近地地震より観測される Lg 相の速度*

島 坦**

550.341

On the Velocity of Lg Waves in Japan

H. Sima

(Matsushiro Seismological Observatory)

Using 34 earthquakes in and near Japan recorded at Matsushiro from 1956 to 1960, the group velocities of Lg arrivals have a mean of 3.52 ± 0.09 km/sec. When the data are analyzed according to the geographic location of the epicenter, the velocities are obtained to be 3.57 ± 0.08 km/sec. and 3.44 ± 0.07 km/sec. for the paths crossing northeastern Japan and southwestern Japan respectively. It is more probable that the difference of Lg velocity in the two regions is caused by that of the crustal structure, in particular the variation of shear velocity with depth in the crust, considering the results obtained hitherto by explosion-seismic observations.

§ 1. まえがき

Press, Ewing (1952) が Palisades の記録より北米大 陸を伝搬する径路をもつような地震をしらべた結果、従 来よりずっと短周期でかつ速度のおそい Lg, Rg 相と名 付ける表面波を発見した. それ以来 Båth (1954,1959), Oliver, Press, Ewing (1955), Press (1956), Lehman (1957), Bolt (1957), Herrin, Minton (1960) らによ って、次々に世界の各地域で観測されたこれらの相につ いての研究が行われた. 一方 Lg, Rg 相の伝搬機構につ いての理論的解明はまだ完全になされていないけれども, Gutenberg (1951) が元来近地地震より得られた P 波の 速度と、| 爆破より得られた P 波の速度との食い違いを説明するために low velocity layer の仮定を導入して 以来, それを展開したわけであるが Båth (1954,1958), Gutenberg (1955) が Lg, Rg 相をこの層の中を伝わる channel wave として種々の地殼の模型をつくっている. この考え方に対して Ewing, Press (1956), Oliver, Ewing (1957,1958) は地殻の中の normal mode propagation により長周期の表面波の分散を説明する研究をす ゝめて Lg, Rg 相を, Love 波及び Rayleigh 波の分散

日本においては Utsu (1958) が Mongolia, Baikal 及び China の地震について国内で観測された記録をしらべた結果,九州及び北海道といった特定の地域,すなわち多少途中に海洋域をとおるけれども,構造的に大陸の延長とみられる地域のみに Lg, Rg 相が観測される事実を述べ,これらの相についての速度及び性質について記している.

この論文では松代地震観測所で得られた記録より、近地地震についてしらべた結果、Lg 相と思われるめいりような相が観測されていると考えられるので、これについて経験的な事実について述べてみる。Rg 相については今回は近地地震をしらべているために、若干 Lg 相との分離及び Love 波、Rayleigh 波との分離が多少よくないので省略し、今後検討したうえで述べてみるつもりである。

§ 2. 材 料

用いた材料は1956年より1960年前半までの約5年間

曲線の高次の波として解釈を試みている。 最近 Herrin, Richmond (1960), Herrin (1961) は深さと共に連続的に変っている速度分布を与えた二,三の地殻構造の模型に対して wave guide として伝わるとき P 波,S 波の入射角の議論をしている。

^{*} Received Dec. 6, 1961.

^{**} 地震観測所

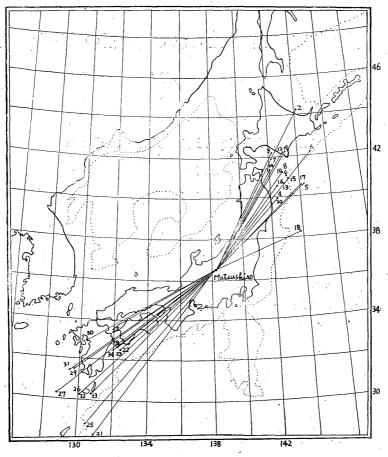


Fig. 1. Lg paths to Matsushiro.

Table 1. Constants of seismograph

Seismograph	Comp.	T_{0}	T_g	h_0	h_g	σ	V_{max}
	N	15. 0	70	1	1.63	0. 15	2,600
Galitzin (G)	E	15.0	73	1	1.44	0.11	1, 990
;	Z	7.5	58	0.69	1.32	0.03	1,800
	N	1.0	78	0. 5	6.1	0. 35	10, 700
Benioff (BL)	Е	1.0	60	0.6	4. 5	0.28	8, 800
	Z,	1.0	.75	0.6	6.8	0.36	9, 900
Short Period Vertical (V)	Z	0.8	2. 8	0.7	1. 45	0. 35	33, 000

T₀: Period of Seismometer

Tg : Period of Galvanometer

h₀: Damping Constant of Seismometer

hg: Damping Constant of Galvanometer

σ : Coupling Factor

11 Vmax : Maximum Magnification

の松代地震観測所における記録の中34個の地震(Table 2)であるが、短周期上下動地震計、Galitzin 地震計およびBenioff 長周期地震計*による記録を主にしてしらべた。これらの地震計の定数についてはTable 1に示されているとおりである。

§ 3. 觀測結果

震央距離 500~1.000 km にわたる地震を対象として 取扱ったが、 その震央の地理的分布は Fig.1 のとおり である. この図からわかるように北海道付近及び三陸沖 に震源をもつ地震と九州付近に震源をもつ地震に分れる ので、大体松代を中心に東北日本と西南日本を伝搬する 波をしらべることになる. Fig.1 に日本列島周辺の深さ

^{*} 短周期上下動地震計, Galitzin 地震計, Benioff 長 周期地震計については Table 2 にそれぞれ (V), (G), (BL) と略記されている

Table 2. List of Earthquakes that caused Lg Phase at Matsushiro, 1956-1960

	Location	Date	Time (G. M. T.)	Latitude	Longitude	Focal Depth	Dist. Lg Vel.	Period	Seismometer
1.	Off E coast of Aomori Pref.	Dec. 31 1955	21 14 17	41.4 N	142.0 E	km 70	km km/sec 625 3. 7:		
2.	Off N coast of Hokkaido	Mar. 5 1956	23 29 43	44.3 N	144.1 E	0-20	985 3.68	3. 1	G
3.	Off S coast of Hokkaido	July 15 1956	18 39 31	42. 2 N	142. 2 E	80 5.4	708 3. 59	9 1.0	V
4.	Off E coast of NE Honshu	July 26 1956	06 13 18	40.1 N	142.5 E	30-40 5.4	538 3. 43	0.8	V
5.	Off E coast of NE Honshu	Aug. 5 1956	09 09 07	40.6 N	142. 2 E	60, 5.4	683 3. 50	1.3	V.
6.	Off SE coast of Hokkaido	Oct. 12 1956	12 22 49	42. 2 N	144.8 E	40 6.0	839 3. 6	5. 1	G
7.	Off S coast of Hokkaido	Jan. 6 1957	05 15 03	41.9 N	142. 1 E	100	675 3. 50	1.2	V
. 8.	Off S coast of Hokkaido	June 12 1957	08 28 35	41. 1 N	142.9 E	40 6.1	640 3.6	4 7.0	G
9.	Off S coast of Hokkaido	June 12 1957	08 55 37	41.1 N	142.7 E	40	630 3. 46	3 1.2	V
10.	Off S coast of Hokkaido	June 15 1957	09 59 18	41. 2 N	142.8 E	40	645 3. 5	1.5	V
11.	Off S coast of Hokkaido	July 25 1957	18 31 40	41.6 N	142.1 E	80	650 3. 5	1 4	G
12.	S Part of Hokkaido	July 26 1957	13 37 19	42¹/ ₄ N	143 E	80	750 3. 63	2 1.5	V
13.	Off E coast of Aomori Pref.	Aug. 13 1957	21 57 11	40.7 N	142.9 E	shallow⋯	608 3.60	0 1.0	V
14.	Off S coast of Hokkaido	Aug. 22 1957	30 38 02	41.5 N	142. 2 E	40 5.3	640 3.60	3.6	G
15.	Near E coast of NE Honshu	Nov. 13 1957	08 44 37	40. 9 ·N	143.2 E	40-60 5.0	645 3. 6	1.0	V.
16.	Off E coast of NE Honshu	Dec. 27 1957	13 03 00	40.6 N	142.5 E	80	575 3.5	7 1.4	BL
17.	Off S coast of Hokkaido	Feb. 26 1958	17 18 55	40.6 N	144.1 E	shallow5. 5	675 3. 4	7. 5. 6	G
18.	Off E coast of NE Honshu	Apr. 8 1958	07 10 36	$38^{1}/4$ N	143 ⁸ / ₄ E	20 5.6	520 3. 43	3 5. 2	G.
19.	Hokkaido	Sept. 8 1959	19 19 38	42. 25 N	143.1 E	60 5.4	760 3.60	5. 2	G
20.	E off coast of Iwate Pref.	Dec. 17 1959	05 04 51	40.0 N	142.4 E	30 5. 2	525 3. 4	3 4.0	G
21.	Off S coast of Kyushu	June 16 1956	06 19 26	$28^{1}/_{4}$ N	131 E	40-60	1145 3. 4	4 3. 2	V
22.	Off E coast of Kyushu	July 1 1956	01 48 26	32. 5 N	132.4 E	0	695 3. 3	4 2. 2	V
23.	Off E coast of Kyushu	Aug. 9 1956	20 34 57	32.6 N	132. 3 E	0-10 5.0	694 3. 3	2. 1	V
24.	Inland Sea	Nov. 2 1956	11 34 22	33. 8 N	132. 3 E	40	620 3. 3	7 2.0	V
25.	Off S coast of Kyushu	Nov. 18 1956	21 22 45	$28^{3}/_{4}$ N	$130^{1}/_{2}$ E	40	1128 3. 3	9 3.3	V
26.	Off S coast of Kyushu	Aug. 5 1957	23 04 06	30. 1 N	130.0 E	20	1045 3. 5	2 3. 4	V
.27.	Off S coast of Kyushu	Apr. 23 1958	05 53 01	$30^{1}/_{4}$ N	128³/ ₄ E	60	1120 3.4	7 5. 0	G
28.	Off E coast of Kyushu	May 14 1958	20 32 03	32.7 N	132. 2 E	shallow…	700 3. 3	5. 0	G
29.	Off SW coast of Kyushu	May 25 1958	17 40 51	$31^{1}/_{2}$ N	129³/ ₄ E	$shallow\cdots$	960 3.4	7 4.8	G
30.	W coast of Kyushu	June 19 1958	13 49 48	32. 9 N	130.4 E	0-10	820 3.5	2 2.8	BL
31.	Off W coast of Kyushu	June 20 1958	19 17 12	31, 4 N	129.5 E	20	985 3. 5	1 2.8	BL
32.	Off S coast of Kyushu	June 25 1958	01 49 07	30. 2 N	130.1 E	100	1030 3. 58	3.6	BL
- 33.	Off S coast of Kyushu	July 8 1960	12 51 25	$30^{1}/_{4}$ N	130³/ ₄ E	60 6.1	980 3. 4	9 4.0	G
34.	Near E coast of Kyushu	Sept. 26 1960	11 36 25	$32^{1}/_{2}$ N	132 E	20 5.6	730 3.6	5.8	G

2,000m の等深線が点線で付記されているが、34 個の地 震は松代までの伝搬経路をみるとおおざっぱに大陸的構 造と考えられるところを通っていると思われる.

Lg 相の記録の一例として Fig. 2, 3, 4 に示されているがそれぞれ 1958 June 19 13h 49m 48s (GMT) 有明海の地震, 1960 July 8 12h 51m 25s (GMT) 九州南岸の地震および 1959 Sept. 8 19h 19m 38s (GMT) 北海道

南部の地震の記録である.

Fig. 1 および Table 2 に示されている地震の, Lg 相 と思われる波についてしらべた結果を総合してみると次のような性質があげられる.

- 1) S 相に比して立上りは明瞭で振幅は大きくほぼ一定周期の振動が $2\sim3$ 回からそれ以上つゞく.
 - ?) 周期は地震計の特性にかなり影響されて、短周期

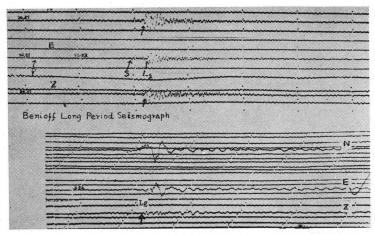


Fig. 2. Earthquake of west coast of Kyushu, June 19, 1958; 13h 49m 48s; 32.9 N, 130.4 E. $\Delta = 820$ km. Instruments: Benioff long-period seismographs; N-S, E-W, U-D (upper record) and Galitzin seismographs; N-S, E-W, U-D.

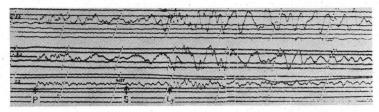


Fig. 3. Earthquake off south coast of Kyushu, July 8, 1960; 12h 51m 25s; $30^{1}/_{4}$ N, $130^{3}/_{4}$ E. $\Delta=980$ km. Instruments: Galitzin seismographs; N-S, E-W, U-D.

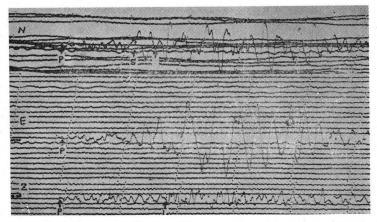


Fig. 4. Earthquake of Hokkaido, Sept. 8, 1959; 19h 19m 38s; 42.3 N, 143.1 E. $\Delta = 760$ km. Instruments: Galitzin seismographs; N-S, E-W, U-D.

上下動地震計では 1~3 sec., Benioff 長周期地震計では 1~4 sec., Galitzin 地震計では 3~7 sec. の波が記録されている。これらを総合すると周期はおりむね 1~7 sec の範囲をもつことになる。

- 3) 同じ地震を3種の地震計で記録した場合,周期について前述のとおりであるが速度は著しく異らない。34個の地震について平均速度を求めると3.52±0.09km/secとなる。ただし誤差は平均誤差で示してある。
- 4) 水平成分の振動の方向は shear type である. 上 下成分の振幅も水平成分の振幅と同程度の大きさを もって同時に現われる

一般に Lg 相に対してこれまでいわれている諸性質を考えると、上記の(1)から(4)までのことがらはそれぞれ符号しているようであるが、たゞ分散の点についてはPress, Ewing のいうような逆分散は認められず、(1)、(2) なきころし Poble のにしょじひおしないとなる。

(2) を考えると Båth のほとんど分散しないという結果 と一致している.

Table 2 に記されている Lg 相の速度を求める場合 に必要な震源位置および発震時は地震月報に載せてあるものを用いた。なお Table 2 の最後の列に示してある地震計の名は3 種類の中で最もめいりように記録されたもので,従って同表に示されている Lg 相の周期は,その地震計による記録から読まれたものである。

Table 3. Summary of *Lg* Velocity Determinations*

Area	$ig egin{array}{c} L_g \ ight. Velocity \ ert \end{array}$	Reference			
North America	km/sec. 3. 51 <u>±</u> 0. 07	Press and Ewing(1952)			
Eurasia	3.50 <u>+</u> 0.06	Båth (1957)			
Arctic	3. 48±0. 03	Computed from Oliver, Ewing, and Press (1955)			
California	3. 54 <u>±</u> 0. 02	Press (1956)			
Australia	3. 50 <u>±</u> 0. 06	Bolt (1957)			
Southwest U.S. and Mexico	3. 47 <u>±</u> 0. 01	Herrin and Minton (1960)			
East coast of Me- xico	3. 22 <u>±</u> 0. 03	Herrin and Minton (1960)			
East Asia	3. 51±0. 04	Computed from Utsu (1958)**			
Japan	3.52±0.09	Sima (1961)			

^{*} この表は Herrin, Richmond (1960) の論文にのせてある table に East Asia と Japan における *Lg*相の速度を付記したものである。

これまで数多くの研究者により、世界の各地域における値として知られている Lg 相の速度と、こゝで得られたものと比較してみると Table 3 のとおりである. Herrin, Minton の East coast of Mexico における値を除くと、大体一致した値となっている、特に Utsu の論文より得られたものとよく一致している。もちろん、近地地震を扱っているため震源位置および発震時の誤差が大きくきいてくることは否めない。

今回調査した地震記象を東北日本を伝搬するものと、西南日本を伝搬するものとに分けて比較してみると、一般に後者の方の記録にめいりような Lg 相があらわれていることが多い。また Lg 相の速度についても Table 2の値から予想されるように明らかに差が出てくる。東北日本と西南日本とに分けて平均速度を求めると

東北日本を伝わる Lg 相の速度 3.57 \pm 0.08 km/sec 西南日本を伝わる Lg 相の速度 3.44 \pm 0.07 km/sec* のようになる。 この時の平均誤差は先に34個全部の地震について平均した時の誤差 0.09 km/sec. よりいづれも小さくなり、2つの地域に分けて考えることが出来る・結局東北日本における Lg 相の速度は西南日本における値より約4%大きいことが判った.

§ 4. 考 察

この論文で得られている Lg 相の速度が従来得られて いる速度 3.5 km/sec に近い値であるが、 果して日本に おいて妥当であろうかどうか考えてみたいと思う. 元来 La 相の速度は地殻中の granitic layer の S 波速度に 近い値であることが、多くの研究者により指摘されてい る. 地殻には普通約 1~2 km の 厚さの sedimentary layerの下に、P 波速度約 $6\,\mathrm{km/sec.}$ S 波速度約 3.5km/sec. の granitic layer といわれる層が存在している. 日本では Usami et al. (1958), Matuzawa (1959), Mikumo et al. (1961) が爆破地震動研究グループの得 た記録を整理研究した結果では、東北、関東、中部各地 方のいずれにも P 波速度 6.0~6.2 km/sec. の層は存在 するが、その上部に東北、 関東地方では P 波速度 5.8 km/sec., 中部地方では P 波速度 $5.5\,km/sec$ の層が戴 っかゝっているということがわかっている. この層を granitic layer の upper part と考えると当然 Lg 相の 速度は 3.5 km/sec に近いことになり、こゝで得られた 結果は妥当のように思える. しかも東北関東両地方に得

^{**} Utsu (1958) の論文より筆者が平均値として求めたものである。

^{*・}Utsu (1956) が松代に於ける西南日本の地震についてしらべた結果、この速度の相を認め、Lg 相かも知れないと述べている。

られている P 波速度 $5.8\,\mathrm{km/sec}$ の層が, こゝでしらべている東北日本全体についても存在し,一方中部地方の P 波速度 $5.5\,\mathrm{km/sec}$ の層が西南日本について存在すると考えてみると S 波についても同様に比例して相異が認められるはずで,前述の東北日本で Lg 相の速度が $3.57\,\mathrm{km/sec}$. の値は一応うなづけるのではないかと思われる.これまでにも東北日本と西南日本との間で地殻の構造の相異について議論されているが,当然相違があれば Lg 相にも影響があるであろう.

今後 Lg 相について分散現象がつかみ得たときには、Rayleigh 波或は Love 波の高次の分散曲線をしらべることになるが、この Lg 相の速度の相異については、東北日本と西南日本に分けたときその地殼中の深さに対する S 波の速度分布の相異が問題となって来る。 すなわち

- 1) *Lg* 相の伝搬にあずかる effective な layer の厚 さの相異
- 2) 地殻中の S 波速度の相異

のいづれが実際の地殻構造と関係があるのかということを解決する必要があろう。それにしても、次第に爆破地震により詳細な地殻構造がわかりつゝあるけれども、早く日本各地域の微細な地殻構造が解明されるのが切実な願いである。

謝辞——本稿中の図面製作にあたつてくれた関技官に 深く感謝の意をあらわします。

參 考 文 献

- Båth, M.: The Elastic Wave Lg and Rg along Euroasiatic Path, Arkiv för Geofysik, 2 (1954) 295-342.
- Båth, M.: Channel Waves, J. Geophys. Res., 63 (1958) 583-587.
- Båth, M.: Seismic Channel Waves: New Observations and Discussions, Gerlands Beiträge zer Geophysik, 68 (1959) 360-376.
- Bolt, B. A. Velocity of Seismic *Lg* and *Rg* across Australia, *Nature*, **180** (1957) 495.
- Ewing, M. and Press, F.: surface Waves and Guided Waves, Encyclopedia of Physics, 47, Geophysics, I (1956) 119-139.
- Gutenberg, B.: Crustal Layers of the Continents and Oceans, B. G. S. A., 62 (1951) 427-440.

- Gutenberg, B.: Channel Waves in the Earth's Crust... Geophysics 20 (1955) 283-294.
- Herrin, E. and Mintong, P. D.: The Velocity of Lg in the Southwestern United States and Mexico, B. S. S. A., 50 (1960) 35-44.
- Herrin, E. and Richmond, J.: On the Propagation of the Lg Phase, B. S. S. A., 50 (1960) 197-210
- Herrin, E.: On \overline{P} and Lg, J. Geophys. Res., **66**(1961) 334-335.
- Lehmen, I.: On Lg as Read in North American Records, Annali di Geofisica, 10 (1957) 1-21.
- Matuzawa, T.: On the Crustal Structure in North East Japan by Explosion Seismic Observation, Bull. Earthq. Res. Inst., 37 (1959) 123-154
- Mikumo, T., Otsuka, M., Utsu T., Terashima, T. and Okada, A.: Crustal Structure in Central Japan as Derived from the Miboro Explosion Seismic Observations, Part 2, On the Crustal Structure, Bull. Earthq. Res. Inst., 39 (1961) 327-349.
- Oliver, J., Ewing, M. and Press F.: Crustal Structure of the Arctic Regions from the *Lg* Phase, *B. G. S. A.*, **66** (1955) 1063-1074.
- Oliver, J. and Ewing, M.: Higher Modes of Continental Rayleigh Weves, B. S. S. A., 47 (1957) 187-204.
- Oliver, J. and Ewing, M.: Normal Modes of Continental Surface Waves, B. S. S. A., 48 (1958) 33-46.
- Press, F. and Ewing, M.: Two Slow Sutface Waves across North America, B. S. S. A., 42 (1952) 219-228.
- Press, F.: Velocity of Lg Waves in California, Trans. Amer. Geophys, Union, 37 (1956) 615-618.
- Usami, T., Mikumo, T., Shima, E., Tamaki, I., Asano, S., Asada, T. and Matsuzawa, T.: Crustal Structure in Northern Kanto District by Explosion Seismic Observations, Part 2, Models of Crustal Structure, Bull. Earthq. Res, Inst, 36 (1958) 349-357.
- Utsu, T.: On Some Remarkable Phases on Seismograms of Near Earthquakes (Part 2) (in Japanese), Quarterly Journal of Seismology, 21 (1956) 107-111.
- Utsu, T.: On the Lg Phase of Seismic Wave Observed in Japan (1) (in Japanese), Quarterly Journal of Seismology, 23 (1958) 61-76.