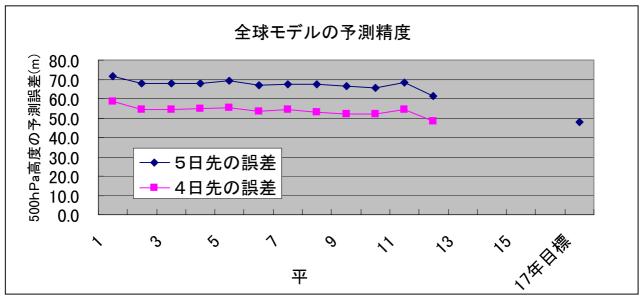

数値予報モデルとその改善

主な数値予報モデルの概要

_ 0/2/10 3 1M = 7 77 77 1/4/2				
モデルの種類	モデルを用いて 発表する予報	予報領域と水平解像度	予報期間	実行回数
メソモデル	防災気象情報	日本周辺 1 0 km	1 8 時間	1日4回
領域モデル	分布予報、時系列予報、 府県天気予報	東アジア 2 0 km	2 日間	1日2回
台風モデル	台風予報	北西太平洋の台風周辺 2 4 km	3 . 5 日間	1日4回
全球モデル	府県天気予報 週間天気予報	地球全体 5 5 km	3 . 5 日間 9 日間	1日1回
1 か月予報モデル	1 か月予報	地球全体 1 1 0 km	1 か月	週1回



数値予報モデルの計算領域

全球モデル(緑)、領域モデル (黄)、メソモデル(赤)の計算 領域を示している。(概略図)

全球モデルの精度向上

地球の大気は、おおむね西から 東に移動しており、領域モデルや メソモデルなどで大気の変化を予 測する場合には、これより広域の 数値予報モデルの予測結果を用い る必要がある。このため、全球モ デルの精度向上は、各種数値予報 モデル改善の基礎となる。

