7.4			* 82	2.8	335.0		
N.NGSH	Р	01	25	19.70	-0.2					392.9	0.5	396.7	0.3			84	4.6	266.1		
N. NTHH	Р	01	25	19.69	-0.3					1425	0.6	1081	0.0	1199	0.4	8	5.2	58.6		
URESHI	М	01	25							12753	8.7	10994	5.8			* 85	5.2	296.6		
KU.STO	ΙP	01	25	20.78	0.4					0. S.		0. S.		752.8	0.3	87	7.3	127.3		
BEPPUA	М	01	25							0.S.		49736	3.4			* 88	3.2	42.8		
HICHIY	М	01	25							34908	8.5	32995	6.6			* 89	э. о	112.6		
TSUNO	М	01	25							21157	6.0	22021	5.6			* 89	э. 2	128.7	7.4D	0.1
N. MYJH	ΙP	01	25	20.94	-0.0	S	25 32.	. 67	0.8	874.7	0.6	570.5	0.9	477.0	0.8	90	J. 9	199.4		
NOMOZA	М	01	25							6791	7.7	8759	6.7			* 91	1.4	261.8		
N.UMIH	ΙP	01	25	20.75	-0.3					692.0	0.2	1109	0.6	1114	0.4	93	1.6	347.5		
G.SIBI	ΙP	01	25	21.58	-0.1					1919	0.3	856.1	0.5	678.4	0.4	95	5. 1	204.2		
KU.SBR	ΙP	01	25	21.37	-0.4					569.0	0.5	0.S.		404.2	1.4	95	5.9	330.4		
N. SBSH	ΙP	01	25	21.85	-0.3					1000	0.3	513.7	0.4	424.1	1.4	98	3.1	295.1		
USUKI	М	01	25							27520	6.0	24638	6.2			* 98	3.5	69.0		
TAKAZA	ΙP	01	25	22.61	0.4									534.5	1.1	99	э. о	162.0		
TAKAZA	М	01	25							12687	4.9	15141	4.5			* 99	Э. О	162.0	7.2D	-0.1
N. BZNH	ΙP	01	25	22.14	-0.1	S	25 35.	34	1.2	1345	0.5	2555	0.2	882.1	0.5	99	э. 2	20.4		
AKAIKE	М	01	25							14268	4.8	21081	4.8			* 106	3.6	1.5	7.4D	0.1
SKAMAE	М	01	25							35022	4.8	20962	5.2			* 106	<i>3.</i> 7	87.1	7.6D	0.3
KUNIMI	М	01	25							22751	6.5	25944	14.4			* 123	3.1	37.3		
NICHIN	М	01	25							9674	10.5	11844	4.4			* 134	4.2	154.3		
SUZUYA	М	01	25							4912	4.7	4246	5.8			* 14	1.1	192.1	6.9D	-0.4
NARU	М	01	25							8375	5.1	14305	5.6			* 143	3.9	160.5	7.3D	0.0
IKI	Р	01	25	29.19	-0.8											150	Э. 6	320.6		
IKI	М	01	25							16761	5.2	10258	7.7			* 150	Э. б	320.6		
KOSHIK	Р	01	25	29.28	-1.3											154	4.7	220.0		
KOSHIK	М	01	25							2940	6.9	2736	4.2			* 154	4.7	220.0		
YTOYOT	М	01	25							13589	7.5	12942	10.4			* 169	э. 9	9.3		
TASHR2	М	01	25							2849	4.9	4647	12.6			* 176	3.3	175.2		
KUDAMA	М	01	25							13569	7.6	20237	12.0			* 177	7.5	35.2		
HIROMI	Р	01	25	33.55	-0.7											18	1.1	73.1		
HIROMI	М	01	25							15073	4.9	19940	5.6			* 18	1.1	73.1	7.6D	0.3
NAGAHA	Р	01	25	33.55	-1.0											183	3.1	60.3		
NAGAHA	М	01	25							15724	5.7	12608	7.1			* 183	3.1	60.3		
FUKUE2	М	01	25							3599	13.4	3108	5.0			* 189	э. з	267.3		
TOSASH	Р	01	25	35.41	-0.2											19	1.1	85.8		
TOSASH	М	01	25							18734	6.4	17584	5.8			* 19	1.1	85.8		

STATION	PHA	TIME	RES PHA TI	IME RES	N-S AMP	•	E-W AM	MP	U-D AMP		DELTA	AZM	MAG	MRES
MITSUS	Р	01 25 37.38	-1.7								217.3	324.3		
MITSUS	М	01 25			5025	3.7	6145	4.9		*	217.3	324.3	7.3D	-0.0
KUBOKA	Р	01 25 39.49	-0.4								223.4	73.3		
KUBOKA	М	01 25			13769	6.5	12052	9.4		*	223.4	73.3		
KURAHA	Р	01 25 39.41	-0.7								224.9	46.3		
KURAHA	М	01 25			14777	9.3	19041	9.8		*	224.9	46.3		
HIKIMI	М	01 25			7529 1	3.3	9771	5.1		*	225.0	28.3		
HAGIMI	Р	01 25 39.92	-0.5								227.7	8.8		
HAGIMI	М	01 25			17579	6.5	15830	2.8		*	227.7	8.8		
TANEG3	Р	01 25 40.76	-0.4								233.3	174.9		
TANEG3	М	01 25			2547 1	2.7	3465	8.6		*	233.3	174.9		
TSUSHM	М	01 25			5106	6.1	5838	4.5		*	234.0	327.6		
TANBAR	Р	01 25 41.55	-0.7								241.3	61.2		
TANBAR	М	01 25			11692 1	0.8	5889	11.4		*	241.3	61.2		
KUCHIE	М	01 25			1688	8.8	2231	9.4		*	259.4	192.2		
MITANE	Р	01 25 44.29	-0.6								261.6	177.1		
MITANE	М	01 25			2269	5.2	4263	8.1		*	261.6	177.1		
TOYOHI	Р	01 25 44.50	-0.4								261.7	35.4		
TOYOHI	М	01 25			9755	9.2	11656	9.5		*	261.7	35.4		
KHARUN	М	01 25			12243	7.0	12326	6.5		*	268.6	71.1		
YAKUHI	Р	01 25 46.80	-0.4								280.0	185.0		
YAKUHI	М	01 25			1409 1	2.6	2350	8.6		*	280.0	185.0		
GOTSU2	Р	01 25 49.85	-0.3								302.6	31.7		
GOTSU2	М	01 25			4813	7.4	8060	10.2		*	302.6	31.7		
JOUGE	М	01 25			15311 1	1.2	9917	13.1		*	304.9	45.9		
MONOBE	Р	01 25 50.00	-1.0								309.7	68.7		
MONOBE	М	01 25			18673	5.7	21382	5.6		*	309.7	68.7	8.1D	0.8
KIRAGA	М	01 25			5724	5.7	7166	9.9		*	323.1	76.5		
SAIJYO	Р	01 25 53.38	-0.4								330.8	40.5		
SAIJYO	М	01 25			10491 1	0.0	11233	8.3		*	330.8	40.5		
NAKANO	М	01 25			1504	7.6	1930	7.2		*	333.5	195.0		
SAKAID	Р	01 25 54.36	-1.2								344.5	57.7		
SAKAID	М	01 25			11508 1	1.8	4525	5.8		*	344.5	57.7		
MIMANA	М	01 25			7143	6.6	4285	12.7		*	346.1	64.7		
SAKAUR	Р	01 25 56.89	-0.6								360.2	31.7		
SAKAUR	М	01 25			11118	7.9	14131	9.1		*	360.2	31.7		
AIOI	Р	01 25 56.08	-1.7								362.2	70.4		
A101	М	01 25			11128	6.1	12155	6.1		*	362.2	70.4		
IKUMA	М	01 25			11558	5.0	17065	8.3		*	369.1	33.8		
AIDA	М	01 26			12363	8.3	7573	7.4		*	397.5	51.4		
KURAYO	M	01 26			14103	9.6	13108	9.6		*	405.4	43.2		
TAKARA	M	01 26			858	9.0	1102	9.3		*	426.1	200.9		
AWJNGS	M	01 26			8625	9.4	4616	5.4		*	429.3	62.3		
MINABE	Р	01 26 06.04	-2.2		= 0.0.1						444.3	72.8		
MINABE	М	01 26			5831	5.9	7632	7.8		*	444.3	72.8		
KASAI	Р	01 26 08.16	-1.0								451.2	55.6		
KASAI	M	01 26			8559	9.3	6256	10.2		*	451.2	55.6		
OK12	Р	01 26 08.20	-1.2								453.8	29.5		
0K12	М	01 26			3799 1	1.2	7792	11.1		*	453.8	29.5		
MIKI	M	01 26			8649	7.7	3916	7.3		*	457.8	59.0		
TANABE	Р	01 26 08.44	-2.6								466.6	74.0		
TANABE	М	01 26			4671	8.6	8915	7.5		*	466.6	74.0		
KUSIMO	М	01 26			7444	5.9	5357	7.8		*	472.4	79.3		
KOUYA	М	01 26			6834	6.2	5627	7.7		*	477.1	68.7		
KASUMI	Р	01 26 11.71	-0.7								477.5	47.7		
KASUMI	М	01 26			11259	7.3	8802	9.2		*	477.5	47.7		
AMAMI	M	01 26			574	9.7	723	13.7		*	493.6	193.3		
HEGURI	М	01 26			6647	9.1	7487	6.9		*	502.3	63.8		
MAHIMM	M	01 26			3017	7.7	7962	7.2		*	504.1	75.0		
TENKAW	М	01 26			4943	7.6	4193	7.6		*	504.5	69.1		
YASAKA	Р	01 26 15.68	-1.1								511.5	50.2		
YASAKA	М	01 26			11682	9.7	7347	10.0		*	511.5	50.2		
WACHI	Р	01 26 16.00	-0.8								511.9	55.5		

第3.2.1 表 続き

STATION	PHA	TIME	3		RES	PHA	TIME	RES	N-S AM	IP	E-W AM	1P	U-D AMP		DELTA	AZM	MAG	MRES
WACHI	М	01 2	26						8868	10.7	5051	9.9)	*	511.9	55.5		
AMAMIN	М	01 2	26						397	7.6	428	10.9)	*	522.7	197.4		
KIHOKU	М	01 2	26						5037	7.2	4355	6.6	5	*	537.8	70.7		
KATADA	Р	01 2	26 2	21.93	-1.8										567.0	65.9		
KATADA	М	01 2	26						3972	13.2	5021	7.4	ŧ	*	567.0	65.9		
MIHAMA	М	01 2	26						8911	9.0	3487	6.2	2	*	571.2	55.9		
TOKUNO	М	01 2	26						409	9.7	419	14.7	7	*	577.2	198.1		
ISE	М	01 2	26						3905	6.0	4648	6.6	5	*	580.6	70.1		
EIGENJ	М	01 2	26						5779	9.6	2911	7.5	5	*	583.2	61.5		
ATSUMI	М	01 2	26						3026	9.6	5007	7.2	2	*	626.7	68.8		
ICHIAK	M	01 2	26						7436	9.9	4058	6.2	2	*	628.4	61.6		
OKIERJ	Р	01 2	26 3	33.43	1.2										633.9	200.0		
OKIERJ	M	01 2	26		0.0				433	8.6	359	8.8	}	*	633.9	200.0		
TANIAI	Р	01 2	26 3 26	31.45	-0.8				C 10 1	10.0	0007	0.0	, ,		634.1	58.6		
TANIAI	M	01 2	26 26 - 9	0 50	0.0				6494	10.0	2627	9.2	2	*	634.1	58.6		
KAGA	Р м	01 2	20-3 NG	52.50	-0.9				7091	10.7	E 0.0.1	0.0	`		643.3	51.0		
ODADA	M	01 2	20 26						7031 E6E6	0.7	20201	9.0) :	*	043.3 661.0	62 2		
COVADE	M	01 2	10 DG						2549	0.1	0020 0071	0 1)	* *	669 4	67.9		
VODONI	M D	01 2	10 26 - 2	27 17	0 1				3042	12.0	2371	0.1		Ŧ	672 0	200 0		
VORONI	M	01 2	20 -2 26	51.11	0.1				494	0.2	214	97 3	,	*	673.0	200.0		
TKAORS	D	01 2	20 26 3	27 74	-0.8				424	9.4	014	21.0)	T	684 9	200.0		
KUROKA	г	01 2	20-3 26	51.14	0.0				5956	10 4	3330	7 1		*	684.Z	60 7		
TAKISA	M	01 2	20						3450	10.4	2563	6 9	-	*	684.8	68 2		
THEVA	P	01 2	20 26 4	10 12	1 1				0400	10.0	2000	0. 5	,		688 5	203 8		
THEVA	M	01 2	20 - 1	10.12	1.1				336	11 1	429	14 0)	*	688 5	203.8		
KUNIGA	P	01 2	26 4	10 42	0 1				000	11.1	125	14.0	,		698 6	200.8		
KUNIGA	M	01 2	26	10.12	0.1				294	8 1	279	97	,	*	698 6	200.8		
SINONB	M	01 2	26						4685	10 0	9243	6.9)	*	704 6	69 7		
NTUKAW	M	01 2	26						4257	7.7	3211	9.0)	*	714.0	55.6		
YASUOK	М	01 2	26						5286	11.5	3161	7.1		*	715.9	64.2		
HAKUI	М	01 2	26						4491	10.7	3482	8.1		*	718.8	48.2		
SAGARA	М	01 2	26						5943	11.6	6528	7.7	,	*	719.8	70.7		
KUROMA	М	01 2	26						3723	11.2	2937	8.4		*	734.4	67.5		
TTATEY	Р	01 2	26 4	14.96	-0.3										737.9	52.8		
TTATEY	М	01 2	26						5240	7.7	4652	8.0)	*	737.9	52.8		
NAGOT	М	01 2	26						264	7.8	289	26.1		*	740.1	201.7		
KDAITO	М	01 2	26						383	8.6	647	11.0)	*	755.8	175.9		
TAKATO	М	01 2	26						4481	11.1	3613	7.2	2	*	761.1	60.9		
AGUNI	Р	01 2	26 4	49.53	1.1										763.0	207.4		
AGUNI	М	01 2	26						388	14.5	455	13.9)	*	763.0	207.4		
MINAM2	М	01 2	26						371	8.9	724	10.5	5	*	769.7	176.6		
SHIMOB	Р	01 2	26 4	49.02	-1.4										779.1	64.9		
SHIMOB	М	01 2	26						5067	12.1	1993	8.1		*	779.1	64.9		
FJNAKA	М	01 2	26						4687	6.9	3837	4.3	}	*	780.2	67.5		
IZUSIM	М	01 2	26						1245	6.7	2303	11.8	}	*	782.4	71.6		
NSAKAI	М	01 2	26						3657	10.7	2930	13.6	5	*	785.3	56.9		
TAMAG3	Р	01 2	26 5	51.64	0.2										787.4	202.3		
TAMAG3	M	01 2	26						520	7.8	597	6.7		*	787.4	202.3		
KOZUSH	M	01 2	26						2342	11.5	2786	9.8	}	*	793.9	76.2		
HEGURA	M	01 2	26 26 5	-1 04	0.0				3673	9.1	4072	11.5)	*	795.2	43.0		
SUZU	P	01 2	26 5 26 5	51.84	-0.6				0500	10 7	0000	10.0			795.2	47.2		
SUZU	M	01 2	26 26						2586	13.7	3300	10.3	5	*	795.2	47.2		
HAIUMA	M	01 2	20 26 5	-0 00	1 0						2319	9.3)	*	800.9	70.0		
MAISUS	Р М	01 2	10 8 NG	52.20	-1.0				9114	11 0	0057	0.4			801.0	26.3 75 1		
STRINE 19	M P	01 2	.0 26 5	55 01	0 0				2114	11.9	2001	9.4	t	*	000.0 800 4	10.1 200-4		
KUME 12	r M	01 2	3 0.2 AG	50. UI	υ.δ				971	10 5	200	14 7	,	*	009.4	209.4 200.4		
NTITOH	M	01 2	20						271 9196	10.0	2140	14.1		* *	009.4 800 7	209.4 75.0		
TOSIMA	M	01 2	20						2120	5.8	2149	11 4	, L	*	814 5	73 7		
ODAWA9	P	01 9	26 5	53.67	-16				<i>22</i> 04	5.0	2104				817 9	67 8		
ODAWA2	M	01 2	26 C		1.0				3846	12.6	2182	94	L	*	817 3	67.8		
NAKAMA	M	01 9	26						3729	11 1	2609	97	,	*	830 1	52.4		
		- 1 - L							0120		2000	5.1		•	500.1	r		

第	3.2.1	表	続き
214	0.2.1	-	///L C

STATION	PHA	TIME	RES PHA TIME	RES	N-S AMP	E−W A	MP	U-D AMP	DELTA	AZM	MAG	MRES
RYOKAM	Р	01 26 56.00	-0.9						830.8	61.9		
RYOKAM	M	01 26			3814 9.3	8 1870	10.1	*	830.8	61.9		
MIKURA	Р	01 26 54.79	-2.2						831.2	78.9		
MIKURA	M	01 26				2087	9.9	*	831.2	78.9		
OSHIM3	P	01 26 55.67	-1.4		0100 5		0.0		831.7	72.4		
VSHIM3 KUNI	M	01 26			2196 0.1	9 3297	0.2	7	001.7	(2.4 57 5		
SACAMI	M	01 26			4014 19	2 2040	0.2	*	830.9	65 6		
AOCASM	M	01 26			1536 0	5 1752 5 1803	9.5	**	845 1	00.0 90.9		
HACHIK	M	01 26			1142 8	2 1095 7 1495	9.1 8 9	، اد	845.5	85.2		
HACHI3	Р	01 26 56 89	-2 1		1142 0.	1 1450	0.5		847 0	84 8		
HACHI3	M	01 26 00.00	U . 1		1432 8.	6 1359	9.5	*	847.0	84.8		
HANNOU	M	01 27			4252 9.1	2 2024	10.7	*	855.6	64.0		
YOKOSK	М	01 27			6312 13.	1 5396	7.5	*	866.3	69.1		
MIYOSH	М	01 27			3130 7.	6 5536	9.1	*	880.6	70.8		
ТОКҮО	М	01 27			10816 10.	1 13423	10.0	*	889.8	66.1		
ASHIKA	Р	01 27 03.59	-1.3						894.6	60.5		
ASHIKA	М	01 27			2535 8.	2 1879	12.2	×	894.6	60.5		
KATASH	Р	01 27 04.58	-0.3						894.7	57.8		
KATASH	М	01 27			1797 7.	5 1993	13.3	*	894.7	57.8		
IZUMOZ	М	01 27			6241 11.	6 5562	6.2	*	896.7	51.5		
SADO	Р	01 27 04.04	-1.3						898.0	47.1		
SADO	М	01 27			2172 14.	7 2182	12.4	*	898.0	47.1		
UCHIUR	М	01 27			3815 9.	8 2282	13.3	*	911.6	70.4		
NAGARA	М	01 27			12227 9.	8 10771	9.2	*	919.1	68.6		
BS30BS	Р	01 27 07.25	-2.1						930.2	73.2		
IYASAT	М	01 27			2428 13.	4 1187	9.3	ł	947.3	63.4		
SMATSU	M	01 27			12476 7.1	2 5048	8.6	*	947.9	67.6		
SHIOBA	M	01 27	0.0		2847 6.	1 2238	17.3	*	958.2	58.2		
SASAKA	Р	01 27 12.89	-0.0		1000 7	7 1001	0.0		959.0	51.7		
SASAKA VANATZ	M	01 27	0.4		1386 7.	/ 1021	8.9	*	959.0	51.7 55.1		
YANA I Z	Р	01 27 13.17	-0.4		9174 15	1 067	1 <i>G</i> E		964.3	55.1 55.1		
TANATZ	M	01 27			2174 10. 5020 16	1 907 5 4614	10.0	4	904.5	65.7		
VAMAUE	M	01 27			2101 10	3 1300	9.1	*	905.5	63 5		
TENNOD	M	01 27			1547 14	8 1350	9.6	*	985.2	67.8		
HITACH	M	01 27			1838 9.	1 1612	10.5	*	994.4	61.8		
AWASHI	М	01 27			1997 12.	6 2022	16.1	*	994.9	48.1		
FURUDN	М	01 27			1337 7.	6 930	8.8	*	1015.6	59.0		
OTAMA	Р	01 27 20.21	-0.2						1019.2	56.1		
OTAMA	М	01 27			1708 9.	7 1970	10.7	*	1019.2	56.1		
IKEMAJ	М	01 27			328 9.	0 414	10.3	*	1020.5	213.2		
ARCADI	М	01 27			1250 12.	2 1186	9.8	*	1026.2	53.5		
OKIGUS	М	01 27			354 11.	1 608	11.1	×	1027.9	211.9		
IRABU	М	01 27			252 9.1	2 288	8.2	*	1033.4	213.2		
MIYKJ3	М	01 27			387 8.	4 642	10.6	*	1033.9	212.2		
IWAKMZ	М	01 27			1556 7.	9 1300	10.7	*	1035.3	59.4		
YATSUM	Р	01 27 22.14	-0.4						1036.5	48.8		
YATSUM	M	01 27			1442 18.	2 988	10.5	*	1036.5	48.8		
SHIRAT	Р	01 27 22.64	-0.1		1000 10				1038.5	51.7		
SHIRAT	M	01 27			1299 16.	3 945	11.5	*	1038.5	51.7		
KAWAUC	M	01 27			1144 9.1	2 1060	12.4	*	1053.8	58.1		
TORIZH	M	01 27			3215 12.	4 1639 2 1409	13.7	7	1066.7	45.4		
MADUMA	M D	01 27 26 10	-0.0		1020 11.	2 1402	9.4	4	1072.9	55.2		
MARUMO	M	01 27 20.19	0.9		1710 12	6 1738	11 5	k	1073.0	55.3		
TARAMA	M	01 27			294 9	1 194	8.0	۳ اد	1075 5	214 9		
YGYHZA	M	01 27			7167 12	9 3710	9.0	 *	1079 7	47.4		
OKURA	M	01 27			1414 20.	9 849	14.4	*	1091.3	52.4		
ISHIGH	Р	01 27 28.82	-1.8						1102.3	216.5		
ISHIGH	М	01 27			149 11.	3 187	11.2	*	1102.3	216.5		
YKANEY	Р	01 27 29.69	-1.1						1103.1	49.0		
YKANEY	М	01 27			1433 16.	0 1083	15.2	*	1103.1	49.0		

STATION	PHA	TIME	RES PHA	TIME RES	N-S AMP	E-W AMP	U-D AMP		DELTA	AZM	MAG	MRES
FOSAKI	М	01 27			1926 4.8	1590 7	. 9	*	1123.6	51.9		
ISHIG2	М	01 27			146 21.2	145 9). 9	*	1131.7	216.5		
ROKUGO	Р	01 27 37.09	0.1						1153.6	47.5		
ICHINM	Р	01 27 39.18	0.6						1167.0	51.0		
OHASAM	Р	01 27 44.05	0.8						1204.5	48.8		
HINAI	Р	01 27 43.42	-0.2						1208.3	44.1		
NANGO	Р	01 27 52.62	0.3						1279.4	45.6		
OKUSHM	Р	01 27 53.83	0.3						1289.6	34.1		
SETANA	Р	01 28 01.50	1.9						1339.8	34.2		
YAKUM2	Р	01 28 01.48	1.8						1340.9	36.4		
NOBORI	Р	01 28 10.67	3.0						1407.0	37.0		
ENIWA	Р	01 28 15.67	1.6						1460.2	36.9		
NOBUKA	Р	01 28 18.50	0.4						1494.3	41.5		
BIRAT2	Р	01 28 19.58	-0.2						1508.1	39.1		
CHURUI	Р	01 28 23.56	-1.9						1556.5	41.7		
ASHIBE	Р	01 28 25.69	0.2						1557.1	36.7		
ONBETS	Р	01 28 29.76	-1.6						1606.8	41.7		
KAMIK2	Р	01 28 30.83	-1.6						1615.9	36.7		
KAMIAS	Р	01 28 32.75	-1.0						1627.1	35.8		
ASHORO	Р	01 28 31.64	-2.6						1631.4	40.4		
REBUNT	Р	01 28 38.55	0.7						1662.3	29.2		
AKKESH	Р	01 28 37.73	-0.8						1667.8	43.0		
WAKKA3	Р	01 28 42.89	1.6						1692.1	31.3		

STATION	PHA	TIME	RES PHA	TIME	RES	N-S AMP	E-W AMI	Р	U-D AMP	DELTA	AZM	MAG	MRES
BEPPUA	Р	$01\ 25\ 40.61$	0.4							8.5	36.3		
OITA2	ΕP	$01\ 25\ 40.19$	-0.1 S	$25\ 41.69$	-0.4					9.0	85.1		
V.TGBP	ΕP	$01 \ 25 \ 40.42$	-0.1							10.7	58.3		
N. KKEH	EP	$01\ 25\ 40.79$	-0.0 S	$25\ 42.62$	-0.4	0.S.	2016	0.2		13.2	274.7		
N. YMGH	ES	$01\ 25\ 45.54$	0.4							22.0	22.3		
N. NTHH	S	$01\ 25\ 44.61$	-0.5			1723 (0.2 964.6	0.6	784.3 0.4	22.2	127.5	5.7v	-0.0
N. OGNH	ES	$01\ 25\ 48.33$	0.6							31.9	238.1		
N. YGNH	S	$01\ 25\ 47.77$	-0.4							33.5	297.2		
N. TAKH	ES	$01\ 25\ 48.14$	-0.1			568.1 ().8 581.9	0.5	520.9 0.3	33.8	172.8	5.7v	-0.0
N.NMNH	ES	$01\ 25\ 48.99$	-0.3							37.5	199.3		
N. AKIH	Р	$01\ 25\ 44.51$	-0.1				405.1	0.2		38.0	54.5		
N.MIEH	ES	$01\ 25\ 50.05$	0.4			413.7 ().9 533.4	0.8		38.7	145.4		
N.BZNH	S	$01\ 25\ 49.86$	-0.3							40.7	330.1		
USUKI	S	$01\ 25\ 50.92$	0.0							43.3	121.7		
KU.TKD	ES	$01\ 25\ 53.17$	0.2				424.3	0.3		50.8	176.4		
N.SIKH	S	$01\ 25\ 56.44$	0.4			506.6 0	0.4 622.6	0.4		61.7	128.5		
N.GKSH	ES	$01\ 25\ 58.76$	0.4							69.9	189.9		
KU.KTK	ES	$01\ 25\ 58.57$	-0.0							70.9	317.3		

2016Y 4M 16D 1H 45M 55.45S +/-0.04 NW KUMAMOTO PREF R=(7,269) MAXI=C LAT=32 51.79N +/-0.10 LONG=130 53.94E +/-0.14 DEPTH= 11KM +/-1.14 MAG1=5.9D MAG2=5.8W

STATION	PHA	TIME	RES PHA	TIME	RES N-S AM	IP E-W AM	P U-D AMP	DELTA AZM	MAG MRES
V.ASO2	ΕP	01 45 58.83	-0.1 ES	46 01.07	-0.2			16.4 83.2	
N.HKSH	Р	01 45 59.32	-0.1 ES	46 02.08	-0.0 420.0	0.3 422.5	0.5 487.1 0.6	19.8 106.9	
KU.KMP	ΕP	01 46 00.67	0.3					26.3 259.5	
N. YABH	ΕP	01 46 00.23	-0.2 ES	46 04.02	0.1 453.5	0.4 500.0	0.6 602.5 0.6	26.4 153.4	
N. TYNH	EP	01 46 00.88	0.1 ES	46 04.82	0.2	977.2	0.3	28.9 208.5	
NAKATS	Р	01 46 00.96	0.1 ES	46 04.92	0.3			29.1 355.9	
NAKATS	М	01 46			2120	3.7 3171	1.4 *	29.1 355.9	5.9D -0.0
KU.TAI	Р	01 46 00.99	0.0 ES	46 04.95	0.1 461.8	0.3		29.8 354.7	
N.NMNH	ΕP	01 46 01.40	0.1 ES	46 04.98	-0.4	305.2	0.2 234.5 0.3	31.8 71.2	
N. OGNH	Р	01 46 01.53	0.1		2050	0.1 1180	0.1 827.1 0.4	32.5 28.0	
N. KHKH	EP	01 46 01.46	-0.1 ES	46 05.80	$0.0\ 365.2$	$0.1 \ 668.2$	$0.3\ 737.7\ 0.4$	33.3 325.0	
N. TMNH	EP	01 46 01.69	-0.0		1170	0.3 407.9	0.3	34.5 293.6	

STATION	PHA	TIM	ſΕ		RES	PHA	TIME	RES	N-S AM	Р	E-W AM	Р	U-D AMP		DELTA	AZM	MAG	MRES
KUIZU3	М	01	46						3658	4.4	2105	3.1		*	35.8	193.1	6.0D	0.1
TAMANA	ΕP	01	46	01.80	-0.2								509.1 0	. 4	36.3	288.6		
TAMANA	М	01	46						1648	3.9	3542	4.0		*	36.3	288.6	6.0D	0.1
N.GKSH	EP	01	46	02.46	0.1	ES	46 07.08	-0.1							38.4	127.1		
N.IZMH	ΕP	01	46	02.89	0.0										41.4	179.3		
N.MSMH	ΕP	01	46	02.98	0.1				891.6	0.3	604.7	0.3			41.5	230.3		
N. SBAH	EP	01	46	03.84	0.0				116.1	0.8	153.9	0.6			47.1	155.8		
KU. OMT	ΙP	01	46	03.68	-0.2										47.4	298.6		
N.UKHH	ΙP	01	46	03.95	0.0	ES	$46\ 09.94$	0.1	784.3	0.4	619.7	0.4			47.9	350.8		
N. SNIH	EP	01	46	04.51	-0.0				228.0	0.2	247.0	0.2			51.3	54.6		
KU.ITK	ΙP	01	46	04.73	-0.0				125.3	0.2	269.7	0.3	182.6 0	. 2	52.8	193.1		
KITAKA	М	01	46						524	3.8	627	4.2		*	57.9	116.6	5.6D	-0.3
N. NTHH	S	01	46	15.72	0.1				84.0	0.3	71.1	0.6	156.1 0	. 3	68.1	61.7		
BEPPUA	М	01	46						939	2.4	945	1.9		*	70.7	42.0	5.9D	-0.0
USUKI	М	01	46						348	2.7	503	3.9		*	82.6	73.7	5.6D	-0.3
HICHIY	М	01	46						457	2.0	444	4.1		*	83.4	123.7	5.7D	-0.2
N.UMIH	Р	01	46	09.74	-0.1	S	$46\ 19.47$	-0.5	160.5	0.3	192.9	0.3	229.0 0	. 5	83.9	337.3		
KU. STO	IP	01	46	10.85	0.6				115.2	0.6	117.0	0.4	91.1 0	. 2	86.2	138.9		
KU. SBR	IP	01	46	11.20	-0.2	S	46 22.46	-0.2	125.4	0.4	139.5	0.1	102.9 0	. 5	93.3	320.0		
AKAIKE	М	01	46						438	3.7	636	6.2		*	95.0	354.1		
KUNIMI	М	01	46						690	1.6				*	105.9	35.8		
NOMOZA	М	01	46						681	2.2				*	106.2	256.4		
TAKAZA	Р	01	46	14.27	0.6										107.7	170.6		
TAKAZA	М	01	46						1415	4.1	1180	4.2		*	107.7	170.6	6.2D	0.3
NICHIN	М	01	46						602	4.9	748	3.6		*	140.6	161.2	6.1D	0.2
IKI	Р	01	46	20.57	0.4										150.4	313.9		
IKI	М	01	46						1019	5.1	1518	6.3		*	150.4	313.9		
NARU	М	01	46						1315	4.4	508	3.0		*	151.9	166.6	6.3D	0.4
ΥΤΟΥΟΤ	М	01	46						555	0.9	419	1.7		*	156.3	5.5	6.0D	0.1
HIROMI	М	01	46						233	2.0	146	1.3		*	165.6	75.8	5.6D	-0.3
NAGAHA	Р	01	46	23.32	1.0										166.1	61.8		
NAGAHA	М	01	46						131	2.7				*	166.1	61.8		
KOSHIK	М	01	46						389	2.7	373	1.9		*	172.1	220.8	6.0D	0.1
FUKUE2	М	01	46						167	2.3				*	202.9	264.2		
HIKIMI	М	01	46								194	4.9		*	208.4	26.9		
HAGIMI	М	01	46						725	2.0	694	3.2		*	214.1	5.9	6.4D	0.5
MITSUS	Р	01	46	28.01	-1.0										215.7	319.8		
TANBAR	М	01	46						202	2.7	68	2.3		*	224.4	62.4	5.7D	-0.2
TSUSHM	М	01	46						199	5.1				*	231.2	323.4		
KHARUN	М	01	46								152	2.0		*	252.8	72.8		
MITANE	Р	01	46	37.23	0.7										273.4	180.0		
GOTSU2	М	01	46						101	5.7	92	4.8		*	285.7	30.9	5.7D	-0.2
YAKUHT	Р	01	46	39.75	0.6										293.4	187.3		
MONOBE	M	01	46								127	1.9		*	293. 5	70.0		
SAKAUR	M	01	46						250	1.7	184	2.2		*	343 3	31 0	6 2D	0.3
TKUMA	M	01	46						238	3.5	101	5.5		*	352 0	33 3	0.20	0.0
OKI2	M	01	46						72	3.8				*	437 0	28.9		
MIKI	M	01	46						78	2.9				*	440.7	59.5		
AMAMT	P	01	47	07 82	1 3					5.0					508 4	194 5		
KUNIGA	Р	01	47	33, 38	0.9										714 4	201 5		
TTATEY	· P	01	47	34 04	0.8										720 5	53 0		
SUZU	P	01	47	40.64	0.0										777 7	47.3		
AGUNT	P	01	47	42.16	1 5										779 6	207 9		
KUME 12	· P	01	47	47 76	1.0										826.2	209 9		
ROKUGO	P	01	48	27 94	2 9 9										1136 0	47 6		
NOROUU	1	01	10	±1.14	4.4										1100.0	11.0		

2016Y 4M 16D 3H 3M 10.78S +/-0.04 NE KUMAMOTO PREF R=(7,270) MAXI=B LAT=32 57.83N +/-0.14 LONG=131 05.21E +/-0.19 DEPTH= 7KM +/-1.10 MAG1=5.9D MAG2=5.6W

STATION	PHA	TIME	RES	PHA	TIME	RES	N-S AM	Р	E-W AM	P U-D	AMP	DELTA	AZM	MAG	MRES
V.ASO2	Р	03 03 12.98	0.1	S	03 14.53	0.2						9.3	187.8		
N. NMNH	Р	03 03 13.19	-0.2	S	03 15.01	-0.1	1641	0.4	1069	0.6 764.	1 0.2	12.5	94.3		
N. OGNH	Р	03 03 14.19	0.0				1386	0.3	1023	0.2 907.	2 0.7	17.7	352.7		

STATION	PHA	TIN	IE		RES	PHA	TIM	Е	RES	N-S AM	ſΡ	E-W AN	IP	U-D AN	1P	DELTA	AZM	MAG	MRES
V.KJA2	Р	03	03	14.84	0.2	S	03	17.14	-0.2							20.	4 40.7		
NAKATS	ΙP	03	03	15.63	-0.0)										26.	5 312.4		
NAKATS	М	03	03							4450	4.9	3707	2.0		*	26.	5 312.4		
KU.TAI	Р	03	03	15.68	-0.1					483.8	0.3	531.5	0.4	297.7	0.6	27.	5 312.5		
N. TAKH	Р	03	03	15.96	-0.1					448.3	0.4	364.8	0.5	214.5	0.2	29.	1 88.0		
N.SNIH	Р	03	03	16.46	0.1	S	03 3	20.46	0.2	440.7	0.2	230.9	0.5	179.0	0.4	30.	6 52.7		
KU. TKD	Р	03	03	16.53	-0.1	S	03 3	20.88	0.1	252.1	0.6	377.7	0.6	275.8	0.4	32.	5 119.9		
N. YABH	Р	03	03	17.13	-0.0	S	03 2	20.79	-0.8	36.97	0.4	36.88	0.5	38.75	0.5	35.	3 189.4		
N.GKSH	ΙP	03	03	17.37	-0.0)				165.7	0.7	126.8	0.6	121.2	0.3	36.	8 159.3		
N. KKEH	ΙP	03	03	17.71	0.2	S	03 2	22.49	0.3	158.1	0.6	180.0	0.4	195.5	0.5	37.	4 18.1		
N.UKHH	ΙP	03	03	18.53	-0.1	S	03 2	24.47	0.4	285.9	0.4	326.1	0.2	189.6	0.8	44.	0 325.2		
N.UMWH	ΙP	03	03	18.70	0.0	S	03 2	24.60	0.4	131.0	0.4	484.9	0.6	217.2	0.4	44.3	2 108.1		
N. NTHH	Р	03	03	19.03	-0.2	S	03 2	25.21	0.1	295.1	0.6	154.6	0.2	155.1	0.4	47.	4 63.7		
N.YGNH	Р	03	03	19.63	-0.0	S	03 2	25.53	-0.3	162.0	0.9	90.0	0.6	92.6	0.7	50.	0 354.2		
KITAKA	М	03	03							983	4.4	959	3.9		*	50.	5 137.4	5.7D	-0.2
TAMANA	ΙP	03	03	19.78	-0.2	!								131.5	0.4	52.	0 270.5		
TAMANA	М	03	03							1458	3.7	778	3.2		*	52.	0 270.5	5.8D	-0.1
KUIZU3	Р	03	03	20.50	0.4									62.07	0.5	52.	7 209.3		
KUIZU3	М	03	03							748	5.2	716	3.9		*	52.	7 209.3	5.6D	-0.3
N. SBAH	Р	03	03	20.52	0.2					31.15	0.5	26.70	0.5	38.42	0.6	54.3	2 178.3		
N.MRTH	ΙP	03	03	20.28	-0.1					64.6	0.6	128.5	0.8	148.5	0.5	54.	6 154.7		
KU. OMT	Р	03	03	20.97	-0.4	ES	03 2	29.32	0.6	0. S.		0. S.		0. S.		60.	3 281.1		
N. TARH	ΙP	03	03	21.30	-0.3	S	03 2	28.82	-0.3	209.2	0.3	169.3	0.2	123.4	0.3	61.	4 316.9		
USUKI	ΙP	03	03	21.45	-0.4	S	03 2	29.94	0.4					143.7	0.5	62.	9 79.1		
USUKI	М	03	03							932	3.3	823	3.4		*	62.	9 79.1	5.8D	-0.1
N. YMGH	Р	03	03	22.58	0.6							20.89	0.5	22.99	0.4	64.	1 31.1		
KU.ITK	Р	03	03	23.24	0.4					15.09	0.2	22.23	0.4			69.	3 205.3		
N. BZNH	IP	03	03	22.85	-0.1	S	03 3	31.59	0.1	82.97	0.2	74.90	0.4	61.94	0.2	69.	9 3.7		
N. NANH	IP	03	03	23.31	0.2					57.90	0.4	78.58	0.5	59.59	0.5	70.	4 166.1		
HICHIY	М	03	03							441	6.0	772	4.4		*	77.	4 138.1	5.8D	-0.1
N. HSFH	IP	03	03	24.10	-0.2	S	03 3	34.05	0.3	255.5	0.2	204.3	0.4	103.8	0.4	77.	6 305.2		
SKAMAE	М	03	03							680	4.2	577	4.0		*	78.	4 103.3	5.8D	-0.1
N.UMIH	IP	03	03	25.15	-0.0	S	03 ;	35.03	-0.2	50.83	0.5	68.33	0.6	67.68	0.2	83.	0 323.1		
ITAYA	М	03	03							1313	4.1	471	6.8		*	83.	4 308.6		
N. NRAH	IP	03	03	25.79	0.2	1				54.43	0.3	51.83	0.5	53.75	0.3	85.	4 173.2		
KU.STO	IP	03	03	25.88	0.3					57.91	0.3	76.10	0.7	63.22	0.2	85.	6 152.9		
KUNIMI	М	03	03							988	4.9	699	6.1		*	86.	9 30.8		
AKAIKE	М	03	03							509	4.4	243	6.0		*	87.	7 341.9	5.6D	-0.3
TSUNO	М	03	03							459	4.8	975	5.0		*	88.	3 153.7	5.9D	0.0
N. TKKH	ΙP	03	03	25.69	-0.4					75.62	0.4	87.54	0.4	40.08	0.6	88.	7 266.4		
KU. SMT	Р	03	03	26.15	-0.8	:				53.09	0.2	83.49	0.3	63.15	0.7	93.	6 231.2		
KU. SBR	ΙP	03	03	27.20	-0.5	S	03 3	39.20	-0.3	132.2	0.3	96.4	0.8	66.6	0.3	98.1	2 307.9		
OKUCHI	М	03	03							430	6.0	942	5.6		*	102.	0 207.0	6.0D	0.1
HONDO	М	03	03							297	5.1	264	4.8		*	104.	8 238.6	5.6D	-0.3
URESHI	М	03	03							717	5.2	273	4.4		*	107.	5 278.2	5.9D	-0.0
TAKAZA	М	03	03							240	5.3	634	5.0		*	117.	4 180.0	5.9D	-0.0
NOMOZA	М	03	03							187	5.8	275	5.9		*	126.	1 253.4	5.6D	-0.3
KUDAMA	М	03	03							230	4.7	496	5.9		*	141.	5 30.8	5.9D	-0.0
үтөүөт	М	03	03							226	3.2	292	4.7		*	144.	4 359.1	5.7D	-0.2
NAGAHA	М	03	03							208	5.2	172	7.1		*	145.	4 62.5		
HIROMI	М	03	03							330	5.1	402	5.0		*	146.	0 78.5	5.9D	-0.0
NICHIN	М	03	03							231	5.2	402	4.0		*	146.	9 169.2	5.8D	-0.1
IKI	М	03	03							773	4.1	684	5.6		*	156.	6 306.6	6.2D	0.3
NARU	М	03	03							189	8.3	372	4.5		*	159.	9 173.8		
TOSASH	М	03	03							556	7.5	300	4.5		*	160.	6 93.5		
SUZUYA	М	03	03							164	6.7	338	6.3		*	172.	0 200.5		
KURAHA	М	03	03							349	6.1	255	6.1		*	187.	0 45.2		
KUBOKA	М	03	03							349	4.4	322	4.7		*	188	2 77.6	6.0D	0.1
HIKIMI	М	03	03							359	5.3	384	6.3		*	190.3	8 23.8		
KOSHIK	М	03	03							246	7.3	155	5.2		*	192.1	2 222.6		
TASHR2	М	03	03							63	5.4	130	8.7		*	199.	5 184.6		
HAGIMI	М	03	03							233	4.1	367	5.7		*	201	8 1.4	6.0D	0.1
TANBAR	М	03	03							171	5.8	184	4.9		*	203.	6 63.0	5.7D	-0.2

STATION	PHA	TIME	RES	PHA	TIME	RES	N-S AM	ſΡ	E-W AM	ſΡ	U-D AMP	DELTA	AZM	MAG	MRES
MITSUS	М	03 03					195	8.1	245	5.1	*	219.5	5 314.5		
FUKUE2	М	03 03					187	6.6	153	4.1	*	221.	7 261.9		
TOYOHI	М	03 03					183	4.8	226	6.7	*	225.4	4 32.8		
KHARUN	М	03 03					412	4.2	208	4.2	*	232.8	3 74.3	6.1D	0.2
TSUSHM	М	03 03					167	5.4	244	7.0	*	233. 7	7 318.4		
TANEG3	М	03 03					108	5.4	120	9.1	*	255.8	3 182.4		
JOUGE	М	03 03					301	5.6	178	4.5	*	267.0	45.2	6.0D	0.1
GOTSU2	М	03 03					241	5.3	272	5.3	*	267.3	3 29.0	6.1D	0.2
MONOBE	М	03 03					348	4.6	354	5.0	*	273.2	2 71.1	6.2D	0.3
MITANE	М	03 03					75	9.8	99	9.5	*	285.1	183.6		
KIRAGA	М	03 03					148	4.9	104	5.1	*	288.6	3 79.8	5.8D	-0.1
KUCHIE	M	03 03					99	6.8	98	10.8	*	289.6	5 197 2	0.02	
SALIYO	M	03 03					189	5.8	276	5.3	*	293	5 39 1	6 1D	0.2
SAKAID	м	03 03					149	6.0	118	8.6		306 9	5 58 5	0.10	0.2
VAKUHT	M	03 03					56	6.5	69	11 0	sk	307.1	1 190.4		
MIMANA	M	03 03					88	5.4	83	6.6	بد	308.0) 66 1		
SAKAUD	м	03 03					000	5.6	350	6.4		204.5	2 20 5		
ATOT	M	03 03					202	1.5	204	5.0		206) 29.0 1 79.7	6 1D	0.9
	M	03 03					220	4.0	204	5.0	*	320.	. 12.1	0.10	0.2
ATDA	M	03 03					101	7.0	307	5.7	*	200.2	5 01.9 4 E1 E	5 OD	0.0
AIDA	M	03 04					121	5.7	89	5.8	*	359.4	+ 51.5	5.90	-0.0
NAKANO	M	03 04					(1	7.4	89	6.7	*	364.5) 198.8		
KURAYO	M	03 04					181	5.8	175	6.3	*	367.8	3 42.4		
AWJNGS	М	03 04					90	8.2	76	5.1	*	391.8	3 63.4		
MINABE	М	03 04					78	6.2	82	5.9	*	408.	74.9		
KASAI	М	$03 \ 04$					126	5.9	73	4.7	*	413.1	ι 56.1	6.0D	0.1
OKI2	М	$03 \ 04$					68	10.5	105	11.1	*	418.9) 27.6		
MIKI	М	$03 \ 04$					135	6.2	82	5.7	*	419.9) 59.7		
TANABE	М	$03 \ 04$					84	6.7	90	6.3	*	431.4	4 76.1		
KUSIMO	М	$03 \ 04$					88	6.0	93	5.6	*	438.7	7 81.7	6.0D	0.1
KASUMI	М	$03 \ 04$					162	5.6	80	5.8	*	439.5	5 47.5	6.1D	0.2
KOUYA	М	$03 \ 04$					86	5.2	169	5.6	*	440.6	5 70.3	6.1D	0.2
TAKARA	М	$03 \ 04$					17	5.7	41	9.6	*	459.0) 203.5		
HEGURI	М	$03 \ 04$					59	6.1	55	9.9	*	464.9	9 64.9		
TENKAW	М	$03 \ 04$					63	4.1	128	5.9	*	468.0) 70.7	6.1D	0.2
MMIHAM	М	$03 \ 04$					50	6.1	77	6.0	*	469.1	ι 77.0		
YASAKA	М	$03 \ 04$					159	7.0	83	7.3	*	473.3	3 50.2		
WACHI	М	$03 \ 04$					120	6.2	57	6.8	*	473.8	3 55.9		
KIHOKU	М	$03 \ 04$					57	6.5	83	5.9	*	501.6	5 72.2		
AMAMI	М	$03 \ 04$					10	7.8	25	11.2	*	523.8	3 196.1		
KATADA	М	$03 \ 04$					65	5.0	82	5.5	*	530.0	67.1	6.1D	0.2
MIHAMA	М	$03 \ 04$					78	4.3	54	6.4	*	533.1	56.4		
ISE	М	$03 \ 04$					65	5.6	95	6.0	*	544.3	3 71.5	6.1D	0.2
EIGENJ	М	03 04					46	6.9	54	4.9	*	545.5	5 62.3		
AMAMIN	М	03 04					6	13.0	19	11.0	*	554.4	1 199.8		
ATSUMI	М	03 04					32	4.5	73	6.8	*	590.2	2 70.0		
ICHIAK	М	$03 \ 04$					51	9.1	45	6.1	*	590. 7	62.4		
TANIAI	М	03 04					62	5.6	56	5.9	*	596.2	2 59.2	6.1D	0.2
KAGA	М	03 04					61	5.2	50	9.4	*	605.1	51.1		
TOKUNO	М	03 04					7	10.4	22	10.2	*	609.1	200.3		
OBARA	M	03 04					43	4.8	59	9.0	*	623.	5 64.1		
SSYABE	M	03 04					36	5.8	30	7.3	*	631.6	68.2		
KUROKA	M	03 04					44	6.9	31	5 7	*	646) 61 4		
TAKISA	M	03 04					29	7 0	45	5.6	*	648	69.3		
SINONB	M	03 04					78	6.6	152	5.8	*	668 9	3 70 9		
NTUKAW	M	03 04					43	5.0	24	6.0		675 () 10. <i>0</i>	6 00	0 1
VASUOK	M	03 04					46	5.2	52	7 1	 *	678 6	, 00.5 3 65 1	0.00	0.1
HAKUT	M	03 04					3E 40	7 0	10	5.4	т ч	600.0	7 100.1		
SACADA	ni M	03 04					00 E0	1.U 5.9	40 197	0.4 6 0	- 	200.1	40.Z		
KUDUMA	M M	03 04					90 90	0.0 5 0	144 69	0.9 6 F	7 J	607 6	11.9 3 69 F		
TTATEV	M M	03 04					58 50	0.0 7 C	10	0.0 4 4	*	097.0	7 E9 0		
THEVA	M	03 04					52	1.0	48	4.4	*	699.	03.0 2 205 4		
TAKATO	M	03 04					8 95	10.4	18	11.8	*	722.0) 205.4		
TAKATU	M	03 04					35	5.2	22	11.1	*	(23.4	1 01.5		
KUNIGA	М	$03 \ 04$					7	12.3	10	9.6	*	731.3	5 202.5		

STATION	PHA	TIME	RES	PHA	TIME	RES	N-S AM	Р	E-W AM	Р	U-D AMP		DELTA	AZM	MAG	MRES
SHIMOB	М	03 04					44	6.2	51	6.3		*	741.9	65.7		
FJNAKA	М	03 04					69	6.2	80	6.8		*	743.4	68.5		
IZUSIM	М	03 04					16	5.4	21	9.2		*	746.4	72.7		
NSAKAI	М	03 04					30	5.1	36	5.3		*	747.2	57.3		
SUZU	М	03 04					20	5.6	17	5.6		*	757.2	47.2		
HEGURA	М	03 04					24	9.4	26	6.3		*	757.6	42.7		
HATUMA	М	03 04					35	4.6	28	8.4		*	764.6	71.0		
SIKINE	М	03 04					31	6.0	39	9.0		*	768.5	76.4		
NIIJOH	М	03 04					41	4.1	29	7.6		*	774.6	76.3		
ODAWA2	М	03 04					33	8.3	34	5.9		*	780.5	68.7		
NAKAMA	М	03 04					26	6.1	28	5.5		*	791.9	52.6		
RYOKAM	М	03 04					26	6.4	14	6.9		*	793.1	62.5		
OSHIM3	М	03 04					38	7.7	36	5.8		*	795.9	73.5		
KUNI	М	03 04					38	5.1	44	5.4		*	797.9	57.9		
SAGAMI	М	03 04					25	8.1	31	6.8		*	802.7	66.4		
HANNOU	М	03 05					29	6.0	22	10.7		*	818.2	64.7		
YOKOSK	М	03 05					55	7.0	74	6.5		*	829.8	70.0		
MIYOSH	М	03 05					44	6.7	70	7.4		*	844.4	71.8		
ΤΟΚΥΟ	М	03 05					115	6.0	157	7.4		*	852.7	66.8		
KATASH	М	03 05					13	5.2	9	9.4		*	856.7	58.2		
ASHIKA	М	03 05					20	7.2	14	6.3		*	856.8	61.0		
IZUMOZ	М	03 05					65	7.7	64	6.9		*	858.6	51.7		
SADO	М	03 05					7	13.0	6	5.5		*	860.0	47.1		
IYASAT	М	03 05					15	5.4	13	8.6		*	909.8	64.0		
SHIOBA	М	03 05					36	5.9	15	4.2		*	920.2	58.7		
YANAIZ	М	03 05					11	7.1	10	5.3		*	926.2	55.4		
ITAHOR	М	03 05					80	6.0	40	6.3		*	928.4	66.4		
YAMAUE	М	03 05					12	7.9	18	8.2		*	947.4	64.1		
TENNOD	М	03 05					10	7.9	13	9.6		*	948.4	68.6		
HITACH	М	03 05					8	6.7	11	9.0		*	956.7	62.3		

* Displacement amplitude($10^{-6}\text{m}).$ The other are Velocity amplitude($10^{-5}\text{m/s})$

R:Region MAXI:Maximum seismic intensity; A=5 lower, B=5 upper, C=6 lower, D=6 upper LAT:Latitude LONG:Longitude MAG:Magunitude PHA:Phase RES:Residual AMP:Maximum amplitude N-S:North-South E-W:East-West U-D:Vertical component DELTA:Epicentral distance

AZM:Azimuth MRES:Residual of magnitude KM:Kilometer

*:変位振幅(10⁻⁶m). なお,その他は速度振幅(10⁻⁵m/s).

R:地域区分番号 MAXI:最大震度;A=5弱,B=5強,C=6弱,D=6強 LAT:緯度 LONG:経度 MAG:マグニチュード PHA:相名 RES: 残差 AMP:最大振幅 N-S:南北成分 E-W:東西成分 U-D:上下成分 DELTA:震央距離 AZM:方位角 MRES:マグニチュードの残差 KM:キロメートル

3.3 地震資料(発震機構解)*

2016年4月14日から2017年4月30日までの M3.5以上の地震のうち,発震機構解(P波初動 解)が決まった地震について,その分布と型の特 徴を示す三角ダイアグラム,軸の方位角分布を第 3.3.1 図に示す.

また, M5.0 以上の地震, または震度5 弱以上

を観測した地震のうち,発震機構解(P波初動解) が求まった地震については第3.3.2 図に,発震機 構解(CMT 解; Centroid Moment Tensor 解)が決 まった地震については第3.3.3 図に詳細を示す. なお,発震機構解(CMT 解)の解析には,気象 庁及び国立研究開発法人防災科学技術研究所の広 帯域地震計の波形データを用いた.

第 3.3.1 図 2016 年 4 月 14 日~2017 年 4 月 30 日の地震の発震機構解(P 波初動解)(M ≥ 3.5, 深さ≤ 20km)
 上段:発震機構解の分布.中段,下段の三角ダイアグラムに記した断層型別の色分けで示す.茶色の線は地震調
 査委員会の長期評価による活断層の地表トレースを表す.

中段,下段:上段図領域 a, b内における発震機構解の Frohlich (2001)の分類による三角ダイアグラム及び圧力軸 (P),張力軸(T),中立軸(N)の方位角分布.方位角分布の中心からの距離(0~1.0)は,最大数を 1.0とした方位角別の数の割合を示す.

^{*} 地震火山部地震予知情報課 発震機構係

【注】

P 波初動解は, 震源を中心とした小さい球面 (震源球)を考え, 震源から放出された地震波の初動の押し引き 分布を球面上に示したものである. 押し引き分布の2つの境界面(節面)のうちのどちらかが断層面を表す. 下 半球投影とは, 球の上半球上の点を震源(中心)に対する下半球上の対称点に移すことによって球全体を下半球 に投影したもので,投影面内の塗りつぶした領域は押し波の領域,白地の部分は引き波の領域を表す. 震源球の 上段には,震源時,震央地名,震源の緯度・経度・深さ,マグニチュードを記している. また,下段には,節面 (NP1, NP2)の走向(STR),傾斜角(DIP),すべり角(SLIP)に加え,圧力軸(P),張力軸(T),中立軸(N) それぞれの方位角(AZM),傾斜角(PLG),解析に使用した観測点数(左下のN),解の精度を表す値(SCORE) の値を記している.

第 3.3.3 図 CMT 解 (下半球投影)

-207 -

第3.3.3 図 続き

【注】

P 波初動解が震源(破壊開始点)における断層運動の様相を表すのに対し,CMT 解は断層破壊全体を1点で 代表させたときの断層運動の様相を表現したものである.震源球の上段には,震源時,震央地名,震源の緯度・ 経度・深さを記している.また,下段には,セントロイドの位置(緯度,経度,深さ),震源時を基準としたセ ントロイド時刻の差(Δ t),地震モーメント(Mo),モーメントマグニチュード(Mw),気象庁マグニチュード (Mj),モーメントテンソル成分(mrr,mtt,mff,mrt,mtf,(r,t,f)は極座標(r, θ , ϕ)を意味する), 節面(NP1,NP2)の走向(STR),傾斜角(DIP),すべり角(SLIP)に加え,圧力軸(P-axis),張力軸(T-axis), 中立軸(N-axis),それぞれのモーメントテンソル成分(MOM),方位角(AZM),傾斜角(PLG),さらにバリ アンスリダクション(V.R.:観測波形と理論波形の一致度),非ダブルカップル成分比(ε),解析に使用した観 測点数(N),使用した波形成分数(COMP)の値を記している.

3.4 主な地震の震度・加速度

3.4.1 震度と加速度*

熊本地震の発生から,2017年8月31日までに 余震域内で発生した震度1以上を観測した地震 は,合計4,383回(本震含む)であった(第3.4.1表). そのうち,一連の地震活動域内で震度5弱以上 を観測した地震は本震を含め25回であった(第 3.4.2 表). また,4月14日21時26分の地震(M6.5) と4月16日01時25分の地震(M7.3)の各観測 点の震度と加速度の表を第3.4.3 表と第3.4.4 表に 掲載する. ただし,震度5弱以上を観測した観測 点のみを掲載し,震度1以上を観測した表は付録 に収録した.

第 3.4.1 表	熊本地震の	余震域内で震度	1以上を	を観測した地震の最大	大震度別回数表	(日別)
2016年4	月14日21時	与~ 2017 年 8 月	31日((本震を回数に含む.	2017年8月31	日現在.)

#088				最	大震度別回]数				震度1以	上の回数
期间	震度1	震度2	震度3	震度4	震度5弱	震度5強	震度6弱	震度6強	震度7	日合計	累計
2016/4/14 (21時~)	43	40	21	12	2	0	1	0	1	120	120
2016年4月15日	119	73	19	10	1	1	0	1	0	224	344
2016年4月16日	647	361	153	51	6	1	2	1	1	1223	1567
2016年4月17日	222	103	29	11	0	0	0	0	0	365	1932
2016年4月18日	142	54	23	4	0	1	0	0	0	224	2156
2016年4月19日	110	36	20	2	1	1	0	0	0	170	2326
2016年4月20日	83	46	15	1	0	0	0	0	0	145	2471
2016年4月21日	52	28	11	2	0	0	0	0	0	93	2564
2016年4月22日	53	26	4	1	0	0	0	0	0	84	2648
2016年4月23日	47	16	1	0	0	0	0	0	0	64	2712
2016年4月24日	42	8	7	0	0	0	0	0	0	57	2769
2016年4月25日	31	16	0	1	0	0	0	0	0	48	2817
2016年4月26日	30	6	5	0	0	0	0	0	0	41	2858
2016年4月27日	34	11	4	0	0	0	0	0	0	49	2907
2016年4月28日	34	13	2	3	0	0	0	0	0	52	2959
2016年4月29日	14	11	7	0	0	1	0	0	0	33	2992
2016年4月30日	19	11	2	0	0	0	0	0	0	32	3024
2016年5月1日	24	9	3	0	0	0	0	0	0	36	3060
2016年5月2日	22	10	1	0	0	0	0	0	0	33	3093
2016年5月3日	18	5	2	0	0	0	0	0	0	25	3118
2016年5月4日	14	10	3	3	0	0	0	0	0	30	3148
2016年5月5日	25	12	3	3	0	0	0	0	0	43	3191
2016年5月6日	15	7	4	0	0	0	0	0	0	26	3217
2016年5月7日	13	6	2	0	0	0	0	0	0	21	3238
2016年5月8日	24	8	1	0	0	0	0	0	0	33	3271
2016年5月9日	20	3	3	0	0	0	0	0	0	26	3297
2016年5月10日	6	6	3	0	0	0	0	0	0	15	3312
2016年5月11日	12	3	1	0	0	0	0	0	0	16	3328
2016年5月12日	9	5	1	1	0	0	0	0	0	16	3344
2016年5月13日	12	5	1	1	0	0	0	0	0	19	3363
2016年5月14日	15	4	3	0	0	0	0	0	0	22	3385
2016年5月15日	12	1	2	0	0	0	0	0	0	15	3400
2016年5月16日	10	2	0	0	0	0	0	0	0	12	3412
2016年5月17日	7	3	1	0	0	0	0	0	0	11	3423
2016年5月18日	8	4	1	0	0	0	0	0	0	13	3436
2016年5月19日	5	5	0	0	0	0	0	0	0	10	3446
2016年5月20日	7	5	1	0	0	0	0	0	0	13	3459
2016年5月21日	8	3	3	0	0	0	0	0	0	14	3473
2016年5月22日	9	2	1	0	0	0	0	0	0	12	3485
2016年5月23日	7	1	1	0	0	0	0	0	0	9	3494
2016年5月24日	7	0	1	0	0	0	0	0	0	8	3502
2016年5月25日	7	2	0	0	0	0	0	0	0	9	3511
2016年5月26日	5	1	0	0	0	0	0	0	0	6	3517
2016年5月27日	6	2	0	0	0	0	0	0	0	8	3525
2016年5月28日	8	5	0	0	0	0	0	0	0	13	3538
2016年5月29日	2	1	1	0	0	0	0	0	0	4	3542
2016年5月30日	5	3	0	0	0	0	0	0	0	8	3550
2016年5月31日	2	1	0	0	0	0	0	0	0	3	3553

* 地震火山部地震津波監視課 震度情報係

田間	最大震度別回数 雪度1 雪度2 雪度3 雪度4 雪度5码 雪度5品 雪度6码 雪度6 雪度7						震度1以.	上の回数			
労间	震度1	震度2	震度3	震度4	震度5弱	震度5強	震度6弱	震度6強	震度7	日合計	累計
2016年6月1日	4	2	0	0	0	0	0	0	0	6	3559
2016年6月2日	9	4	3	0	0	0	0	0	0	16	3575
2016年6月3日	7	2	1	0	0	0	0	0	0	10	3585
2016年6月4日	2	1	1	0	0	0	0	0	0	4	3589
2016年6月5日	6	1	2	0	0	0	0	0	0	9	3598
2016年6月6日	8	2	1	0	0	0	0	0	0	11	3609
2016年6月7日	/	4		0	0	0	0	0	0	12	3621
2010年0月0日	10	4	0	0	0	0	0	0	0	7	3030
2010年0月9日	5	ו י	0	0	0	0	0	0	0	7	3642
2010年0月10日	3	2	0	0	0	0	0	0	0	5	3654
2016年6月12日	7	2	1	0	1	0	0	0	0	11	3665
2016年6月13日	8	2	0	1	0	0	0	0	0	11	3676
2016年6月14日	3	0	0	0	0	0	0	0	0	3	3679
2016年6月15日	5	3	0	0	0	0	0	0	0	8	3687
2016年6月16日	7	0	0	0	0	0	0	0	0	7	3694
2016年6月17日	5	0	0	0	0	0	0	0	0	5	3699
2016年6月18日	3	1	0	1	0	0	0	0	0	5	3704
2016年6月19日	5	2	0	0	0	0	0	0	0	7	3711
2016年6月20日	3	2	1	0	0	0	0	0	0	6	3717
2016年6月21日	6	2	1	0	0	0	0	0	0	9	3726
2016年6月22日	2	1	0	1	0	0	0	0	0	4	3730
2016年6月23日	5	2	0	0	0	0	0	0	0	7	3737
2016年6月24日	1	2	0	0	0	0	0	0	0	3	3740
2016年6月25日	2	1	0	0	0	0	0	0	0	3	3743
2016年6月26日	1	0	1	0	0	0	0	0	0	2	3745
2016年6月27日	2	2	0	0	0	0	0	0	0	4	3/49
2016年6月28日	5	2	0	0	0	0	0	0	0	/	3/56
2010年0月29日	3		1	1	0	0	0	0	0	0	3702
2016年0月30日	/	1	1	0	0	0	0	0	0	8	3770
2010年7月1日	2	2		0	0	0	0	0	0	4	3778
2016年7月3日	3	0	1	0	0	0	0	0	0	4	3782
2016年7月4日	8	2	. 0	0	0	0	0	0	0	10	3792
2016年7月5日	2	0	0	0	0	0	0	0	0	2	3794
2016年7月6日	2	1	0	0	0	0	0	0	0	3	3797
2016年7月7日	1	1	1	0	0	0	0	0	0	3	3800
2016年7月8日	4	0	0	0	0	0	0	0	0	4	3804
2016年7月9日	8	0	1	1	0	0	0	0	0	10	3814
2016年7月10日	4	1	0	0	0	0	0	0	0	5	3819
2016年7月11日	0	0	1	0	0	0	0	0	0	1	3820
2016年7月12日	1	1	1	0	0	0	0	0	0	3	3823
2016年7月13日	4	0	0	0	0	0	0	0	0	4	3827
2016年7月14日	3	0	0	0	0	0	0	0	0	3	3830
2016年7月15日	5	2	0	0	0	0	0	0	0	7	3837
2016年7月16日	4	1	0	0	0	0	0	0	0	5	3842
2016年7月17日	1	1	1	0	0	0	0	0	0	3	3845
2016年7月18日	ა	1	0	0	0	0	0	0	0	3	3848
2010年7月19日	2	-	0	0	0	0	0	0	0	2	3853
2016年7月21日	1	0	0	0	0	0	0	0	0	1	3854
2016年7月22日	2	0	1	0	0	0	0	0	0	3	3857
2016年7月23日	2	1	0	0	0	0	0	0	0	3	3860
2016年7月24日	0	2	0	0	0	0	0	0	0	2	3862
2016年7月25日	3	1	0	0	0	0	0	0	0	4	3866
2016年7月26日	0	0	0	0	0	0	0	0	0	0	3866
2016年7月27日	2	1	0	0	0	0	0	0	0	3	3869
2016年7月28日	1	0	0	0	0	0	0	0	0	1	3870
2016年7月29日	6	0	0	0	0	0	0	0	0	6	3876
2016年7月30日	3	1	0	0	0	0	0	0	0	4	3880
2016年7月31日	3	0	0	0	0	0	0	0	0	3	3883

第3.4.1 表 続き

#088				最	大震度別回]数				震度1以.	上の回数
州间	震度1	震度2	震度3	震度4	震度5弱	震度5強	震度6弱	震度6強	震度7	日合計	累計
2016年8月1日	3	0	0	0	0	0	0	0	0	3	3886
2016年8月2日	1	0	0	0	0	0	0	0	0	1	3887
2016年8月3日	4	0	0	0	0	0	0	0	0	4	3891
2016年8月4日	2	1	0	0	0	0	0	0	0	3	3894
2016年8月5日	2	1	0	0	0	0	0	0	0	3	3897
2016年8月6日	2	1	1	0	0	0	0	0	0	4	3901
2016年8月7日	- 3	1	1	0	0	0	0	0	0	5	3906
2016年8月8日	3		0	0	0	0	0	0	0	3	3909
2016年8日9日	3	1	0	1	0	0	0	0	0	5	3914
2016年8日10日	3	1	0	0	0	0	0	0	0	1	3019
2016年8日11日	0	2	0	0	0	0	0	0	0	2	3920
2010年0月11日	4	2	0	0	0	0	0	0	0		3024
2010年0月12日		1	0	0	0	0	0	0	0		2024
2010年0月13日	0	0	0	0	0	0	0	0	0	0	3026
2010年8月14日	1	0	0	0	0	0	0	0	0	1	2027
2010年6月13日	۱ ۵	1	0	0	0	0	0	0	0	I 	3927
2010年6月10日	Z	1	0	0	0	0	0	0	0	<u> </u>	3930
2010年8月17日	Z	1	0	0	0	0	0	0	0	3	3933
2010年8月18日		1	0	0	0	0	0	0	0	2	3935
2010年8月19日	1	2	0	1	0	0	0	0	0	4	3939
2016年8月20日	/		0	0	0	0	0	0	0	8	3947
2010年8月21日		1	0	0	0	0	0	0	0	2	3949
2016年8月22日	1	1	0	0	0	0	0	0	0	2	3951
2016年8月23日	6	0	0	0	0	0	0	0	0	6	3957
2016年8月24日	3	0	0	0	0	0	0	0	0	3	3960
2016年8月25日	3	0	0	0	0	0	0	0	0	3	3963
2016年8月26日	1	1	1	0	0	0	0	0	0	3	3966
2016年8月27日	3	2	0	0	0	0	0	0	0	5	3971
2016年8月28日	2	3	0	0	0	0	0	0	0	5	3976
2016年8月29日	0	0	0	0	0	0	0	0	0	0	3976
2016年8月30日	5	3	0	0	0	0	0	0	0	8	3984
2016年8月31日	7	2	0	0	1	0	0	0	0	10	3994
2016年9月1日	3	0	1	1	0	0	0	0	0	5	3999
2016年9月2日	1	1	0	0	0	0	0	0	0	2	4001
2016年9月3日	2	2	0	0	0	0	0	0	0	4	4005
2016年9月4日	4	0	1	0	0	0	0	0	0	5	4010
2016年9月5日	1	1	0	0	0	0	0	0	0	2	4012
2016年9月6日	0	1	1	0	0	0	0	0	0	2	4014
2016年9月7日	5	1	0	1	0	0	0	0	0	7	4021
2016年9月8日	2	1	1	0	0	0	0	0	0	4	4025
2016年9月9日	0	0	0	0	0	0	0	0	0	0	4025
2016年9月10日	0	1	0	0	0	0	0	0	0	1	4026
2016年9月11日	1	1	0	0	0	0	0	0	0	2	4028
2016年9月12日	3	0	0	0	0	0	0	0	0	3	4031
2016年9月13日	2	1	3	0	0	0	0	0	0	6	4037
2016年9月14日	1	1	0	0	0	0	0	0	0	2	4039
2016年9月15日	2	0	0	0	0	0	0	0	0	2	4041
2016年9月16日	4	0	0	0	0	0	0	0	0	4	4045
2016年9月17日	0	1	0	0	0	0	0	0	0	1	4046
2016年9月18日	1	0	0	0	0	0	0	0	0	1	4047
2016年9月19日	0	0	0	0	0	0	0	0	0	0	4047
2016年9月20日	2	0	0	0	0	0	0	0	0	2	4049
2016年9月21日	2	2	0	0	0	0	0	0	0	4	4053
2016年9月22日	2	0	0	0	0	0	0	0	0	2	4055
2016年9月23日	2	0	0	0	0	0	0	0	0	2	4057
2016年9月24日	0	0	0	0	0	0	0	0	0	0	4057
2016年9月25日	1	0	0	0	0	0	0	0	0	1	4058
2016年9月26日	1	0	0	0	0	0	0	0	0	1	4059
2016年9月27日	2	0	0	0	0	0	0	0	0	2	4061
2016年9月28日	1	0	0	0	0	0	0	0	0	1	4062
2016年9月29日	2	2	0	n n	n n	n n	n	n	0	4	4066
2016年9月30日	2	0	0	0	0	0	0	0	0	2	4068

田周	最大震度別回数							震度1以	上の回数		
労间	震度1	震度2	震度3	震度4	震度5弱	震度5強	震度6弱	震度6強	震度7	日合計	累計
2016年10月1日	2	0	0	0	0	0	0	0	0	2	4070
2016年10月2日	2	0	0	0	0	0	0	0	0	2	4072
2016年10月3日	2	0	0	0	0	0	0	0	0	2	4074
2016年10月4日	1	0	0	0	0	0	0	0	0	1	4075
2016年10月5日	0	2	0	0	0	0	0	0	0	2	4077
2016年10月6日	1	0	0	0	0	0	0	0	0	1	4078
2016年10月7日	0	0	0	0	0	0	0	0	0	0	4078
2010年10月8日	1	0	0	0	0	0	0	0	0	1	4078
2016年10月9日	1	0	1	0	0	0	0	0	0	2	4073
2016年10月11日	0	0	1	0	0	0	0	0	0	1	4082
2016年10月12日	2	2	1	0	0	0	0	0	0	5	4087
2016年10月13日	0	0	0	0	0	0	0	0	0	0	4087
2016年10月14日	0	0	0	0	0	0	0	0	0	0	4087
2016年10月15日	6	3	1	0	0	0	0	0	0	10	4097
2016年10月16日	2	0	0	0	0	0	0	0	0	2	4099
2016年10月17日	2	0	0	0	0	0	0	0	0	2	4101
2016年10月18日	1	1	0	0	0	0	0	0	0	2	4103
2016年10月19日	0	0	0	0	0	0	0	0	0	0	4103
2016年10月20日	0	0	0	0	0	0	0	0	0	0	4103
2016年10月21日	1	0	0	0	0	0	0	0	0	1	4104
2010年10月22日	2	0	0	0	0	0	0	0	0	2	4100
2010年10月23日	<u>د</u> 1	1	0	0	0	0	0	0	0	2	4100
2016年10月24日	3	0	0	0	0	0	0	0	0	3	4113
2016年10月26日	5	0	0	0	0	0	0	0	0	5	4118
2016年10月27日	1	0	0	0	0	0	0	0	0	1	4119
2016年10月28日	1	0	0	0	0	0	0	0	0	1	4120
2016年10月29日	1	0	0	0	0	0	0	0	0	1	4121
2016年10月30日	1	1	0	0	0	0	0	0	0	2	4123
2016年10月31日	0	0	0	0	0	0	0	0	0	0	4123
2016年11月1日	3	2	0	0	0	0	0	0	0	5	4128
2016年11月2日	0	0	0	0	0	0	0	0	0	0	4128
2016年11月3日	0	0	0	0	0	0	0	0	0	0	4128
2016年11月4日	0	1	0	0	0	0	0	0	0	1	4129
2016年11月5日	0	1	0	0	0	0	0	0	0	1	4129
2010年11月0日	0	1	0	0	0	0	0	0	0	1	4130
2010年11月7日	1	0	0	0	0	0	0	0	0	1	4132
2016年11月9日	0	2	0	0	0	0	0	0	0	2	4134
2016年11月10日	1	0	0	0	0	0	0	0	0	1	4135
2016年11月11日	0	0	0	1	0	0	0	0	0	1	4136
2016年11月12日	0	1	0	0	0	0	0	0	0	1	4137
2016年11月13日	2	1	0	0	0	0	0	0	0	3	4140
2016年11月14日	1	0	0	0	0	0	0	0	0	1	4141
2016年11月15日	2	2	0	0	0	0	0	0	0	4	4145
2016年11月16日	0	0	0	0	0	0	0	0	0	0	4145
2016年11月17日	2	1	0	0	0	0	0	0	0	3	4148
2016年11月18日	0	1	0	0	0	0	0	0	0	1	4149
2016年11月19日	0	0	0	0	0	0	0	0	0	0	4149
2010年11月20日 2016年11日21日	0	0	0	0	0	0	0	0	0	0	4149
2016年11月21日	2	1	0	0	0	0	0	0	0	2	4149
2016年11月23日	2	0	1	0 0	0	0	0 0	0	0 0	3	4155
2016年11月24日	1	0	0	0	0	0	0	0	0	1	4156
2016年11月25日	2	1	0	0	0	0	0	0	0	3	4159
2016年11月26日	1	0	0	0	0	0	0	0	0	1	4160
2016年11月27日	1	0	0	0	0	0	0	0	0	1	4161
2016年11月28日	0	0	0	0	0	0	0	0	0	0	4161
2016年11月29日	1	1	0	0	0	0	0	0	0	2	4163
2016年11月30日	2	0	0	0	0	0	0	0	0	2	4165

#088				最	大震度別回]数				震度1以.	上の回数
别间	震度1	震度2	震度3	震度4	震度5弱	震度5強	震度6弱	震度6強	震度7	日合計	累計
2016年12月1日	1	1	0	0	0	0	0	0	0	2	4167
2016年12月2日	1	3	1	0	0	0	0	0	0	5	4172
2016年12月3日	1	0	0	0	0	0	0	0	0	1	4173
2016年12月4日	1	1	0	0	0	0	0	0	0	2	4175
2016年12月5日	0	0	1	0	0	0	0	0	0	1	4176
2016年12月6日	3	2	0	0	0	0	0	0	0	5	4181
2016年12月7日	2	0	1	0	0	0	0	0	0	3	4184
2016年12月8日	0	0	0	0	0	0	0	0	0	0	4184
2016年12月9日	2	0	0	0	0	0	0	0	0	2	4186
2016年12月10日	1	1	0	0	0	0	0	0	0	2	4188
2016年12月11日	0	0	0	0	0	0	0	0	0	0	4188
2016年12月12日	1	1	0	0	0	0	0	0	0	2	4190
2016年12月13日	. 0	1	0	0	0	0	0	0	0	1	4191
2016年12月14日	0	. 0	0	0	0	0	0	0	0		4191
2016年12月15日	1	0	0	0	0	0	0	0	0	1	4192
2016年12月16日	0	0	0	0	0	0	0	0	0	0	4192
2010年12月10日	1	0	0	0	0	0	0	0	0	1	/102
2016年12月17日	2	0	0	0	0	0	0	0	0	2	/105
2010年12月10日		0	0	0	0	0	0	0	0	2	/105
2010年12月19日	1	0	0	0	0	0	0	0	0	1	4190 /106
2010年12月20日 2016年12日21日		0	0	0	0	0	0	0	0		4190
2010年12月21日	0	0	0	0			0	0	0	0	4190
2010年12月22日	3	0	0	0			0	0	0	3	4199
2010年12月23日	3	0	0	0		0	0	0	0	3	4202
2010年12月24日	0	0	0	0			0	0	0	0	4202
2016年12月23日	1	0	0	0	0	0	0	0	0	1	4202
2010年12月20日		0	0	0	0	0	0	0	0	1	4203
2016年12月27日	1	0	0	0	0	0	0	0	0	I	4204
2016年12月28日	2	0	0	0	0	0	0	0	0	2	4206
2016年12月29日	0	0	0	0	0	0	0	0	0	0	4206
2016年12月30日		0	0	0	0	0	0	0	0		4207
2016年12月31日	2	0	0	0	0	0	0	0	0	2	4209
2017年1月1日	0	1	0	0	0	0	0	0	0	1	4210
2017年1月2日	0	1	0	0	0	0	0	0	0	1	4211
2017年1月3日	0	0	0	0	0	0	0	0	0	0	4211
2017年1月4日	1	1	0	0	0	0	0	0	0	2	4213
2017年1月5日	0	2	0	0	0	0	0	0	0	2	4215
2017年1月6日	1	2	0	0	0	0	0	0	0	3	4218
2017年1月7日	1	0	0	0	0	0	0	0	0	1	4219
2017年1月8日	1	0	0	0	0	0	0	0	0	1	4220
2017年1月9日	0	0	0	0	0	0	0	0	0	0	4220
201/年1月10日	0	0	0	0	0	0	0	0	0	0	4220
201/年1月11日	1	0	0	1	0	0	0	0	0	2	4222
201/年1月12日	0	0	0	0	0	0	0	0	0	0	4222
2017年1月13日	1	0	0	0	0	0	0	0	0	1	4223
201/年1月14日	2	0	0	0	0	0	0	0	0	2	4225
2017年1月15日	2	0	0	0	0	0	0	0	0	2	4227
201/年1月16日	1	0	0	0	0	0	0	0	0	1	4228
2017年1月17日	0	0	0	0	0	0	0	0	0	0	4228
2017年1月18日	1	0	0	0	0	0	0	0	0	1	4229
2017年1月19日	2	0	0	0	0	0	0	0	0	2	4231
2017年1月20日	2	0	0	0	0	0	0	0	0	2	4233
2017年1月21日	0	1	0	0	0	0	0	0	0	1	4234
2017年1月22日	1	0	0	0	0	0	0	0	0	1	4235
2017年1月23日	0	0	0	0	0	0	0	0	0	0	4235
2017年1月24日	0	0	0	0	0	0	0	0	0	0	4235
2017年1月25日	0	0	0	0	0	0	0	0	0	0	4235
2017年1月26日	3	0	1	0	0	0	0	0	0	4	4239
2017年1月27日	0	0	0	0	0	0	0	0	0	0	4239
2017年1月28日	0	0	0	0	0	0	0	0	0	0	4239
2017年1月29日	1	0	0	0	0	0	0	0	0	1	4240
2017年1月30日	1	0	0	0	0	0	0	0	0	1	4241
2017年1月31日	0	0	0	0	0	0	0	0	0	0	4241

4 088		```````````````````````````````````````		最	大震度別回]数		```````````````````````````````````````		震度1以.	上の回数
期间	震度1	震度2	震度3	震度4	震度5弱	震度5強	震度6弱	震度6強	震度7	日合計	累計
2017年2月1日	1	0	0	0	0	0	0	0	0	1	4242
2017年2月2日	0	0	0	0	0	0	0	0	0	0	4242
2017年2月3日	1	0	0	0	0	0	0	0	0	1	4243
2017年2月4日	0	0	0	0	0	0	0	0	0	0	4243
2017年2月5日	1	0	0	0	0	0	0	0	0	1	4244
2017年2月6日	0	0	0	0	0	0	0	0	0	0	4244
2017年2月7日	0	0	0	0	0	0	0	0	0	0	4244
2017年2月8日	0	1	0	0	0	0	0	0	0	1	4245
2017年2月9日	0	0	0	0	0	0	0	0	0	0	4245
2017年2月10日	0	0	0	0	0	0	0	0	0	0	4245
2017年2月11日	2	1	0	0	0	0	0	0	0	3	4248
2017年2月12日	0	0	0	0	0	0	0	0	0	0	4248
2017年2月13日	1	0	0	0	0	0	0	0	0	1	4249
2017年2月14日	0	0	0	0	0	0	0	0	0	0	4249
2017年2月15日	0	0	0	0	0	0	0	0	0	0	4249
2017年2月16日	1	0	0	0	0	0	0	0	0	1	4250
2017年2月17日	0	0	0	0	0	0	0	0	0	0	4250
2017年2月18日	0	0	0	0	0	0	0	0	0	0	4250
2017年2月19日	0	0	0	0	0	0	0	0	0	0	4250
2017年2月20日	2	0	0	0	0	0	0	0	0	2	4252
2017年2月21日	0	0	0	0	0	0	0	0	0	0	4252
2017年2月22日	0	0	1	0	0	0	0	0	0	1	4253
2017年2月23日	0	0	0	0	0	0	0	0	0	0	4253
2017年2月24日	0	1	0	0	0	0	0	0	0	1	4254
2017年2月25日	0	0	0	0	0	0	0	0	0	0	4254
2017年2月26日	0	0	0	0	0	0	0	0	0	0	4254
2017年2月27日	2	0	0	0	0	0	0	0	0	2	4256
2017年2月28日	2	1	0	0	0	0	0	0	0	3	4259
2017年3月1日	3	0	0	0	0	0	0	0	0	3	4262
2017年3月2日	0	0	0	0	0	0	0	0	0	0	4262
2017年3月3日	1	0	0	0	0	0	0	0	0	1	4263
2017年3月4日	0	0	0	0	0	0	0	0	0	0	4263
2017年3月5日	0	1	0	0	0	0	0	0	0	I	4264
2017年3月0日		1		0	0	0	0	0	0	3	4207
2017年3月7日	0	0	0	0	0	0	0	0	0	0	4207
2017年3月8日	1	0	0	0	0	0	0	0	0	1	4207
2017年3月9日	0	0	0	0	0	0	0	0	0	i	4200
2017年3月10日	0	1	0	0	0	0	0	0	0	1	4200
2017年3月11日	1	0	0	0	0	0	0	0	0	1	4203
2017年3月12日	1	0	0	0	0	0	0	0	0	1	4270
2017年3月13日	0	0	0	0	0	0	0	0	0	0	4271
2017年3月14日	0	0	0	0	0	0	0	0	0	0	4271
2017年3月16日	0	0	0	0	0	0	0	0	0	0	1071
2017年3月17日	1	1	0	0 0	0	0	0 0	0	0 0		4272
2017年3月18日	1	۔ ۱	0	0	0 0	0 0	0 0	0	0 0	1	4273
2017年3月19日	0	1	0	0	0	0	0	0	0	1	4275
2017年3月20日	0	0	0	0	0	0	0	0	0	0	4275
2017年3月21日	0	0	0	0	0 0	0	0	0	0	0	4275
2017年3月22日	0	0	0	0	0	0	0	0	0	0	4275
2017年3月23日	0	0	0	0	n n	0	0	0	0	0	4275
2017年3月24日	0	0	0	0	0 0	0	0	0	0	0	4275
2017年3月25日	1	0	0	0	0	n n	0	0	0	1	4276
2017年3月26日	2	0	0	0	0	0	0	0	0	2	4278
2017年3月27日	0	1	0	0	0	0	0	0	0	1	4279
2017年3月28日	0	0	0	0	Ő	Ő	0	0	0	0	4279
2017年3月29日	1	1	0	0	0	0	0	0	0	2	4281
2017年3月30日	1	2	0	0	0	0	0	0	0	3	4284
2017年3月31日	0	0	0	0	0	0	0	0	0	0	4284

#088				最	大震度別回	國数				震度1以	上の回数
期间	震度1	震度2	震度3	震度4	震度5弱	震度5強	震度6弱	震度6強	震度7	日合計	累計
2017年4月1日	1	0	0	0	0	0	0	0	0	1	4285
2017年4月2日	0	0	0	0	0	0	0	0	0	0	4285
2017年4月3日	0	0	0	0	0	0	0	0	0	0	4285
2017年4月4日	1	1	0	0	0	0	0	0	0	2	4287
2017年4月5日	1	0	0	0	0	0	0	0	0	1	4288
2017年4日6日	0	0	0	0	0	0	0	0	0	0	4288
2017年4月7日	0	0	0	0	0	0	0	0	0	0	1200
2017年4月9日	1	0	0	0	0	0	0	0	0	1	4200
2017年4月8日	0	1	1	0	0	0	0	0	0	י י	4203
2017年4月9日	0	0	0	0	0	0	0	0	0	2	4231
2017年4月10日	0	1	0	0	0	0	0	0	0	0	4291
2017年4月11日	Z	1	0	0	0	0	0	0	0	 	4294
2017年4月12日	1		0	0	0	0	0	0	0	2	4290
2017年4月13日	0	0	0	0	0	0	0	0	0	1	4290
2017年4月14日	1	0	0	0	0	0	0	0	0		4297
2017年4月15日		0	0	0	0	0	0	0	0	I	4298
2017年4月16日	0	0	0	0	0	0	0	0	0	0	4298
2017年4月17日	1		0	0	0	0	0	0	0	2	4300
2017年4月18日	0	0	0	0	0	0	0	0	0	0	4300
201/年4月19日	2	0	0	0	0	0	0	0	0	2	4302
2017年4月20日	0	0	0	0	0	0	0	0	0	0	4302
2017年4月21日	1	0	0	0	0	0	0	0	0	1	4303
2017年4月22日	0	0	0	0	0	0	0	0	0	0	4303
2017年4月23日	1	0	0	0	0	0	0	0	0	1	4304
2017年4月24日	1	0	0	0	0	0	0	0	0	1	4305
2017年4月25日	0	0	0	0	0	0	0	0	0	0	4305
2017年4月26日	0	0	0	0	0	0	0	0	0	0	4305
2017年4月27日	1	0	0	0	0	0	0	0	0	1	4306
2017年4月28日	1	0	0	0	0	0	0	0	0	1	4307
2017年4月29日	1	0	0	0	0	0	0	0	0	1	4308
2017年4月30日	1	0	0	0	0	0	0	0	0	1	4309
2017年5月1日	0	0	0	0	0	0	0	0	0	0	4309
2017年5月2日	0	0	0	0	0	0	0	0	0	0	4309
2017年5月3日	0	0	0	0	0	0	0	0	0	0	4309
2017年5月4日	0	0	0	1	0	0	0	0	0	1	4310
2017年5月5日	0	2	0	0	0	0	0	0	0	2	4312
2017年5月6日	0	0	0	0	0	0	0	0	0	0	4312
2017年5月7日	2	0	1	0	0	0	0	0	0	3	4315
2017年5月8日	1	0	0	0	0	0	0	0	0	1	4316
2017年5月9日	0	0	0	0	0	0	0	0	0	0	4316
2017年5月10日	0	1	0	0	0	0	0	0	0	1	4317
2017年5月11日	1	0	0	1	0	0	0	0	0	2	4319
2017年5月12日	3	1	0	0	0	0	0	0	0	4	4323
2017年5月13日	1	0	0	0	0	0	0	0	0	1	4324
2017年5月14日	1	2	0	0	0	0	0	0	0	3	4327
2017年5月15日	0	1	0	0	0	0	0	0	0	1	4328
2017年5月16日	1	0	0	0	0	0	0	0	0	1	4329
2017年5月17日	0	0	0	0	0	0	0	0	0	0	4329
2017年5月18日	0	0	0	0	0	0	0	0	0	0	4329
2017年5月19日	0	0	0	0	0	0	0	0	0	0	4329
2017年5月20日	1	0	0	0	0	0	0	0	0	1	4330
2017年5月21日	1	0	0	0	0	0	0	0	0	1	4331
2017年5月22日	1	0	0	0	0	0	0	0	0	1	4332
2017年5月23日	0	0	0	0	0	0	0	0	0	0	4332
2017年5月24日	0	0	0	0	0	0	0	0	0	0	4332
2017年5月25日	1	0	0	0	0	0	0	0	0	1	4333
2017年5月26日	0	0	0	0	0	0	0	0	0	0	4333
2017年5月27日	0	0	0	0	0	0	0	0	0	0	4333
2017年5月28日	0	0	0	0	0	0	0	0	0	0	4333
2017年5月29日	0	0	0	0	0	0	0	0	0	0	4333
2017年5月30日	0	1	0	0	0	0	0	0	0	1	4334
2017年5月31日	3	0	0	0	0	0	0	0	0	3	4337

11 088				最	大震度別回]数				震度1以	上の回数
期間	震度1	震度2	震度3	震度4	震度5弱	震度5強	震度6弱	震度6強	震度7	日合計	累計
2017年6月1日	1	0	0	0	0	0	0	0	0	1	4338
2017年6月2日	0	0	0	0	0	0	0	0	0	0	4338
2017年6月3日	0	0	0	0	0	0	0	0	0	0	4338
2017年6月4日	0	1	0	0	0	0	0	0	0	1	4339
2017年6月5日	0	0	0	0	0	0	0	0	0	0	4339
2017年6月6日	1	0	0	0	0	0	0	0	0	1	4340
2017年6月7日	0	2	0	0	0	0	0	0	0	2	4342
2017年6月8日	0	0	0	0	0	0	0	0	0	0	4342
2017年6月9日	0	0	0	0	0	0	0	0	0	0	4342
2017年6月10日	0	0	0	0	0	0	0	0	0	0	4342
2017年6月11日	1	0	0	0	0	0	0	0	0	1	4343
2017年6月12日	0	0	0	0	0	0	0	0	0	0	4343
2017年6月13日	0	0	0	0	0	0	0	0	0	0	4343
2017年6月14日	0	0	0	0	0	0	0	0	0	0	4343
2017年6月15日	0	0	0	0	0	0	0	0	0	0	4343
2017年6月16日	1	0	0	0	0	0	0	0	0	1	4344
2017年6月17日	0	0	0	0	0	0	0	0	0	0	4344
2017年6月18日	0	0	0	0	0	0	0	0	0	0	4344
2017年6月19日	0	0	0	0	0	0	0	0	0	0	4344
2017年6月20日	0	0	0	0	0	0	0	0	0	0	4344
2017年6月21日	0	0	0	0	0	0	0	0	0	0	4344
2017年6月22日	1	0	0	0	0	0	0	0	0	1	4345
2017年6月23日	1	0	0	0	0	0	0	0	0	1	4346
2017年6月24日	0	0	0	0	0	0	0	0	0	0	4346
2017年6月25日	0	0	0	0	0	0	0	0	0	0	4346
2017年6月26日	0	0	0	0	0	0	0	0	0	0	4346
2017年6月27日	0	0	0	0	0	0	0	0	0	0	4346
2017年6月28日	0	0	0	0	0	0	0	0	0	0	4346
2017年6月29日	0	0	0	0	0	0	0	0	0	0	4346
2017年6月30日	0	0	1	0	0	0	0	0	0	1	4347
2017年7月1日	0	0	0	0	0	0	0	0	0	0	4347
2017年7月2日	1	0	0	0	1	0	0	0	0	2	4349
2017年7月3日	1	0	0	0	0	0	0	0	0	1	4350
2017年7月4日	0	0	0	0	0	0	0	0	0	0	4350
2017年7月5日	0	0	0	0	0	0	0	0	0	0	4350
2017年7月6日	1	0	0	0	0	0	0	0	0	1	4351
2017年7月7日	0	1	0	0	0	0	0	0	0	1	4352
2017年7月8日	0	0	0	0	0	0	0	0	0	0	4352
2017年7月9日	0	0	0	0	0	0	0	0	0	0	4352
2017年7月10日	0	0	0	0	0	0	0	0	0	0	4352
2017年7月11日	0	0	0	0	0	0	0	0	0	0	4352
2017年7月12日	1	0	0	0	0	0	0	0	0	1	4353
2017年7月13日	0	0	0	0	0	0	0	0	0	0	4353
2017年7月14日	0	0	0	0	0	0	0	0	0	0	4353
2017年7月15日	0	1	0	0	0	0	0	0	0	1	4354
2017年7月16日	0	1	0	0	0	0	0	0	0	1	4355
2017年7月17日	1	0	0	0	0	0	0	0	0	1	4356
2017年7月18日	0	0	0	0	0	0	0	0	0	0	4356
2017年7月19日	1	0	1	0	0	0	0	0	0	2	4358
2017年7月20日	0	0	0	0	0	0	0	0	0	0	4358
2017年7月21日	2	0	0	0	0	0	0	0	0	2	4360
2017年7月22日	0	0	0	0	0	0	0	0	0	0	4360
2017年7月23日	0	0	0	0	0	0	0	0	0	0	4360
2017年7月24日	1	0	0	0	0	0	0	0	0	1	4361
2017年7月25日	0	0	0	0	0	0	0	0	0	0	4361
2017年7月26日	0	0	0	0	0	0	0	0	0	0	4361
2017年7月27日	0	1	0	0	0	0	0	0	0	1	4362
2017年7月28日	0	0	0	0	0	0	0	0	0	0	4362
2017年7月29日	1	0	0	0	0	0	0	0	0	1	4363
2017年7月30日	1	0	0	0	0	0	0	0	0	1	4364
2017年7月31日	0	0	0	0	0	0	0	0	0	0	4364

#889				最	大震度別回	数				震度1以	上の回数
刑间	震度1	震度2	震度3	震度4	震度5弱	震度5強	震度6弱	震度6強	震度7	日合計	累計
2017年8月1日	0	0	0	0	0	0	0	0	0	0	4364
2017年8月2日	0	0	0	0	0	0	0	0	0	0	4364
2017年8月3日	0	0	0	0	0	0	0	0	0	0	4364
2017年8月4日	2	0	0	0	0	0	0	0	0	2	4366
2017年8月5日	0	0	0	0	0	0	0	0	0	0	4366
2017年8月6日	2	0	0	0	0	0	0	0	0	2	4368
2017年8月7日	0	0	0	0	0	0	0	0	0	0	4368
2017年8月8日	2	0	1	0	0	0	0	0	0	3	4371
2017年8月9日	0	1	0	0	0	0	0	0	0	1	4372
2017年8月10日	2	0	0	0	0	0	0	0	0	2	4374
2017年8月11日	0	1	0	0	0	0	0	0	0	1	4375
2017年8月12日	0	0	0	0	0	0	0	0	0	0	4375
2017年8月13日	0	0	0	0	0	0	0	0	0	0	4375
2017年8月14日	1	1	0	0	0	0	0	0	0	2	4377
2017年8月15日	0	0	0	0	0	0	0	0	0	0	4377
2017年8月16日	1	0	0	0	0	0	0	0	0	1	4378
2017年8月17日	0	0	0	0	0	0	0	0	0	0	4378
2017年8月18日	0	0	0	0	0	0	0	0	0	0	4378
2017年8月19日	0	0	0	0	0	0	0	0	0	0	4378
2017年8月20日	0	0	0	0	0	0	0	0	0	0	4378
2017年8月21日	1	1	0	0	0	0	0	0	0	2	4380
2017年8月22日	1	0	0	0	0	0	0	0	0	1	4381
2017年8月23日	0	0	0	0	0	0	0	0	0	0	4381
2017年8月24日	0	0	0	0	0	0	0	0	0	0	4381
2017年8月25日	0	1	0	0	0	0	0	0	0	1	4382
2017年8月26日	0	0	0	0	0	0	0	0	0	0	4382
2017年8月27日	0	0	0	0	0	0	0	0	0	0	4382
2017年8月28日	1	0	0	0	0	0	0	0	0	1	4383
2017年8月29日	0	0	0	0	0	0	0	0	0	0	4383
2017年8月30日	0	0	0	0	0	0	0	0	0	0	4383
2017年8月31日	0	0	0	0	0	0	0	0	0	0	4383

震源	時	雪山地名	小给	宙怒	涩さ	マグニ	是大雪市
年月日	時分秒	辰入地石	コレ小年	木杠		チュー	取八辰反
2016/4/14	21:26:34	熊本県熊本地方	32 [°] 44.50'	130° 48.52'	11.4	6.5	7
2016/4/14	22:07:35	熊本県熊本地方	32° 46.53'	130° 50.97'	8.3	5.8	6弱
2016/4/14	22:38:43	熊本県熊本地方	32°40.61'	130° 44.11'	11.1	5.0	5弱
2016/4/14	23:43:41	熊本県熊本地方	32 [°] 46.02'	130° 49.64'	14.2	5.1	5弱
2016/4/15	00:03:46	熊本県熊本地方	32 [°] 42.04'	130° 46.66'	6.7	6.4	6強
2016/4/15	00:06:21	熊本県熊本地方	32 [°] 41.70'	130° 45.15'	10.5	5.0	5強
2016/4/15	01:53:01	熊本県熊本地方	32 [°] 42.05'	130° 45.16'	11.6	4.8	5弱
2016/4/16	01:25:05	熊本県熊本地方	32 [°] 45.27'	130 [°] 45.78'	12.5	7.3	7
2016/4/16	01:44:07	熊本県熊本地方	32 [°] 45.19'	130° 45.69'	15.2	5.4	5弱
2016/4/16	01:45:55	熊本県熊本地方	32 [°] 51.79'	130° 53.94'	10.6	5.9	6弱
2016/4/16	03:03:10	熊本県阿蘇地方	32 [°] 57.83'	131° 05.21'	6.9	5.9	5強
2016/4/16	03:09:29	熊本県阿蘇地方	32 [°] 58.14'	131° 05.21'	9.8	4.2	5弱
2016/4/16	03:55:53	熊本県阿蘇地方	33° 01.59'	131° 11.46'	10.9	5.8	6強
2016/4/16	07:11:37	大分県中部	33°16.29'	131 [°] 23.74'	5.7	5.4	5弱
2016/4/16	07:23:54	熊本県熊本地方	32 [°] 47.20'	130° 46.43'	11.9	4.8	5弱
2016/4/16	09:48:32	熊本県熊本地方	32 [°] 50.82'	130° 50.10'	15.9	5.4	6弱
2016/4/16	09:50:06	熊本県熊本地方	32 [°] 51.19'	130° 49.79'	14.8	4.5	5弱
2016/4/16	16:02:01	熊本県熊本地方	32 [°] 41.95'	130° 43.20'	12.3	5.4	5弱
2016/4/18	20:41:57	熊本県阿蘇地方	33 [°] 00.12'	131° 11.99'	8.6	5.8	5強
2016/4/19	17:52:13	熊本県熊本地方	32° 32.11'	130 [°] 38.12'	10.0	5.5	5強
2016/4/19	20:47:03	熊本県熊本地方	32 [°] 34.31'	130 [°] 39.19'	10.8	5.0	5弱
2016/4/29	15:09:34	大分県中部	33° 15.47'	131 [°] 22.08'	7.4	4.5	5強
2016/6/12	22:08:15	熊本県熊本地方	32 [°] 26.96'	130 [°] 40.85'	7.4	4.3	5弱
2016/8/31	19:46:02	熊本県熊本地方	32 [°] 43.30′	130° 37.03'	12.8	5.2	5弱
2017/7/2	00:58:22	熊本県阿蘇地方	33° 00.24'	131° 14.20'	11.2	4.5	5弱

第3.4.2 表 熊本地震の余震域内で最大震度5弱以上を観測した地震 2016年4月14日21時~2017年8月31日(本震を含む)

*16 日 01 時 25 分の M7.3 の地震の発生直後に大分県中部を震源とする M5.7(参考値)の地震が発生しており, M7.3 の地震の震度分布には大分県中部の M5.7 の地震による揺れも含まれる.

第3.4.3 表 4月14日21時26分(M6.5,最大震度7)の計測震度と最大加速度 *印は地方公共団体または国立研究開発法人防災科学技術研究所の震度観測点を示す.以下,同様.

				=十 3回	最大	、加速度(g	gal=cm∕s	s/s)	震央
都道府県	市区町村	観測点名	震度	震度	合成	南北 成分	東西 成分	上下 成分	距離 (km)
熊本県	益城町	益城町宮園 *	7	6.6	816.7	631.5	731.8	338.2	5.2
熊本県	熊本市東区	熊本東区佐土原*	6弱	5.9	604.0	574.2	381.4	325.8	6.0
熊本県	熊本市西区	熊本西区春日	6弱	5.9	737.4	658.9	432.5	261.9	12.0
熊本県	西原村	西原村小森 *	6弱	5.7	543.7	532.3	341.0	180.2	13.4
熊本県	嘉島町	嘉島町上島 *	6弱	5.7	370.7	308.2	352.7	344.1	4.6
熊本県	宇城市	宇城市松橋町	6弱	5.7	364.5	327.1	280.9	220.9	15.8
熊本県	宇城市	宇城市不知火町 *	6弱	5.7	565.6	513.2	305.7	269.5	16.9
熊本県	熊本市南区	熊本南区城南町 *	6弱	5.6	424.4	324.3	404.7	363.8	8.3
熊本県	玉名市	玉名市天水町 *	6弱	5.5	258.3	257.1	138.8	70.1	24.0
熊本県	宇城市	宇城市小川町 *	6弱	5.5	326.6	316.2	156.8	112.7	19.5
熊本県	宇城市	宇城市豊野町 *	6弱	5.5	475.3	391.6	435.5	333.0	12.9
熊本県	熊本市南区	熊本南区富合町 *	6弱	5.5	268.9	256.9	259.1	220.8	12.4
熊本県	宇土市		5強	5.4	386.1	341.3	264.6	241.6	15.2
熊本県	山都町	<u>山都町下馬尾 *</u>	5強	5.3	669.0	568.6	546.8	94.1	18.0
<u>熊本県</u>			5強	5.3	288.6	220.3	255.0	181.7	15.7
<u> 熊本県</u>	熊本市中央区		<u>5強</u>	5.3	445.8	363.5	298.8	301.8	10.3
<u> 熊本県</u>	熊本市北区	熊本北区植木町*	5强	5.3	640.4	269.5	638.1	231.3	20.5
<u> 熊本県</u>	大津町		5强	5.2	465.4	355.3	3/4.2	303.8	16.0
<u> 熊本県</u>		御船町御船*	5强	5.2	596.3	369.5	448.2	254./	3.4
<u> 熊 </u>	美里町	<u>熊本美里町馬場 *</u>	5頭	5.2	293.1	287.7	2/5.9	185.8	11.9
<u> </u>	水川町	水川町島地*	5强	5.2	238 /	231.3	190.3	92.1	22.0
<u> 熊本県</u>	<u> </u>	<u> </u>	<u>り独</u>	5.1	182.0	163.0	178.9	<u>68.9</u>	27.7
<u> </u>	<u>天生可</u>	<u> 熊平夫里町水畠 *</u>	<u>り</u> 133	5.1	491.2	380.8	4/0.9	175.4	10.3
能大胆	<u> </u>	<u> </u>	ら没	5.0	510.0	495.0	2570	175.4	12.0
<u> </u>	判例町		<u>り</u> 近	3.0	105.2	400.0	207.0	150.0	25.1
<u> 庶 仲 示</u>	がです。	11 11 11 ↑ 推査村下垣自↓	5광	4.9	220.5	220.6	100.7	00.1	45.2
<u> 舌呵宗</u> 能太目	<u>惟朱竹</u> 南阿菇村	<u>惟未竹└悔及↑</u> 志阿英村河倶↓	5羽	4.9	266.0	1027	260.5	90.1	40.2
能木胆	小代古		 5弱	4.0	158.4	120.2	143.0	63.0	22.2
<u> </u>	田佐町		5弱	4.0	606.4	439.5	410.0	238.1	10.5
能木旦	和水町		5弱	4.8	174.8	136.9	147.3	59.9	32.0
能太県	大津町		 5弱	47	235.5	195.5	207.1	130.1	16.0
能太県	氷川町		 5弱	47	183.6	162.9	87.3	125.5	24.0
能本県	上天草市	上天草市大矢野町	 5弱	4.7	140.8	137.3	111.1	65.3	39.3
能本県	天草市	天草市五和町*	<u>5</u> 弱	4.7	151.5	150.0	91.1	38.8	63.5
能本県	八代市	八代市松江城町 *	5弱	4.6	164.9	145.2	115.6	65.0	32.6
能本県	上天草市	上天草市松島町 *	5弱	4.6	159.0	152.7	120.4	64.5	43.1
熊本県	高森町	熊本高森町高森 *	5弱	4.5	214.6	149.8	205.8	110.2	30.9
熊本県	阿蘇市	阿蘇市内牧 *	5弱	4.5	112.0	107.0	80.2	43.0	33.5
熊本県	南阿蘇村	南阿蘇村吉田 *	5弱	4.5	219.8	192.3	218.3	108.4	27.3
熊本県	八代市	八代市平山新町	5弱	4.5	106.3	101.9	78.4	38.3	35.3
熊本県	菊池市	菊池市泗水町 *	5弱	4.5	153.6	120.5	148.1	58.0	19.9
熊本県	長洲町	長洲町長洲 *	5弱	4.5	94.2	93.1	61.6	28.6	38.9
熊本県	合志市	合志市御代志 *	5弱	4.5	281.4	181.3	191.4	250.5	17.0

				≡┼泪∥	最大	、加速度(gal=cm/s	s/s)	震央
都道府県	市区町村	観測点名	震度	訂測 震度	合成	南北 成分	東西 成分	上下 成分	距離 (km)
熊本県	益城町	益城町宮園 *	7	6.7	899.1	775.5	825.4	668.5	6.4
熊本県	西原村	西原村小森 *	7	6.6	904.0	742.1	770.0	531.3	15.8
熊本県	菊池市	菊池市旭志 *	6強	6.4	977.4	799.2	857.4	535.8	22.7
熊本県	南阿蘇村	南阿蘇村河陽 *	6強	6.2	1316.3	1111.8	954.6	654.4	25.1
熊本県	宇土市	宇土市浦田町 *	6強	6.2	802.0	572.0	792.4	466.2	12.3
熊本県	嘉島町	嘉島町上島 *	6強	6.2	622.3	564.8	597.1	474.1	2.0
熊本県	合志市	合志市竹迫 *	6強	6.2	705.3	398.8	690.8	306.6	14.5
熊本県	大津町	大津町大津 *	6強	6.1	1791.3	1379.6	1740.1	594.7	16.8
熊本県	宇城市	宇城市豊野町 *	6強	6.1	751.7	573.4	575.1	724.7	13.2
熊本県	宇城市	宇城市松橋町	6強	6.0	564.1	492.8	342.6	313.9	14.2
熊本県	宇城市	宇城市小川町 *	6強	6.0	474.9	389.8	369.4	233.4	19.1
熊本県	熊本市中央区	熊本中央区大江 *	6強	6.0	656.9	626.8	478.2	403.4	6.3
熊本県	熊本市東区	熊本東区佐土原 *	6強	6.0	843.5	827.5	616.5	534.2	4.2
熊本県	熊本市西区	熊本西区春日	6強	6.0	677.5	606.0	551.6	405.3	7.5
熊本県	南阿蘇村	南阿蘇村中松	6弱	5.9	855.0	794.5	606.8	653.1	32.3
熊本県	美里町	熊本美里町馬場 *	6弱	5.9	538.7	402.4	526.6	355.3	13.4
熊本県	宇城市	宇城市不知火町 *	6弱	5.9	629.4	539.0	441.9	516.6	15.1
熊本県	熊本市南区	熊本南区城南町 *	6弱	5.9	850.8	681.2	521.5	803.1	6.2
熊本県	熊本市南区	熊本南区富合町 *	6弱	5.9	594.5	427.1	411.9	591.4	9.0
大分県	由布市	由布市湯布院町川上*	6弱	5.9	540.0	479.0	368.9	465.9	79.2
熊本県	阿蘇市	阿蘇市内牧 *	6弱	5.8	517.2	511.8	165.1	318.1	35.5
熊本県	菊陽町	菊陽町久保田 *	6弱	5.8	825.3	824.2	497.7	566.4	13.3
熊本県	熊本市北区	熊本北区植木町 *	6弱	5.8	1026.9	672.3	877.9	530.0	17.4
熊本県	南阿蘇村	南阿蘇村河陰 *	6弱	5.7	927.4	920.3	557.5	361.2	26.3
熊本県	玉名市	玉名市天水町 *	6弱	5.7	328.7	308.4	202.0	137.1	19.7
熊本県	菊池市	菊池市隈府 *	6弱	5.7	462.2	415.1	293.5	302.1	25.1
熊本県	大津町	大津町引水 *	6弱	5.7	669.1	525.4	482.2	396.9	17.1
熊本県	御船町	御船町御船 *	6弱	5.7	499.0	465.7	441.3	354.0	6.2
熊本県	山都町	山都町下馬尾 *	6弱	5.7	831.2	776.7	639.5	186.5	22.5
熊本県	氷川町	氷川町島地 *	6弱	5.7	346.7	300.5	312.9	206.3	21.2
熊本県	和水町	和水町江田 *	6弱	5.7	517.6	264.2	509.2	135.9	28.4
熊本県	玉名市	玉名市横島町 *	6弱	5.6	240.0	230.5	197.1	103.8	23.3
熊本県	菊池市	菊池市泗水町 *	6弱	5.6	564.6	485.0	339.3	182.2	18.3
熊本県	美里町	熊本美里町永富 *	6弱	5.6	778.0	597.6	602.6	254.8	18.5
熊本県	合志市	合志市御代志 *	6弱	5.6	715.1	401.4	571.6	467.8	14.7
熊本県	阿蘇市	阿蘇市一の宮町 *	6弱	5.5	403.1	261.3	346.6	268.4	38.9
熊本県	八代市	八代市鏡町 *	6弱	5.5	419.5	353.5	285.1	354.0	24.1
熊本県	上天草市	上天草市大矢野町	6弱	5.5	353.6	262.1	334.4	122.3	36.3
熊本県	天草市	天草市五和町 *	6弱	5.5	303.9	281.6	218.8	62.4	60.2
大分県	別府市	別府市鶴見	6弱	5.5	1155.0	831.5	805.9	860.8	90.1

第3.4.4 表 4月16日01時25分(M7.3,最大震度7)の計測震度と最大加速度

第	3.4.4	表	続き

				는도 28d	最大	加速度(gal=cm∕s	s/s)	震央
都道府県	市区町村	観測点名	震度	訂 測 電 由	ム市	南北	東西	上下	距離
				長 皮	合成	成分	成分	成分	(km)
佐賀県	神埼市	神埼市千代田 *	5強	5.4	207.3	183.3	154.1	62.1	67.8
熊本県	南小国町	南小国町赤馬場 *	5強	5.4	355.1	285.6	312.7	121.8	47.7
熊本県	産山村	産山村山鹿 *	5強	5.4	362.6	241.3	362.2	91.0	50.1
熊本県	玉東町	玉東町木葉 *	5強	5.4	288.5	236.0	237.1	176.6	21.8
大分県	九重町	九重町後野上 *	5強	5.4	348.6	285.0	316.9	106.2	65.8
佐賀県	上峰町	上峰町坊所 *	5強	5.3	202.2	167.2	201.8	46.9	69.8
熊本県	高森町	熊本高森町高森 *	5強	5.3	450.6	279.2	420.3	301.9	34.7
熊本県	南阿蘇村	南阿蘇村吉田 *	5強	5.3	485.9	418.0	412.4	185.7	30.9
熊本県	八代市	八代市千丁町 *	5強	5.3	236.5	207.1	204.3	112.1	27.6
熊本県	八代市	八代市松江城町 *	5強	5.2	209.6	197.4	164.9	130.1	31.5
熊本県	甲佐町	甲佐町豊内 *	5強	5.2	658.5	474.7	550.5	434.0	12.8
熊本県	氷川町	氷川町宮原 *	5強	5.2	249.6	205.2	151.9	231.9	23.6
大分県	竹田市	竹田市直入町 *	5強	5.2	192.4	157.1	149.1	110.7	68.3
福岡県	柳川市	柳川市三橋町 *	5強	5.1	204.0	162.0	193.1	66.7	54.6
福岡県	大川市	大川市酒見 *	5強	5.1	177.3	140.5	167.9	52.6	61.0
佐賀県	佐賀市	佐賀市川副 *	5強	5.1	157.9	134.1	143.6	41.1	63.4
熊本県	小国町	熊本小国町宮原 *	5強	5.1	238.4	163.8	219.7	92.2	49.6
熊本県	八代市	八代市平山新町	5強	5.1	180.8	171.8	175.6	82.5	34.6
熊本県	山鹿市	山鹿市菊鹿町 *	5強	5.1	351.9	261.2	304.7	210.0	30.0
熊本県	山鹿市	山鹿市鹿央町 *	5強	5.1	272.2	219.5	177.8	234.1	25.2
熊本県	菊池市	菊池市七城町 *	5強	5.1	207.4	196.6	204.1	128.5	23.6
熊本県	長洲町	長洲町長洲 *	5強	5.1	172.2	163.3	110.4	53.5	34.6
熊本県	上天草市	上天草市松島町 *	5強	5.1	241.8	199.4	213.5	124.8	40.7
福岡県	久留米市	久留米市津福本町	5強	5.0	169.6	125.6	166.9	65.5	65.6
福岡県	みやま市	みやま市高田町*	5強	5.0	200.8	197.4	186.0	117.3	47.7
佐賀県	佐賀市	佐賀市久保田 *	5強	5.0	149.8	108.3	111.4	32.1	71.8
長崎県	南島原市	南島原市北有馬町 *	5強	5.0	262.4	254.7	204.8	87.6	49.3
熊本県	玉名市	玉名市中尾 *	5強	5.0	234.0	176.8	217.2	68.5	27.9
熊本県	山鹿市	山鹿市鹿本町 *	5強	5.0	237.0	204.3	193.9	211.3	27.1
熊本県	芦北町	芦北町芦北	5強	5.0	147.9	138.6	124.9	41.4	56.9
熊本県	芦北町	芦北町田浦町 *	5強	5.0	165.5	155.2	137.7	73.2	49.6
大分県	別府市	別府市天間	5強	5.0	282.3	261.2	169.1	82.6	88.2
大分県	豊後大野市	豊後大野市清川町 *	5強	5.0	223.5	200.1	141.9	101.2	74.0
大分県	日田市	日田市前津江町 *	5強	5.0	239.1	169.8	229.8	117.1	52.3
大分県	竹田市	竹田市荻町 *	5強	5.0	232.9	195.3	180.0	89.2	53.8
宮崎県	椎葉村	椎葉村下福良 *	5強	5.0	277.0	256.1	217.2	101.5	49.3
宮崎県	高千穂町	高千穂町三田井	5強	5.0	221.4	203.4	144.1	70.8	51.4
宮崎県	美郷町	宮崎美郷町田代 *	5強	5.0	354.9	227.2	284.3	49.3	71.5

				最大加速度(gal=cm/s/s)				震央	
都道府県	市区町村	観測点名	震度	言庾 震度	合成	南北 成分	東西 成分	上下 成分	距離 (km)
福岡県	久留米市	久留米市城島町 *	5弱	4.9	171.1	166.8	137.0	55.5	63.2
福岡県	柳川市	柳川市大和町 *	5弱	4.9	169.5	155.3	135.7	67.6	51.9
福岡県	柳川市	柳川市本町 *	5弱	4.9	177.6	146.1	126.1	69.1	55.9
福岡県	大木町	大木町八町牟田 *	5弱	4.9	168.9	124.7	147.6	63.6	58.6
福岡県	筑前町	筑前町篠隈 *	5弱	4.9	251.3	124.5	247.4	54.2	79.3
佐賀県	佐賀市	佐賀市諸富 *	5弱	4.9	143.7	143.2	78.6	37.2	64.3
佐賀県	白石町	白石町有明*	5弱	4.9	119.9	112.9	87.5	32.5	73.6
佐賀県	みやき町	みやき町北茂安 *	5弱	4.9	126.4	122.2	86.0	50.1	69.2
長崎県	雲仙市	雲仙市小浜町雲仙	5弱	4.9	257.3	228.9	231.9	106.0	46.6
長崎県	南島原市	南島原市深江町 *	5弱	4.9	240.9	231.0	152.0	78.3	38.3
熊本県	阿蘇市	阿蘇市波野 *	5弱	4.9	230.9	191.4	190.2	184.4	47.9
熊本県	八代市	八代市坂本町 *	5弱	4.9	258.2	235.3	217.9	138.1	37.1
熊本県	玉名市	玉名市岱明町 *	5弱	4.9	205.4	168.8	143.7	138.6	28.6
熊本県	山都町	山都町大平 *	5弱	4.9	298.4	227.7	244.0	128.8	31.4
熊本県	山都町	山都町今 *	5弱	4.9	303.3	151.1	276.3	144.0	38.0
大分県	津久見市	津久見市宮本町 *	5弱	4.9	220.5	197.2	131.7	53.5	108.5
大分県	日田市	日田市上津江町 *	5弱	4.9	201.2	129.7	194.0	95.9	42.6
福岡県	みやま市	みやま市瀬高町 *	5弱	4.8	202.1	165.8	159.5	86.3	51.3
長崎県	南島原市	南島原市加津佐町 *	5弱	4.8	217.4	215.1	119.2	60.8	57.5
熊本県	山鹿市	山鹿市老人福祉センター*	5弱	4.8	205.7	171.4	190.2	165.4	29.8
熊本県	和水町	和水町板楠 *	5弱	4.8	232.3	225.4	108.7	95.0	36.6
熊本県	山江村	山江村山田 *	5弱	4.8	151.0	139.8	119.1	66.6	56.8
大分県	別府市	別府市上野口町*	5弱	4.8	473.4	268.2	471.6	242.7	89.8
大分県	竹田市	竹田市久住町 *	5弱	4.8	154.4	119.9	142.4	77.3	57.8
宮崎県	高千穂町	高千穂町寺迫 *	5弱	4.8	227.3	158.3	186.9	145.6	51.6
福岡県	久留米市	久留米市小森野町 *	5弱	4.7	132.0	121.9	122.5	63.6	67.1
福岡県	久留米市	久留米市北野町 *	5弱	4.7	150.7	141.2	133.1	49.7	67.4
福岡県	筑後市	筑後市山ノ井 *	5弱	47	156.9	137.5	148.3	90.3	561
佐賀県	佐賀市	佐賀市駅前中央	5弱	47	130.8	112.5	120.4	38.8	70.7
佐賀県	佐賀市		5弱	47	128.6	90.0	125.8	44.0	70.7
佐賀厚	みやき町		5弱	47	145.5	134.2	100.7	36.0	67.3
佐賀県	小城市	小城市营划 *	5弱	47	1213	107.1	113.2	31.8	73.0
佐賀県	油埼市	神埼市神埼 *	5弱	47	115.5	110.8	87.6	36.0	71.3
<u>長崎</u> 県	<u>神見市</u>	神母市名良見町*	5弱	47	155.9	152.2	120.7	44.4	73.1
<u>長崎県</u>	雪仙市	雪仙市国見町	5弱	4.7	223.6	175.4	206.5	101.4	44.5
能太厚	芸尾市	芸尾市室内出日*	5弱	4.7	142.4	118.4	127.3	103.3	39.8
能大旦	山鹿市		5弱	4.7	182.2	139.1	181.5	124.1	29.6
能大旦	空城市	<u> </u>	5弱	4.7	128.6	101.4	106.5	68.4	30.2
能大但	<u>〕 须巾</u> 津本太町		5弱	<u> </u>	106.0	07.7	97.9	40.8	65.6
大分旦	佐伯市	佐伯市寿日町 *	5弱	4.7	136.3	134.0	1191	47.1	109.4
<u>ハカホ</u> 大分旦	佐伯市		5弱	<u> </u>	1/6.1	139.1	1127	22.3	114.0
大分但	佐伯市		5弱	<u> </u>	152.0	151.0	72.6	26.0	114.1
<u>ハカホ</u> 大分旦	日田市		5弱	4.7	193.0	103.0	1015	1217	64.8
<u>大力示</u> 垣岡但	法智町		58	4.7	135.0	115.2	11/ 9	30.1	1215
<u>油画</u> 示 垣岡但	<u>歴夏町</u> カ 図 半 市		58	4.0	175.2	175.0	120.2	85.0	61.8
<u>油岡</u> 宗 垣岡圓		<u> 八田木巾二加町 *</u> ハ女市吉田 *	- 5弱 - 5弱	4.0	175.4	1/5.0	172.0	42.8	55.2
<u>油画示</u> 垣田但			5弱	4.0	225.2	210.4	107.0	90.4	44.0
<u>运用</u> 。 运用	広山町		5辺	1.0	150.2	120.4	1175	657	57.0
佐智目	佐賀市	[曲回][[四]][[1]]]] 利氏常 佐智古宙与智士	533	1.0	1010	20.4 20.0	93 F	<u>00.7</u> 97.9	667
<u> </u>		□江東□□末丁貝↑ 白万町垣田★	し羽	4.0	0.00	00.9 00.0	03.J 05.0	27.2	74.2
<u>は良宗</u> た空间	ᆸᇻᆈ		533	4.0	09.0	00.0	00.9 70.1	20.1	74.3
<u> </u>			523 522	4.0	39.0	90.2	/0.1	29.0	/1.0
<u> </u>	<u> 局尿甲</u> 	<u> </u>	- 23月	4.0	328.0	104.3	288.0	130.2	41.0
<u> </u>			0羽	4.0	180.5	1/13	125.4	/1.0	50.3
<u> </u>			- 5羽	4.6	139.0	132.6	106.2	92.1	44./
<u>熊本県</u>			5弱	4.6	25/8	18/5	233.6	123.3	23.8
熊本県	用 肖 町		5 弱	4.6	204.6	196.9	114.1	87.9	39.5

	+054			計測	最大	、加速度(gal=cm∕s	s/s)	震央
都道府県	市区町村	観測点名	震度	一次	合成	南北	東西	上下	距離
				辰反	口成	成分	成分	成分	(km)
大分県	日田市	日田市中津江村栃野 *	5弱	4.6	299.3	263.1	263.8	123.4	45.2
大分県	竹田市	竹田市会々 *	5弱	4.6	193.0	190.0	128.9	82.8	64.2
大分県	玖珠町	玖珠町帆足	5弱	4.6	125.1	104.0	99.4	53.7	68.8
宮崎県	延岡市	延岡市北川町川内名白石 *	5弱	4.6	219.2	186.6	193.6	68.3	86.6
宮崎県	椎葉村	椎葉村総合運動公園 *	5弱	4.6	189.1	165.9	180.5	102.1	49.4
鹿児島県	長島町	長島町伊唐島 *	5弱	4.6	129.4	112.6	123.9	83.8	79.5
愛媛県	八幡浜市	八幡浜市保内町 *	5弱	4.5	83.4	79.1	53.8	15.8	172.8
福岡県	福岡市南区	福岡南区塩原 *	5弱	4.5	145.2	132.3	90.9	25.5	95.0
福岡県	八女市	八女市黒木町今*	5弱	4.5	156.9	108.5	155.6	75.6	51.9
福岡県	八女市	八女市本町 *	5弱	4.5	127.4	112.3	108.6	68.3	53.9
福岡県	小郡市	小郡市小郡 *	5弱	4.5	130.4	95.2	130.1	51.5	73.5
熊本県	八代市	八代市東陽町 *	5弱	4.5	256.5	248.9	198.8	127.1	24.0
熊本県	人吉市	人吉市西間下町	5弱	4.5	112.9	111.7	102.0	50.4	61.2
熊本県	あさぎり町	あさぎり町須恵 *	5弱	4.5	106.2	78.8	86.0	69.3	56.2
熊本県	水俣市	水俣市牧ノ内 *	5弱	4.5	124.7	116.5	116.8	46.2	68.9
熊本県	上天草市	上天草市姫戸町 *	5弱	4.5	145.3	142.7	116.4	63.7	48.4
大分県	大分市	大分市長浜	5弱	4.5	128.9	81.9	120.4	57.0	96.1
大分県	臼杵市	臼杵市臼杵 *	5弱	4.5	116.9	55.6	116.5	22.1	105.7
大分県	佐伯市	佐伯市蒲江蒲江浦	5弱	4.5	139.2	135.3	83.1	31.1	108.6
宮崎県	延岡市	延岡市北方町卯*	5弱	4.5	190.4	135.7	173.3	124.9	74.8
鹿児島県	長島町	長島町獅子島*	5弱	4.5	135.3	124.6	112.3	76.7	73.8

3.4.2 長周期地震動*

平成28年(2016年)熊本地震の一連の地震活 動で最大の長周期地震動階級が3以上となった地 震(①4月14日21時26分熊本県熊本地方の地 震(M6.5),②4月15日00時03分熊本県熊本 地方の地震(M6.4),③4月16日01時25分熊 本県熊本地方の地震(M7.3))について,長周期 地震動階級観測1以上が観測された観測点の一覧 や,主な観測点の地震波形等をまとめたものであ る.第3.4.1 図には,地震波形等を掲載した観測 点を示す.

第3.4.1 図 地震波形,絶対速度応答スペクトル及び絶対加速度応答スペクトルを掲載した観測点の位置 吹き出し内には,観測点名と各地震で観測された長周期地震動階級,震度を示す.下線は,今回,地震波形 等を掲載した地震を表す.なお,長周期地震動階級が「-」となっているものは,長周期地震動階級が1に達 していないことを示し,震度階級が「-」となっているものは震度が発表されなかったことを示す.

^{*} 地震火山部地震津波監視課 強震解析係

2016年4月14日	3 21 時 26 分 熊本県熊本	地方 北緯 32 度 44.5 分 東経 130 度 48.	5分深さ11km M6.5	
都道府県	地域	地点	長周期地震動階級	震度
熊本県	熊本県熊本	宇城市松橋町	3	6 弱
熊本県	熊本県熊本	熊本西区春日	3	6 弱
佐賀県	佐賀県南部	佐賀市駅前中央	2	4
長崎県	長崎県島原半島	雲仙市国見町	2	4
熊本県	熊本県熊本	八代市平山新町	2	5 弱
福岡県	福岡県筑後	久留米市津福本町	1	4
福岡県	福岡県筑後	大牟田市笹林	1	4
佐賀県	佐賀県南部	太良町多良	1	3
長崎県	長崎県北部	平戸市岩の上町	1	3
熊本県	熊本県阿蘇	南阿蘇村中松	1	4
熊本県	熊本県熊本	玉名市築地	1	3
熊本県	熊本県熊本	八代市泉町	1	4
熊本県	熊本県球磨	多良木町多良木	1	3
熊本県	熊本県球磨	人吉市西間下町	1	4
熊本県	熊本県天草・芦北	芦北町芦北	1	4
熊本県	熊本県天草・芦北	上天草市大矢野町	1	5 弱
大分県	大分県中部	大分市長浜	1	3
大分県	大分県西部	玖珠町帆足	1	3
宮崎県	宫崎県北部平野部	新富町上富田	1	3
宮崎県	宮崎県北部山沿い	高千穂町三田井	1	4
宮崎県	宫崎県南部平野部	宮崎市霧島	1	3
宮崎県	宮崎県南部山沿い	小林市真方	1	4
鹿児島県	鹿児島県薩摩	薩摩川内市中郷	1	3
鹿児島県	鹿児島県薩摩	さつま町宮之城屋地	1	3
鹿児島県	鹿児島県薩摩	霧島市隼人町内山田	1	3
鹿児島県	鹿児島県薩摩	阿久根市赤瀬川	1	3
鹿児島県	鹿児島県薩摩	鹿児島市東郡元	1	3

第 3.4.5 表 ① 4 月 14 日 21 時 26 分熊本県熊本地方の地震(M6.5) で長周期地震動階級 1 以上が 観測された地域・地点

第3.4.2 図 ①4月14日21時26分熊本県熊本地方の地震(M6.5) 宇城市松橋町で観測された波形,絶対速度応答スペクトル及び絶対加速度応答スペクトル(加速度波形,速 度波形は21時26分20秒から1分間を示している)

第3.4.2 図~第3.4.11 図の説明

- ①観測点名,地域名称,地震波形の観測時間,観測点における震度,観測点における長周期地震動階級,観測点における周期区分別の長周期地震動階級データの最大値.周期区分は,周期1.6秒~周期1.8秒を1秒台,周期2.0秒~周期2.8秒を2秒台,周期3.0秒~周期3.8秒を3秒台,周期4.0秒~周期4.8秒を4秒台,周期5.0秒~周期5.8秒を5秒台,周期6.0秒~周期6.8秒を6秒台,周期7.0秒~周期7.8秒を7秒台と表示している.長周期地震動階級に関する詳細は,地震・火山月報(防災編)平成27年12月号「付録5.長周期地震動階級関連解説表」を参照.
- ②絶対速度応答スペクトルグラフ.横軸は周期(秒)、縦軸は速度応答値(単位は cm/sec)で、NS(赤)、EW (緑)、UD(青)の3成分及び水平動合成(黒)について表示した.減衰定数5%はビルの設計に一般的に 用いられている値である.

③絶対加速度応答スペクトルグラフ. 横軸は周期(秒),縦軸は加速度応答値(単位は cm/sec/sec)で,NS(赤), EW(緑), UD(青)の3成分及び水平動合成(黒)について表示した. 減衰定数は5%としている.

④加速度波形表示. 成分は、上から南北成分 (NS)、東西成分 (EW)、上下成分 (UD) である3 成分とも同じ縮尺で示す.

⑤速度波形表示.表示は④と同じ.

第3.4.3 図 ①4月14日21時26分熊本県熊本地方の地震(M6.5) 熊本西区春日で観測された波形,絶対速度応答スペクトル及び絶対加速度応答スペクトル(加速度波形,速 度波形は21時26分20秒から1分間を示している)

2016年4月15日	00時03分 熊本県熊本地	方 北緯 32 度 42.0 分 東経 130 度 46.7 约	分 深さ 7km M6.4	
都道府県	地域	地点	長周期地震動階級	震度
熊本県	熊本県熊本	宇城市松橋町	4	6 弱
熊本県	熊本県熊本	八代市平山新町	2	5 弱
熊本県	熊本県熊本	熊本西区春日	2	5 強
福岡県	福岡県筑後	久留米市津福本町	1	3
佐賀県	佐賀県南部	佐賀市駅前中央	1	3
長崎県	長崎県島原半島	雲仙市国見町	1	4
熊本県	熊本県熊本	八代市泉町	1	3
熊本県	熊本県球磨	多良木町多良木	1	3
熊本県	熊本県球磨	人吉市西間下町	1	4
熊本県	熊本県天草・芦北	芦北町芦北	1	4
熊本県	熊本県天草・芦北	上天草市大矢野町	1	4
宮崎県	宫崎県北部平野部	新富町上富田	1	3
宮崎県	宫崎県南部平野部	宮崎市霧島	1	3
宮崎県	宮崎県南部山沿い	小林市真方	1	3
鹿児島県	鹿児島県薩摩	薩摩川內市中郷	1	3
鹿児島県	鹿児島県薩摩	さつま町宮之城屋地	1	3
鹿児島県	鹿児島県薩摩	霧島市隼人町内山田	1	3
鹿児島県	鹿児島県薩摩	阿久根市赤瀬川	1	3
鹿児島県	鹿児島県薩摩	鹿児島市東郡元	1	3

第3.4.6 表 ② 4 月 15 日 00 時 03 分熊本県熊本地方の地震(M6.4) で長周期地震動 階級 1 以上が観測された地域・地点

第3.4.4 図 ②4月15日00時03分熊本県熊本地方の地震(M6.4) 宇城市松橋町で観測された波形,絶対速度応答スペクトル及び絶対加速度応答スペクトル (加速度波形,度波形は00時03分40秒から1分間を示している)

2016年4月1	6日 01時 25分 熊本県熊ス	本地方 北緯 32 度 45.3 分 東経 130 度 4	l5.8分 深さ12km M7.	3
都道府県	地域	地点	長周期地震動階級	震度
熊本県	熊本県阿蘇	南阿蘇村中松	4	6 弱
熊本県	熊本県熊本	宇城市松橋町	4	6 強
熊本県	熊本県熊本	熊本西区春日	4	6 強
福岡県	福岡県筑後	久留米市津福本町	3	5 強
大分県	大分県中部	大分市長浜	3	5 弱
大分県	大分県西部	玖珠町帆足	3	5 弱
千葉県	千葉県北西部	千葉美浜区ひび野	2	_
大阪府	大阪府南部	関西国際空港	2	3
鳥取県	鳥取県西部	境港市東本町	2	4
徳島県	徳島県北部	徳島市大和町	2	3
高知県	高知県東部	安芸市西浜	2	3
高知県	高知県西部	黒潮町入野	2	3
高知県	高知県西部	土佐清水市足摺岬	2	3
山口県	山口県東部	田布施町下田布施	2	3
福岡県	福岡県筑後	大牟田市笹林	2	4
福岡県	福岡県筑後	筑前町下高場	2	4
福岡県	福岡県筑後	八女市黒木町北木屋	2	4
佐賀県	佐賀県南部	太良町多良	2	4
佐賀県	佐賀県南部	佐賀市駅前中央	2	5 弱
長崎県	長崎県北部	平戸市岩の上町	2	4
長崎県	長崎県島原半島	雲仙市国見町	2	5 弱
熊本県	熊本県熊本	八代市平山新町	2	5 強
熊本県	熊本県熊本	玉名市築地	2	4
熊本県	熊本県熊本	八代市泉町	2	4
熊本県	熊本県球磨	多良木町多良木	2	4
熊本県	熊本県球磨	人吉市西間下町	2	5 弱
熊本県	熊本県天草・芦北	芦北町芦北	2	5 強
熊本県	熊本県天草・芦北	上天草市大矢野町	2	6 弱
大分県	大分県北部	国東市鶴川	2	4
大分県	大分県北部	国東市国見町西方寺	2	4
大分県	大分県中部	別府市鶴見	2	6 弱
大分県	大分県中部	臼杵市乙見	2	4
大分県	大分県南部	佐伯市堅田	2	3
大分県	大分県南部	豊後大野市三重町	2	4
大分県	大分県南部	佐伯市蒲江蒲江浦	2	5 弱

第3.4.7 表 ③4月16日01時25分熊本県熊本地方の地震(M7.3)で長周期地震動 階級1以上が観測された地域・地点

第3.4.7表 続き

2016年4月16日	日 01時 25分 熊本県熊本地	地方 北緯 32 度 45.3 分 東経 130 度 45.	8分 深さ12km M7.3	;
都道府県	地域	地点	長周期地震動階級	震度
大分県	大分県南部	佐伯市蒲江猪串浦	2	3
大分県	大分県西部	日田市中津江村合瀬	2	4
大分県	大分県西部	日田市三本松	2	4
宮崎県	宮崎県北部平野部	日向市亀崎	2	3
宮崎県	宮崎県北部平野部	新富町上富田	2	4
宮崎県	宮崎県北部平野部	日向市大王谷運動公園	2	3
宮崎県	宮崎県北部平野部	延岡市北方町未	2	4
宮崎県	宮崎県北部平野部	延岡市天神小路	2	4
宮崎県	宮崎県北部山沿い	高千穂町三田井	2	5 強
宮崎県	宮崎県南部平野部	宮崎市霧島	2	4
宮崎県	宮崎県南部山沿い	小林市真方	2	4
鹿児島県	鹿児島県薩摩	霧島市隼人町内山田	2	3
鹿児島県	鹿児島県薩摩	鹿児島市東郡元	2	4
茨城県	茨城県南部	茨城鹿嶋市鉢形	1	1
群馬県	群馬県南部	前橋市昭和町	1	1
埼玉県	埼玉県北部	久喜市下早見	1	1
埼玉県	埼玉県北部	熊谷市桜町	1	1
埼玉県	埼玉県南部	さいたま浦和区高砂	1	1
埼玉県	埼玉県南部	川越市旭町	1	1
千葉県	千葉県北東部	東金市東新宿	1	1
千葉県	千葉県北東部	一宮町一宮	1	1
千葉県	千葉県北東部	長柄町大津倉	1	
千葉県	千葉県北西部	浦安市日の出	1	
千葉県	千葉県北西部	千葉中央区中央港	1	
千葉県	千葉県南部	木更津市太田	1	1
東京都	東京都23区	東京江東区青海	1	_
東京都	東京都23区	東京新宿区西新宿	1	_
東京都	東京都23区	東京港区海岸	1	_
東京都	東京都23区	東京千代田区大手町	1	_
東京都	東京都23区	東京国際空港	1	1
東京都	東京都23区	東京墨田区横川	1	_
神奈川県	神奈川県東部	川崎中原区小杉陣屋町	1	1
神奈川県	神奈川県東部	横浜鶴見区大黒ふ頭	1	
神奈川県	神奈川県東部	横浜中区山手町	1	_
新潟県	新潟県下越	新潟西蒲区役所	1	1

2016年4月1	6日 01時 25分 熊本県熊	本地方 北緯 32 度 45.3 分 東経 130 度 4	45.8分 深さ12km M7.	3
都道府県	地域	地点	長周期地震動階級	震度
新潟県	新潟県下越	新潟空港	1	_
新潟県	新潟県下越	新潟中央区美咲町	1	_
富山県	富山県東部	富山市石坂	1	1
富山県	富山県西部	小矢部市泉町	1	1
石川県	石川県加賀	津幡町加賀爪	1	1
石川県	石川県加賀	金沢市西念	1	2
福井県	福井県嶺北	福井坂井市三国町中央	1	1
福井県	福井県嶺南	高浜町宮崎	1	1
長野県	長野県中部	諏訪市湖岸通り	1	2
長野県	長野県南部	飯田市高羽町	1	2
静岡県	静岡県西部	掛川市篠場	1	1
愛知県	愛知県西部	常滑市新開町	1	2
愛知県	愛知県西部	愛西市稲葉町	1	2
愛知県	愛知県西部	名古屋千種区日和町	1	2
愛知県	愛知県西部	中部国際空港	1	_
三重県	三重県北部	鈴鹿市西条	1	2
三重県	三重県北部	四日市市日永	1	2
三重県	三重県中部	津市島崎町	1	2
滋賀県	滋賀県南部	近江八幡市桜宮町	1	2
滋賀県	滋賀県南部	大津市南小松	1	2
京都府	京都府北部	福知山市内記	1	1
京都府	京都府北部	京丹後市弥栄町吉沢	1	—
京都府	京都府北部	舞鶴市下福井	1	1
大阪府	大阪府北部	高槻市桃園町	1	2
大阪府	大阪府北部	大阪国際空港	1	2
大阪府	大阪府北部	大阪中央区大手前	1	2
大阪府	大阪府南部	富田林市本町	1	2
大阪府	大阪府南部	岸和田市岸城町	1	2
大阪府	大阪府南部	大阪堺市中区深井清水町	1	2
兵庫県	兵庫県北部	朝来市和田山町枚田	1	1
兵庫県	兵庫県北部	兵庫香美町香住区三川	1	
兵庫県	兵庫県北部	豊岡市桜町	1	3
兵庫県	兵庫県南東部	西宮市宮前町	1	2
兵庫県	兵庫県南東部	加古川市加古川町	1	2
兵庫県	兵庫県南東部	神戸中央区脇浜	1	2

第3.4.7表 続き

2016年4月16	日 01 時 25 分 熊本県熊本	地方 北緯 32 度 45.3 分 東経 130 度	45.8分 深さ12km !	M7.3
都道府県	地域	地点	長周期地震動階級	震度
兵庫県	兵庫県南西部	相生市旭	1	2
兵庫県	兵庫県南西部	完粟市山崎町中広瀬	1	1
兵庫県	兵庫県淡路島	淡路市富島	1	2
兵庫県	兵庫県淡路島	南あわじ市福良	1	2
和歌山県	和歌山県北部	紀の川市粉河	1	2
和歌山県	和歌山県北部	和歌山市男野芝丁	1	2
和歌山県	和歌山県南部	新宮市新宮	1	1
和歌山県	和歌山県南部	白浜町消防本部	1	1
和歌山県	和歌山県南部	古座川町高池	1	1
和歌山県	和歌山県南部	串本町潮岬	1	1
鳥取県	鳥取県東部	智頭町智頭	1	1
鳥取県	鳥取県東部	鳥取市吉方	1	2
鳥取県	鳥取県中部	倉吉市岩倉長峯	1	_
鳥取県	鳥取県西部	米子市博労町	1	2
島根県	島根県東部	出雲市今市町	1	3
島根県	島根県東部	雲南市大東町大東	1	2
島根県	島根県東部	出雲市坂浦町	1	2
島根県	島根県東部	松江市西生馬町	1	2
島根県	島根県東部	松江市西津田	1	2
島根県	島根県西部	益田市匹見町石谷	1	2
島根県	島根県西部	浜田市大辻町	1	2
岡山県	岡山県北部	新見市新見	1	1
岡山県	岡山県北部	美作市尾谷	1	2
岡山県	岡山県北部	津山市林田	1	2
岡山県	岡山県南部	備前市伊部	1	1
岡山県	岡山県南部	倉敷市新田	1	2
岡山県	岡山県南部	赤磐市上市	1	2
岡山県	岡山県南部	浅口市天草公園	1	2
岡山県	岡山県南部	岡山北区足守	1	1
岡山県	岡山県南部	岡山北区桑田町	1	2
広島県	広島県北部	広島三次市十日市中	1	2
広島県	広島県北部	北広島町有田	1	2
広島県	広島県北部	庄原市西城町熊野	1	_
広島県	広島県北部	北広島町都志見	1	2
広島県	広島県南東部	三原市円一町	1	3

第3.4.7 表 続き

2016年4月16	日 01 時 25 分 熊本県熊本	地方 北緯 32 度 45.3 分 東経 130 度 45	.8分 深さ12km M7	. 3
都道府県	地域	地点	長周期地震動階級	震度
広島県	広島県南東部	福山市松永町	1	2
広島県	広島県南東部	広島空港	1	2
広島県	広島県南西部	東広島市黒瀬町	1	3
広島県	広島県南西部	呉市倉橋町鳶ヶ巣	1	2
広島県	広島県南西部	広島中区上八丁堀	1	3
広島県	広島県南西部	呉市宝町	1	3
徳島県	徳島県北部	鳴門市撫養町	1	2
徳島県	徳島県北部	吉野川市鴨島町	1	3
徳島県	徳島県北部	美馬市脇町	1	2
徳島県	徳島県北部	美馬市穴吹ふれスポ公園	1	2
徳島県	徳島県南部	阿南市富岡町	1	2
徳島県	徳島県南部	那賀町横石	1	2
香川県	香川県西部	坂出市王越町	1	
香川県	香川県西部	多度津町家中	1	3
愛媛県	愛媛県東予	新居浜市一宮町	1	2
愛媛県	愛媛県東予	今治市南宝来町二丁目	1	3
愛媛県	愛媛県東予	西条市丹原町鞍瀬	1	2
愛媛県	愛媛県中予	松山市北持田町	1	3
愛媛県	愛媛県南予	八幡浜市広瀬	1	3
愛媛県	愛媛県南予	西予市野村町	1	3
愛媛県	愛媛県南予	大洲市豊茂	1	3
愛媛県	愛媛県南予	愛媛鬼北町成川	1	3
愛媛県	愛媛県南予	宇和島市住吉町	1	4
高知県	高知県東部	室戸市室戸岬町	1	2
高知県	高知県中部	須崎市山手町	1	2
高知県	高知県中部	香美市土佐山田町宝町	1	2
高知県	高知県中部	高知市春野町芳原	1	2
高知県	高知県中部	香美市物部町神池	1	2
高知県	高知県中部	高知市本町	1	3
高知県	高知県西部	四万十町窪川中津川	1	2
高知県	高知県西部	土佐清水市有永	1	2
高知県	高知県西部	宿毛市片島	1	3
山口県	山口県北部	萩市見島宇津	1	3
山口県	山口県北部	萩市土原	1	4
山口県	山口県西部	宇部市野中	1	3

第3.4.7 表 続き

第3.4.7表 続き

2016年4月16日01時25分 熊本県熊本地方 北緯32度45.3分 東経130度45.8分 深さ12km M7.3				
都道府県	地域	地点	長周期地震動階級	震度
山口県	山口県西部	下関市豊浦町川棚	1	3
山口県	山口県西部	下関市竹崎	1	4
山口県	山口県東部	岩国市今津	1	3
山口県	山口県中部	防府市寿	1	3
山口県	山口県中部	下松市瀬戸	1	2
山口県	山口県中部	山口市前町	1	3
福岡県	福岡県福岡	福津市手光	1	3
福岡県	福岡県福岡	糸島市志摩初	1	4
福岡県	福岡県福岡	福岡早良区板屋	1	4
福岡県	福岡県福岡	福岡中央区大濠	1	4
福岡県	福岡県福岡	福岡空港	1	4
福岡県	福岡県北九州	北九州八幡東区桃園	1	4
福岡県	福岡県北九州	苅田町若久	1	3
福岡県	福岡県筑豊	福智町上野	1	3
福岡県	福岡県筑豊	飯塚市川島	1	4
佐賀県	佐賀県北部	唐津市西城内	1	4
佐賀県	佐賀県南部	嬉野市不動山	1	3
長崎県	長崎県北部	佐世保市干尽町	1	3
長崎県	長崎県南西部	諫早市東小路町	1	4
長崎県	長崎県南西部	長崎市黒浜町	1	2
長崎県	長崎県南西部	長崎市南山手	1	3
長崎県	長崎県島原半島	雲仙市小浜町雲仙	1	5 弱
長崎県	長崎県壱岐	壱岐市芦辺町中野	1	3
熊本県	熊本県天草・芦北	天草市本町	1	4
熊本県	熊本県天草・芦北	天草市牛深町	1	4
大分県	大分県北部	中津市上宮永	1	4
宮崎県	宮崎県北部平野部	宮崎都農町川北	1	3
宮崎県	宮崎県南部平野部	日南市北郷町大藤	1	3
宮崎県	宮崎県南部平野部	串間市奈留	1	2
宮崎県	宮崎県南部平野部	日南市油津	1	2
宮崎県	宮崎県南部山沿い	都城市高崎町江平	1	3
宮崎県	宮崎県南部山沿い	都城市菖蒲原	1	4
鹿児島県	鹿児島県薩摩	薩摩川内市中郷	1	4
鹿児島県	鹿児島県薩摩	指宿市山川新生町	1	3
鹿児島県	鹿児島県薩摩	さつま町宮之城屋地	1	4

第3.4.7表 続き

2016年4月16日01時25分 熊本県熊本地方 北緯32度45.3分 東経130度45.8分 深さ12km M7.3				
都道府県	地域	地点	長周期地震動階級	震度
鹿児島県	鹿児島県薩摩	伊佐市大口山野	1	4
鹿児島県	鹿児島県薩摩	阿久根市赤瀬川	1	4
鹿児島県	鹿児島県大隅	志布志市志布志町志布志	1	2

第3.4.5 図 ③4月16日01時25分熊本県熊本地方の地震(M7.3) 宇城市松橋町で観測された波形,絶対速度応答スペクトル及び絶対加速度応答スペクトル (加速度波形,速度波形は01時24分50秒から1分間を示している)

第3.4.6 図 ③4月16日01時25分熊本県熊本地方の地震(M7.3) 熊本西区春日で観測された波形,絶対速度応答スペクトル及び絶対加速度応答スペクトル (加速度波形,速度波形は01時24分50秒から1分間を示している)

第3.4.7 図 ③4月16日01時25分熊本県熊本地方の地震(M7.3) 南阿蘇村中松で観測された波形,絶対速度応答スペクトル及び絶対加速度応答スペクトル (加速度波形,速度波形は01時25分00秒から1分間を示している)

第3.4.8 図 ③4月16日01時25分熊本県熊本地方の地震(M7.3) 大分市長浜で観測された波形,絶対速度応答スペクトル及び絶対加速度応答スペクトル (加速度波形,速度波形は01時25分10秒から3分間を示している)

第3.4.9 図 ③4月16日01時25分熊本県熊本地方の地震(M7.3) 関西国際空港で観測された波形,絶対速度応答スペクトル及び絶対加速度応答スペクトル

第3.4.10 図 ③4月16日01時25分熊本県熊本地方の地震(M7.3) 東京国際空港で観測された波形,絶対速度応答スペクトル及び絶対加速度応答スペクトル

第3.4.11 ③4月16日01時25分熊本県熊本地方の地震(M7.3) 千葉美浜区ひび野で観測された波形,絶対速度応答スペクトル及び絶対加速度応答スペクトル

3.5 地震資料(STS-2 広帯域地震計)*

気象庁の STS-2 型地震計の観測網(第3.5.1 図) により観測された熊本地震(2016年4月16日, M7.3)の3成分(南北,東西,上下)波形記録と, 震央距離順に並べた上下成分の波形記録を,それ ぞれ第3.5.2 図~第3.5.6 図,及び第3.5.7 図に示 す(ただし京都和知,静岡相良及び南大東島池之 沢は波形異常のため掲載していない).なお,大 分中津江, 鹿児島錫山, 対馬上県, 高知物部, 広 島西城, 岐阜黒川は, 振幅が大きいため振り切れ ている.

参考文献

上野寛・畠山信一・明田川保・舟崎淳・浜田信生(2002): 気象庁の震源決定方法の改善-浅部速度構造と重 み関数の改良-, 験震時報, 65, 123-134.

第3.5.1図 STS-2型地震計の観測点配置

★:熊本地震(2016年4月16日,M7.3)の震央,●:波形記録を掲載している観測点,

○:波形異常のため波形記録を掲載していない観測点

^{*} 地震火山部地震予知情報課 小松 陽子

第3.5.2 図 STS-2 型地震計による熊本地震(4月16日, M7.3)発生時刻から1,800秒間の波形記録 図中の点線は JMA2001(上野ほか(2002))から計算した P,S 波の理論走時

第3.5.3 図 STS-2型地震計による熊本地震(4月16日, M7.3)発生時刻から1,800秒間の波形記録 図中の点線はJMA2001(上野ほか(2002))から計算した P, S 波の理論走時

第3.5.4 図 STS-2型地震計による熊本地震(4月16日, M7.3)発生時刻から1,800秒間の波形記録 図中の点線はJMA2001(上野ほか(2002))から計算した P,S波の理論走時

第3.5.5 図 STS-2型地震計による熊本地震(4月16日, M7.3)発生時刻から1,800秒間の波形記録 図中の点線はJMA2001(上野ほか(2002))から計算した P, S 波の理論走時

第3.5.6 図 STS-2 型地震計による熊本地震(4月16日, M7.3)発生時刻から1,800秒間の波形記録 図中の点線は JMA2001(上野ほか(2002))から計算した P, S 波の理論走時

第3.5.7 図 STS-2型地震計による震央距離順に並べた波形記録(上下動) 実線と破線はそれぞれ JMA2001(上野ほか(2002))から計算した P, S 波の理論走時