地震計用ドラムの非等速回転の解析*

鎌 本 博 夫**

550. 341 : *534. 647*

Analysis of Irregular Rotation of Seismograph Recording Drum

H. Kamamoto

(Weather Instrument Plant)

To read the arrival time of the initial motion of an earthquake from the record loaded on the drum of the seismograph, we calculate it from the most adjacent minute mark (s) by inter- or extrapolation.

However, if we investigate the rotation of the drum in detail, the rotation is seen to be not uniform. Considering the cause of this ununiformity, the author made it clear in the previous report¹⁾, that the irregularity of governing equipment is not the direct cause. Hereupon the author discusses, as an another cause, the effect of the eccentricity of gears in this paper.

The author calculates the deviation $\Delta \beta_2$ from the normal rotating angle β_2 (see Fig. 3), when the eccentricity exists in the involute gear, and gets next equation.

$$\begin{split} \Delta\beta_2 &= \left(\frac{z_1}{z_2} + 1\right) \quad \alpha - \alpha_h) \quad \left(\frac{A}{A_0 \cos^2 \alpha_h} - 1\right) + \frac{r_1(1 - \cos \beta_1) - r_2(1 - \cos \beta_2)}{A_0} \right\}. \quad \cdots \cdots (10) \\ \alpha &= \cos^{-1} \left(\frac{A_0}{A} \cos \alpha_h\right), \\ A &= A_0 - \left(r_1 \sin \beta_1 + r_2 \sin \beta_2\right), \\ A_0 &= \frac{z_1 + z_2}{2} m. \end{split}$$

where z_1 , z_2 are the number of teeth of gears O_1 , and O_2 . m: module.

As an example the author takes Wiechert seismograph recording unit, which has the gear mechanism indicated in Fig. 4, and gets the error of rotating angle of drum as shown in Figs. 5, 6 and 7.

With this results, we can understand that the eccentricity of gear has the serious effect on the precision of the drum rotation, and that we must pay close attention to cutting process of the gears which will be set near the drum.

§ 1. 緒 言

気象庁においては、現在地震記録のためのすすがき用ドラムを起動機により一定回転させる方

^{*} Received June 29, 1958.

^{**} 気象測器製作所

法を数多く用いている。一方、震源地決定のため時間の読取精度を 0.1 秒まで上げることが最近強く要望されてきた。

0.1 秒の精度を出すことが従来の起動機で可能であるか否かが問題であるので、前に円錐振子起動機の回転制御装置について述べたが 1 、円錐振子自身は0.1 秒の精度を期待することは可能のようである。

ところが実際に使用される起動機については、その精度は 0.1 秒に程遠い現状で、この誤差はいったい何から生ずるか、円錐振子のむらでないとすれば、次に考えられるのは歯車のむら、歯車の偏心である。

歯車にはインボリュート歯車, サイクロイド歯車の二種があり, 大きい歯車にはインボリュート, 小さい歯車にはサイクロイドと使い分けられているが, 起動機の場合ドラム回転に大きく影響する 部分, すなわち, ドラムに近い歯車にはインボリュートが多く使われているので, インボリュート 歯車について論じよう.

インボリュート歯車は工作上一歯ずつ切って行くことはなく創成されるので、歯むらはほとんど 生ぜず、工作上考えられる誤差は偏心が主である.

この偏心がドラムの均一回転にどのような影響を与えるかにつき考察を進めよう.

なお、サイクロイド歯車については歯型に近似サイクロイド曲線が使用され、その角度伝達誤差は個々の歯車により異なり、一般の計算式に乗せることはむずかしい。しいて求めようとすれば筆者の先に発表した文献 3)を参照されたい。

おたがいに偏心したふたつの歯車がかみ合っている場合,その解析の手段として,まず,歯車の中心距離のみが変動した場合,次に中心距離が同じで中心線が初めの中心線と傾斜した場合に分け,最後にこの両者を合わせて一般の偏心した場合を論じることとする.

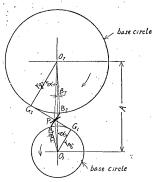


Fig. 1. Gearing of involute gear when center distance changes

§ 2. 歯車の中心距離が変動した時の角度伝達誤差

Fig. 1 におい て中心距離が変動した場合、 O_1 歯車の回転を固定したとき O_2 歯車がどれだけ回転するかを考える.

この場合、インボリュート歯車を考えるので、図において インボリュートの性質上次の関係が得られる.

$$G_1P = \widehat{G_1B_1} = r_{g_1}(\alpha + \beta_1), G_1G_2 = A \sin \alpha, \widehat{G_2B_2} = G_2P = G_1G_2 - G_1P = A \sin \alpha - r_{g_1}(\alpha + \beta_1),$$

$$\beta_2 = \frac{\widehat{G_2B_2}}{r_{g_2}} - \alpha = \frac{A}{r_{g_2}} \sin \alpha - \frac{r_{g_1}}{r_{g_2}} (\alpha + \beta_1) - \alpha$$

$$\ddagger \tau, \quad A = \frac{r_{g_1} + r_{g_2}}{\cos \alpha}$$

ここに r_g はそれぞれの歯車の基円半径,A は中心距離, α は圧力角をあらわす・いま,歯車の工具圧力角*を α_h とすると理論上

$$r_{g_1} = \frac{z_1}{2} m \cos \alpha_h$$
, $r_{g_2} = \frac{z_2}{2} m \cos \alpha_h$

となる. ただし m はモジュール、 z_1 、 z_2 はそれぞれの歯車の歯数を示す. したがって

$$A = \frac{(z_1 + z_2) m \cos \alpha_h}{2 \cos \alpha}, \quad \dots \tag{1}$$

$$\beta_{2} = \frac{\frac{(z_{1}+z_{2}) m \cos \alpha_{h}}{2 \cos \alpha} - \frac{z_{1}}{z_{2}} (\alpha + \beta_{1}) - \alpha = \left(\frac{z_{1}}{z_{2}} + 1\right) \left(\tan \alpha - \alpha\right) - \frac{z_{1}}{z_{2}} \beta_{1} \cdots (2)$$

が得られる.

 $\alpha = \alpha_h$ のときの中心距離を標準にとり A_o とすると, (1) 式がら

$$A_0 = \frac{z_1 + z_2}{2} m$$

を得,(1)式に代入して変形すれば

$$\alpha = \cos^{-1}\left(\frac{A_0}{A}\cos\alpha_h\right) \quad \cdots \qquad (3)$$

を得る.

また、 $\alpha=\alpha_h$ のときの β_2 を β_{20} とすれば (2) 式から

$$\beta_{20} = \left(\frac{z_1}{z_2} + 1\right) \left(\tan \alpha_h - \alpha_h\right) - \frac{z_1}{z_2} \beta_1.$$

そこで、Fig.~1 において O_1 歯車が固定されたとき中心距離が A および A_0 の場合の O_2 歯車の角度 β_2 がそれぞれ求まったから、両者の差を $\Delta\beta_2$ で表わせば

$$7272$$
, $\alpha = \cos^{-1}\left(\frac{A_0}{A}\cos\alpha_h\right)$

が得られる。この式は歯車の中心距離が標準の中心距離(この場合圧力角 $\alpha=\alpha_n$ となる)から変動した場合の O_2 歯車の回転角度誤差を示す。

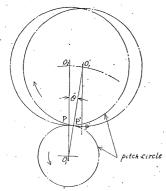


Fig. 2. Gearing when the center-line inclines (center distance unchanged)

中心距離が不変で両歯車の中心線が傾いた場合

Fig. 2 に示すごとく, O₂ 歯車が O₁ 歯車を固定して、その まわりを θ だけ回転し、中心が O_2 になったと考える. 各歯車 の刻円の交点は P より P'' に移る. その間に O_2 歯車は $\frac{z_1}{z_2}\theta$ だけまわったことになる(ここに z_1 , z_2 はそれぞれ O_1 , O_2 歯 車の歯数を示す).

ところで P'' の位置は O_2 歯車の最初に考えた位置 P に相 当する O_2' 歯車の P' より $\angle P'O_2'O_1 = \theta$ だけ進んだことに なる. したがって、両歯車の中心線が初めの中心線より θ だけ

傾くと,被駆動率は

だけ余分に進んだことになる.

§ 4. 駆動,被駆動両歯車に偏心がある場合

Fig. 3 において、 O_1 、 O_2 歯車の偏心をそれ ぞれ r_1 , r_2 とする. 初め歯車の実際の中心位 置が X_1 , X_2 であったのが, Y_1 , Y_2 に移った とする.

中心距離が A_0 から A に変ったとすれば、 (4) 式から

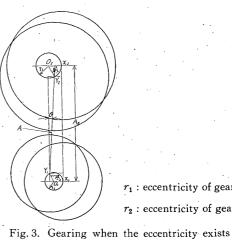
$$\Delta \beta_{2A} = \left(\frac{z_1}{z_2} + 1\right) \left\{ (\tan \alpha - \tan \alpha_h) - (\alpha - \alpha_h) \right\}$$
$$= \left(\frac{z_1}{z_2}\right) \left\{ \frac{\sin (\alpha - \alpha_h)}{\frac{A_0}{A} \cos^2 \alpha_h} - (\alpha - \alpha_h) \right\}, \dots (6)$$

7272, $\alpha = \cos^{-1}\left(\frac{A_0}{A}\cos \alpha_h\right)$

を得、中心線の傾きより(5)式から

$$\Delta \beta_{2\theta} = \theta \left(\frac{z_1}{z_2} + 1 \right) \tag{7}$$

を得る.



 r_1 : eccentricity of gear O_1 r_2 : eccentricity of gear O_2

ところで、A と A_0 および θ の関係は Fig. 3 から次のごとく求まる.

$$A = \left\{ A_0 - (r_1 \sin \beta_1 + r_2 \sin \beta_2) \right\} \frac{1}{\cos \theta} ,$$

$$\tan \theta = \frac{r_1 (1 - \cos \beta_1) - r_2 (1 - \cos \beta_2)}{A_0 - (r_1 \sin \beta_1 + r_2 \sin \beta_2)} .$$

実際には、偏心量は中心距離に比し小さいので θ は非常に小さい角度となり

$$\tan \theta = \theta$$
, $\cos \theta = 1$

とおける. したがって、上式は簡単化されかつ(6)式において

 $\alpha-\alpha_h$ の値は非常に小さい角度となり

$$\sin(\alpha - \alpha_h) = \alpha - \alpha_h$$

とおけ、したがって

$$\Delta \beta_{2A} = \left(\frac{z_1}{z_2} + 1\right) (\alpha - \alpha_h) \left(\frac{A}{A_0 \cos^2 \alpha} - 1\right), \qquad (8)$$

$$\uparrow z \uparrow z \downarrow , \quad A = A_0 - (r_1 \sin \beta_1 + r_2 \sin \beta_2),$$

$$\alpha = \cos^{-1} \left(\frac{A_0}{A} \cos \alpha_h\right)$$

であらわされる.また, $A_0\!\!>\!\!r_1\sineta_1\!\!+\!\!r_2\sineta_2$ であるから,heta の計算では A_0 に対し $r_1\sineta_1$ $+r_2\sineta_2$ は無視して差つかえないから

$$\theta = \frac{r_1(1 - \cos\beta_1) - r_2(1 - \cos\beta_2)}{A_0}$$

と書け

$$\Delta \beta_{2\theta} = \left(\frac{z_1}{z_2} + 1\right) \cdot \frac{r_1(1 - \cos \beta_1) - r_2(1 - \cos \beta_2)}{A_0} \dots (9)$$

を得る. O₂ 歯車の回転角度誤差は (8), (9) 両式の和で求められる. すなわち,

$$\Delta \beta_2 = \Delta \beta_{2A} + \Delta \beta_{2\theta}$$

$$= \left(\frac{z_{1}}{z_{2}}+1\right) \left\{ (\alpha - \alpha_{h}) \left(\frac{A}{A_{0} \cos^{2} \alpha_{h}}-1\right) + \frac{r_{1}(1-\cos \beta_{1})-r_{2}(1-\cos \beta_{2})}{A_{0}} \right\}, \quad \cdots (10)$$

$$\text{for the U,} \quad \alpha = \cos^{-1} \left(\frac{A_{0}}{A} \cos \alpha_{h}\right),$$

$$A = A_{0} - (r_{1} \sin \beta_{1} + r_{2} \sin \beta_{2}),$$

$$A_{0} = \frac{z_{1} + z_{2}}{2} m.$$

実際に数値を入れて計算してみると Δeta_{24} の値は $\Delta eta_{2\theta}$ の値に比し小さいので大勢をみる には計算の簡便化のため, $\Delta eta_{2\theta}$ のみを考えてよい (Fig. 5 参照).

 Δeta_{24} を無視しすれば (10) 式は簡単になって

であらわすことができる.

ここにおいて、いま一度 $\Delta \beta_2$ についてその意味を説明しなおせば、

- O_1 歯車の回転角度が eta_1 のとき、 O_2 歯車の回転角度 eta_2 は $eta_2 = rac{z_1}{z_2}eta_1$ となるべきものが Δeta_2 だけ変化したということを示す.
 - (10), (11) 式において、右辺に β_2 が入っているので第1近似として β_2 の値に標準の β_2 を とって $\Delta\beta_2$ を求め、第2近似として $\beta_2+\Delta\beta_2$ を β_2 に代入して計算を進める.

実際には、 Δeta_2 の値は小さいので第1近似で十分である。第1次近似の場合

$$\beta_2 = \frac{z_1}{z_2} \beta_1 \qquad (12)$$

として計算を行えばよい.

§ 5. 計算例

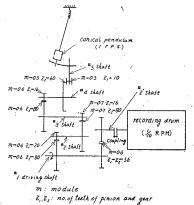


Fig. 4. Gear train of Wiechert seismograph recording unit

ウィーヘルト起動機の歯車輪列は Fig. 4 の e おりである。

Fig. 4 において円錐振子は何らかの調速装置により一定回転しているとする. 図において5, 4, 3, 2番軸とだんだん減速されていくから,振子に近い部分の歯車中心の偏心による角度伝達誤差も減速され小さい値となり,結局ドラム回転むらに大きく影響するのは, 2′番と1番軸のかみ合わせ歯車および1番と2番軸のかみ合せ歯車の偏心である.

2', 1番歯車は同一回転速度であるから、この歯車の偏心のための誤差は、一回転 (10分) について1 サイクルのゆるやかな波になってあらわれるから、一分間ごとのタイムティックにより相当精度を上げて時間の読み取りは可能である。

もっとも影響を及ぼしそうなのは 1,2番軸歯車のかみ合わせである。そこで 1,2番軸のかみ合いについて各軸の歯車の偏心誤差が、ドラムの回転誤差としてどれ位にあらわれるかを計算し、次に 3,2番軸の影響をあたることとする。

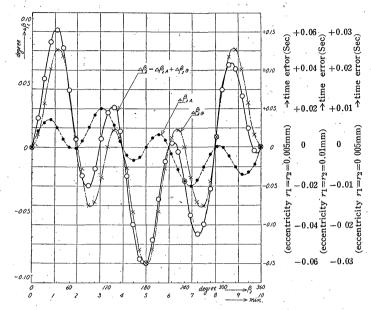


Fig. 5. Error of rotating angle of drum, and error of recording time

(#1~#2 shaft)

1.2番軸のかみ合いにおいて、それぞれの歯車の偏心誤差

 $r_1 = r_2 = 0.025 \text{ mm}$

と仮定する. この値は,特に精密工作を行わない場合普通起り得る誤差である. 工具圧力角 $lpha_n$ を 14.5° とし,標準中心距離は ${
m Fig.~3}$ を参照し, $A_0=rac{z_1+z_2}{2}m$ にえらぶ.

(10) 式から $\Delta\beta_2$ を計算すれば Fig. 5 の実線を得る. ドラム一回転に対し,各回転角度で Fig. 5 に示すごとき角度誤差を生じている. ところで,ドラムは一回転に 10 分を要するので0.1秒の精度を得るためには回転角度誤差は $\frac{360}{10\times600}$ =0.06° の2 分の1 以下でなければならない.

いま、Fig. 5 の横軸の回転角度を分(360° が10分に相当)に、縦軸の回転角度誤差を秒(0.06° が0.1秒に相当)に換算すると図の右側軸のごとき値となる。 $r_1=r_2$ とすると、 $\Delta\beta_{2\theta}$ は(9)式から、偏心量に比例することが明らかであり、 $\Delta\beta_{2d}$ は偏心量に正確には比例しないが、 $\frac{A_0}{A}$ の変動 が極く小さい間はほぼ、比例すると考えられ、その上 $\Delta\beta_{2\theta}$ に比べ小さい値であるから、 $\Delta\beta_2$ は偏心量に比例すると考えてもよかろう。そこで、Fig. 5 の右縦軸のごとく偏心量に比例して誤差時間を記

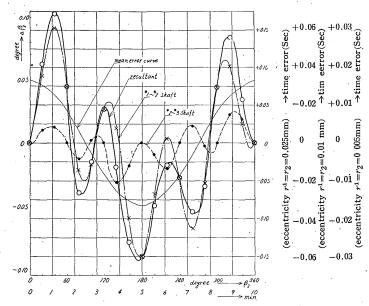


Fig. 6. Error of rotating angle of drum, and error of recording time

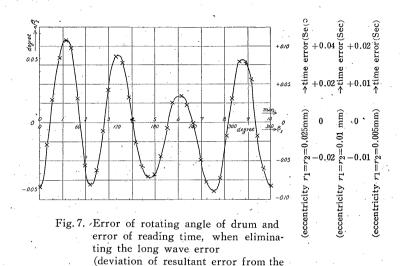
(#1~#2 and #2~3# shaft)

入することができる. この図から Δeta_2 は $\Deltaeta_{2 heta}$ に大きく支配されていることがわかる.

次に 2,3番軸について各歯車に同様の偏心誤差,同じ圧力角を与え,ドラム回転に及ぼす誤差を計算すれば,Fig.6の点線を得る.Fig.5の実線にこの誤差を加えれば,1,2番,2,3番歯車の偏心のために生ずる総合誤差が得られる(Fig.6の実線).

図に明らかなように、大勢は 1、2 番軸の偏心に支配されていることが明らかである。これに 3 番以下の各歯車の偏心誤差が加算されるが、2、3番歯車によって生ずる誤差より小さくなるので、もはや、大きな影響はない。1、2′番軸歯車の偏心は 360° 1 サイクルの波の形で加算される。

Fig. 6 の右軸にも偏心誤差 $r_1=r_2=0.01\,\mathrm{mm}$ および $0.005\,\mathrm{mm}$ に取った場合の読みを合わせ記入したが,図から 0.1 秒を正確に読み取れるために $0.05\,\mathrm{秒以}$ 下の誤差に押えねばならな い ので,偏心誤差は半径で $0.005\,\mathrm{mm}$ 以下となる。また,図から $10\,\mathrm{分}\,1$ サイクルの大きな波を消して誤差を求めれば (Fig. 6 の細線が誤差の平均の 1 サイクルの大きな波を示す,この平均値からの変位を取る) Fig. 7 を得る。Fig. 7 から,ドラム一回転 1 サイクルの大きな波の誤差を消してもなお $0.1\,\mathrm{0}$ 秒を正確に読むためには,すなわち,誤差を $0.05\,\mathrm{0}$ 秒以下に押えるには,偏心誤差半径で $0.01\,\mathrm{mm}$ 以下でなげればならないことがかる・



実際精密工作を行って得られる精度は最上級の機械で偏心誤差直径で 0.005 mm, 半径で 0.0025 mm であるが、普通期待出来るのはよくて半径で0.005~0.01 mmくらいである. したがってウィーヘルト地震計起動機の場合、工作に特に注意すれば 0.1 秒の精度を保持することがわかる.

mean error curve in Fig. 6)

現用のウ式起動機については偏心が半径で0.025 mm以上,回転軸受部のガタ,ドラムの偏心,接ぎ手の偏心,それに円錐振子の回転むらなどが考えられ,これらの誤差が加算されると0.5秒くらいの誤差は十分に生ずる可能性がある.

現在の機構を採用する限り、ドラム軸近くの歯車および付属物の偏心を最低限に押えねば、精度 の向上は期待出来ないということである.

§ 6. 結論.

以上の結果から、起動機ドラムの回転むらは歯車の偏心により大きな影響を受けていることが判明し、同時に工作上の許容誤差限界を明らかにし得た訳である.

これは主として設計,工作上の問題であって,製作者として特に注意すべき点であるが,起動機の精度を向上せしめる重要ポイントであることを疑わない.

また、この歯車の偏心はいかなる起動機、たとえば、水晶時計を使用しても、歯車を使用して減速する以上、必ず生ずるものであるから、正確な起動機を作ろうとすれば歯車の工作、特に偏心について精度を上げねばならぬこととなる.

偏心による歯車の回転むらを計算する場合,簡単にそのけたを求めたい時は (11) 式によればよいし,正確に求めたい時には (10) 式による必要がある.

参考文献

- 1) 鎌本博夫:円錐振子式起動機についての考察(第1報),験震時報, 21, No. 4 (1957), 155~161.
- 2) 鎌本博夫:円錐振子式起動機についての考察 (第2報), 験震時報, 22, No. 4 (1958), 157~164.
- 3) 鎌本博夫: 気象用自記時計の Cycloid 歯車について、研究時報、8, No.6 (1956) 365~375.