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1. Introduction 
 
Since 1980, the Japan Meteorological Agency (JMA) has developed 

various forecast guidance products based on statistics of numerical 
prediction output to assist operational forecasting.  From the disaster 
mitigation point of view, emphasis is placed particularly on the guidance 
for precipitation such as Maximum Precipitation Guidance (MaxP) and 
Area-mean Precipitation Guidance (MeanP), which provide forecasts of 
respective maximum and area-mean precipitation for 1-, 3- and 24- hour 
periods for each of about 300 forecast zones designated for information 
services.  The first version of MaxP (hereinafter, the old MaxP) was 
developed in July 1996 and used until May 2002.  In June 2002, JMA 
developed and put into operation the second version of MaxP (hereinafter, 
the new MaxP) which was improved especially eliminating the strong bias 
inherent in the old MaxP toward less frequency in prediction of heavy 
precipitations.  

In this paper, an outline of the old MaxP is first presented together 
with several problems involved in the guidance.  Secondly, the process of 
developing the new MaxP is described and its performance is compared 
with that of the old MaxP.  Finally, an example of forecasts made by the 
new MaxP for the heavy rainfall associated with a tropical cyclone is 
shown.  

 
2. Outline of the old MaxP 

 
Main features of the old MaxP were as follows: 
 

i) Prediction was made with a 3-hour precipitation amount for each of 
the 0.4°(lat.)×0.5°(lon.) (≒40 km×40 km at 35°N) meshes in the 
forecast domain covering the Japanese islands. 

ii) The Neural Network (NRN) was used to derive MaxP for the meshes 
(a brief description of NRN is given in AppendixⅠ). 

iii) A MaxP for a forecast zone ranging over more than one mesh was 
defined as the maximum of the MaxPs for the relevant meshes. 

iv) Analyses of maximum precipitations to be used for deriving 
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predictand data of NRN were prepared from radar precipitations 
calibrated with rain gauge observations (Radar-AMeDAS 
Precipitation Analyses, hereinafter Radar-AMeDASs; see Appendix 
Ⅱ). 

v) The Regional Spectral Model (RSM) of JMA provided the values of 
several input data predictors for NRN. 
 

During the six years of its operational use, the following problems 
were identified in the old MaxP: 

 
a) Predictions are much less frequent than actual for heavy 

precipitations (e.g. ≧ 30mm/3h), while more frequent for light 
precipitations (e.g. ≦5mm/3h). 

b) Many of the forecast zones were smaller than the mesh size and, 
accordingly, MaxP could not be well representative. 

c) The 24-hour MaxPs tended to be overestimated because they are 
calculated by simply integrating 3-hour MaxPs. 
 

3. A scheme adopted to develop the new MaxP 
 
In order to solve the problems as described above, the following 

scheme was adopted for the operational procedures to produce the new 
MaxP; 

 
I) Max-Mean Precipitation Ratio (MMPR; defined as maximum/mean 

precipitation) is calculated in the first place. 
II) MaxP are calculated by multiplying MeanP with MMPR. 

 
 

MeanP is calculated by the Kalman filter for each of the 0.2°(lat.)×0.25°
(lon.) (≒20 km×20 km at 35°N) mesh.  It should be noted that MeanP 
does not have a bias toward less frequent prediction of heavy precipitations 
(the Kalman filter and the calculation process for MeanP is given in the 
Appendix Ⅲ).  A MeanP for a forecast zone is obtained by averaging 
MeanPs for the relevant meshes in the zone.  MMPR for a forecast zone is 
calculated by NRN with prognostic outputs of the Regional Spectral Model 
(RSM) and a MeanP listed below as input data: 

 
(a) Wind direction at 850 hPa 
(b) Wind speed at 850 hPa 
(c) Showalter Stability Index (SSI) 
(d) Difference between 1000-hPa specific humidity and 400-hPa 

saturated specific humidity 
(e) Thickness of moist layer 
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(f) Index of orographic precipitation 
(g) MeanP 

 
Weights of NRN were adjusted through the learning process with archived 
data for the four years from 1997 to 2000, including mean and maximum 
precipitations derived from the Radar-AMeDASs at a 5 km resolution.  In 
the calculation of MMPR in operation, NRN runs with fixed weights.  On 
this account, RSM outputs, of which characteristics are highly susceptible 
to model modifications, such as vertical velocities in pressure and 
precipitation amounts, were not adopted as input data.  Accordingly, if 
MMPRs are realistic, the problem of less frequency in prediction of heavy 
precipitation will be not occur; 
  → the problem a) will be cleared.   
Further, since the resolution of the precipitation analysis is finer (5km×

5km), MMPR is expected to well represent the locality at any forecast zone 
and so is MaxP as a result; 

→ the problem b) will be solved. 
The problem c) will be also negligible because 1-, 3- and 24-hour MaxPs are 
estimated independently. 

 
4. Characteristics of MMPR and the new MaxP 

 
Characteristics of MMPR and the new MaxP were examined by use of 

observations (Radar-AMeDASs) and the result for a forecast zone in 
Shizuoka Prefecture for the period from April 2001 through March 2002 are 
presented in Figure 1. 

On the top are the figures showing comparisons of MMPRs between 
observations and estimations which were calculated by use of mean 
precipitations (observations) in place of MeanPs.  These figures indicate 
that the estimated MMPRs present the same feature as shown by 
observational MMPRs, thus suggesting that MMPR is realistic.  

The figures at the middle show the maximum possible performance of 
the new MaxP; MaxPs were obtained with mean precipitation 
(observations) in place of MeanPs.  The distributions of the MaxPs relative 
to the observations in the figures show no significant bias in the MaxP 
performance such as less frequencies in heavy precipitation predictions. 

Actual performance of the new MaxP in this case is presented in the 
figures at the bottom; MaxPs were calculated through the operational 
procedures using MeanP.  It should be noted that the almost evenly 
distributed MaxPs relative to observations similarly as above figures 
suggests the reasonableness of the new guidance. 

 
 
 



 4

0

100

200

300

400

0 100 200 300 400
Forecast (mm/24h) 

O
bs

er
va

tio
n 

0

20

40

60

80

100

120

0 20 40 60 80 100 120
Forecast (mm/3h)

O
bs

er
va

tio
n 

0 
20 
40 
60 
80 

0 20 40 60 80 
Forecast (mm/1h) 

O
bs

er
va

tio
n 

0

100

200

300

400

0 100 200 300 400
Forecast (mm/24h) 

O
bs

er
va

tio
n 

0

20

40

60

80

100

120

0 20 40 60 80 100 120
Forecast (mm/3h)

O
bs

er
va

tio
n 

3-hour MaxP

0 
4 
8 

12 
16 
20 

0 10 20 30 40 50
Mean Precipitation

Amount (mm/3h)

M
M

PR
 Observation

Estimation

24-hour MaxP 

0

4

8

12

16

20

0 10 20 30 40 50 60 70 80
Mean Precipitation 
 Amount (mm/24h)

M
M

PR
 Observation

Estimation

0 
20 
40 
60 
80 

0 20 40 60 80 
Forecast (mm/1h) 

O
bs

er
va

tio
n 

1-hour MaxP 

0 
4 
8 

12 
16 
20 

0 10 20 30 40 50 
Mean Precipitation
 Amount (mm/3h)

M
M

PR
 Observation 

Estimation

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Characteristics of MMPRs and the new MaxP for 1-, 3- and, 24-hour 
predictions in the central Shizuoka Prefecture. The data were taken from a period 
independent of the period for NRN learning. 
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5.  Comparison of performance between the new and old MaxPs 
 

Figure 2 presents bias and threat scores of the new and old MaxPs 
for 3-hour precipitations, which were calculated using the data for April 
through September 2001.  As shown in the Figure, the large biases 
demonstrated by the old MaxP were significantly improved by the new 
MaxP.  Differences are particularly noticeable in both bias and threat 
scores for the forecasts of light rains (5mm/3h) and heavy rains (30mm/3h).   

Deterioration of the bias and threat scores of the new MaxP for the 
forecast times of 18 hours and longer is attributed to the afternoon showers 
which occur during the forecast hours in the warm season and are too small 
in scale for MeanP to accurately predict.  The locality of those convective 
precipitations also boosts the values of observational MMPR, which leads 
to degradation of MMPR estimations and thus worsens the scores. 

Figure 3 is the same as Figure 2 but for the new MaxP for 1-hour 
precipitations.  As shown in the Figure, basic features are common 
between the two Figures including reasonable performances for heavy 
precipitations except for the forecast hours of afternoon showers.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2  Bias (left) and threat (right) scores of the old (top) and new (bottom) MaxPs for 
3-hour precipitation; initial time for NWP is 12UTC, and predictions at t+03h (00LST) 
- t+24h(21LST) were verified. 
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 Figure 4 shows the threat and bias scores of the new and old MaxPs 
with respect to precipitation intensities (mm/24hours).  The old MaxP has 
large bias scores of around 2.0 for intensities of less than 100mm/24h, 
while small bias scores of around 0.5 for the high intensity of 200mm/24h 
(heavy precipitation) . 
The new MaxP shows no significant biases even for heavy precipitations 
and has improved threat scores for the almost full range of precipitation 
intensities by roughly 0.1 as compared to the old MaxP  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3  Bias and threat scores of the new MaxP for 1-hour prediction. 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
Fig.4  Bias and threat scores of the old and new MaxPs for 24-hour prediction for the 
period from April to September 2001. 
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                                        Best Track Typhoon Chataan (0206) 
 
Fig.5  Performance of the new MaxP in the central Shizuoka Prefecture when 
Typhoon Chataan(0206) was approaching Japan. The initial time of the prediction 
was 00UTC 9 July 2002. 
 
 
６．An example of performance of the new MaxP   

 
Figure 5 shows predictions of the new MaxP in comparison to 

analyses (Radar-AMeDAS) in the case of a heavy rain in the central 
Shizuoka Prefecture in July 2002.  The rain was produced by the 
interaction of a stationary front with Typhoon Chataan (0206) which was 
approaching Japan.  As indicated in the Figure, 1- and 3-hour MaxPs with 
initial time of 00 UTC July 9 adequately predicted the peak of the rain as 
well as heavy showers of 50mm/1h and 100mm/3h which requires alarming 
in this forecast zones.  Although 24-hour MaxP consistently fell short of 
observations due to the underestimation of MeanP, it did not miss the 
critical hours (t=09-33) when 24-hour precipitation reached the warning 
criteria of 250mm/24h. 
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7. Summary 
 

MaxP, a forecast guidance product for the maximum precipitation, 
was upgraded and became operational in June 2002.  The new version of 
MaxP is calculated from MMPR (maximum/mean precipitation ratio) and 
MeanP (mean precipitation), which are derived by the Neural Network and 
the Kalman filter, respectively.  Biases were notably eliminated in the new 
MaxP, particularly those of “less frequency in prediction of heavy 
precipitations” and “excessive frequency in prediction of light 
precipitations”.  The finer resolution of MMPR allowed MaxP to be well 
representative even in the small forecast zones.  However, upgrade of 
MeanP has been also encouraged due to its considerable impact on the 
performance of MaxP. 
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Appendix Ⅰ , Ⅱ , Ⅲ  are quotations from “OUTLINE OF THE OPERATIONAL 
NUMERICAL WEATHER PREDICTION AT THE JAPAN METEOROLOGICAL 
AGENCY “ March 2002. 
 
AppendixⅠ    
 
(a) Neural Network 

 
The Neural Network (NRN) is one of the Artificial Intelligence 

methods and is an effective technique to analyze non-linear phenomena.  
Its basic element is called a "neuron", and multiple neurons are linked 
together to construct a hierarchical neural network, as shown in Fig.Ⅰ-4.  
The first layer is called the "input layer", the last layer is called the "output 
layer", and the layers between them are called "hidden layers". 

When a signal is put into the input layer, it is propagated to the next 
layer through the interconnections between the neurons.  Simple 
processing is performed on this signal by the neurons of the receiving layer 
prior to its being propagated on to the next layer.  This process is repeated 
until the signal reaches the output layer. 

A schematic diagram of a neuron is shown in Fig.Ⅰ-1.  The input of 
each neuron is a weighted sum of the outputs of other neurons, and the 
output is a function of its input.  This function is called an "activation 
function", and a sigmoid function shown in Fig.Ⅰ- 2 is usually used. 

The weights of NRN are iteratively adjusted through learning 
numerous sets of input/output data.  The most popular way to adjust 
weights is the "back propagation of error" algorithm described as follows: 

(i ) At first, weights are initialized with randomized values. 
(ii) The NRN gets a set of input values and calculates output. 
(iii) The weights are adjusted to make the NRN output approach the 

"supervisor data" (correct values of the output variable). 
(iv) Processes of (ii) and (iii) are iterated until the error measure falls 

below a specified value or a specified maximum number of 
iterations is reached. 
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Fig. Ⅰ-1  A schematic diagram of a neuron. 
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Fig. Ⅰ-2  Examples of sigmoid function. 

 
 
 

(b) An example of the guidance by Neural Network (Categorized weather) 
 
In the forecast guidance system, a Neural Network model is 

constructed at each grid or observation point from the sets of NWP output 
and observed weather elements.  Categorized weather is one of the 
forecast guidance parameters to which NRN is applied.  Fig. Ⅰ-3 shows 
an output example of categorized weather guidance.  In this guidance, a 
NRN model is used to derive sunshine duration, which is used to determine 
the non-precipitating weather categories (fair or cloudy).  The NRN is 
constructed at each AMeDAS station, and output values (3-hourly sunshine 
duration) are interpolated to grid points.  The precipitating weather 
categories (rainy, sleety, snowy) are determined from the KF-based 
precipitation amount guidance.  The constitution of the sunshine duration 
NRN model is shown in Fig. Ⅰ-４, and its characteristics are summarized 
as follows: 

 
(i) It is a 3-layered Back Propagation Network. 
(ii) As an activation function of each neuron, a linear function is used 

in the input and output layer, and a sigmoid function is used in 
the hidden layer. 

(iii) In learning processes, NWP output is used as input data, and 
sunshine duration observed at each AMeDAS point is used as 
supervisor data. 

(iv) The weights of the network are modified at every time when the 
observation corresponding to the forecast is obtained. 
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Fig. Ⅰ-3  An example of output of the categorized weather guidance 
 
 
 

Fig. Ⅰ-4  Neural Network for fair / cloudy determination. 
   RH: Relative humidity,  FRR3: Precipitation over 3 hours 
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Appendix Ⅱ 
 
Analysis of precipitation 
 

Twenty conventional radars and the AMeDAS, which consists of a 
network of approximately 1300 automatic raingauge stations, provide 
observational data for the Radar-AMeDAS precipitation analysis. The data 
are combined to benefit from the advantages of both facilities: the 
advantage of the radar is its high resolution in space and that of AMeDAS 
is its accuracy of precipitation measurement with an average spacing of 
nearly one station per 17km by 17km. 

On each radar site, the power scattered from rain particles is received 
and digitized by an automatic data processing system called “Radar Echo 
Digitizing and disseminating System (REDIS)”. Ground clutter is 
automatically removed through a Moving Target Indicator (MTI) filter by 
REDIS. A Z-R relationship is used for the conversion from the radar 
reflectivity factor to rainfall intensity. The horizontal resolution of the 
intensity data is 2.5km at the lowest altitude, and 5km at the other 
altitudes. One-hour accumulated radar precipitation amounts are 
calculated from the rainfall intensities. 

The one-hour accumulated radar precipitation amounts are usually 
different from those observed with the AMeDAS raingauges. The radar 
precipitation amounts are calibrated with the AMeDAS precipitation data 
into more accurate precipitation. First, calibration factors over the entire 
detection range of each radar are calculated by comparing the radar 
precipitation of the multiple radars and raingauge data. When comparing 
radar precipitation, the difference of radar beam height is taken into 
account. Then the estimated calibration factor is modified at each grid over 
land using raingauge data. For the grid within which no AMeDAS 
raingauges are contained, the calibration factors are interpolated from 
those with AMeDAS raingauges. Composition of each radar’s calibrated 
precipitation into a nationwide chart is made by the maximum method, in 
which the largest radar precipitation among the several different radar 
observations on the same grid is selected. A schematic diagram of this 
procedure is shown in Figure Ⅱ-1. 
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Figure Ⅱ-1  A schematic diagram of the “Radar-AMeDAS precipitation” analysis 
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Appendix Ⅲ 
 
Guidance by Kalman Filter   
 
(a)  Kalman Filter 

 
Kalman Filter (KF) as a statistical post-processing method of NWP 

output was developed in JMA on the basis of  earlier works of 
Persson(1991) and Simonsen(1991).  The notation of KF, which basically 
follows that of Persson(1991), is as follows: 

y  : predictand ( target of forecast ) 
c  : predictors ( 1 × n matrix) 
X  : coefficients ( n × 1 matrix) 
Q  : covariance of X ( n × n matrix) 

       τ  : sequence number of NWP initial times 
 

First, the observation equation, which is a linear model for relating the 
predictand with pre-selected predictors, and the system equation are given 
as: 

 
yτ = cτXτ + vτ (Ⅲ-1)  
Xτ+1 = AτXτ + uτ (Ⅲ-2) 

 
where vτ is the observational random error whose variance is Dτ, and uτ 

is the random error vector of the system whose covariance matrix is Uτ.  
The matrix Aτ describes the evolution of the coefficients in time and is set 
to the unit matrix in this case; 

 
Aτ ≡ I  (Ⅲ-3) 

 
The objective of KF is to obtain the most likely estimation of the 

coefficients Xτ+1/τ, whose subscripts denotes that this is estimated using 
the observation corresponding to the forecast at τ  and used for the 
prediction atτ+1.  In contrast, single subscripts in eqs.(Ⅲ-1, 2) denote the 
“true” values at τ.  Xτ+1/τis obtained from the previous estimate Xτ/τ-1 
and the forecast error: 
 
 Xτ+1/τ= Xτ/τ (Ⅲ-4) 
              = Xτ/τ-1+ δτ( yτ – cτXτ/τ-1)        (Ⅲ-5) 
 
where 
 

δτ= Qτ/τ-1cτ
T(cτ Qτ/τ-1 cτ

T + Dτ) –1 (Ⅲ-6) 
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Q, the covariance of X, is updated as follows: 

 
  Qτ+1/τ= Qτ/τ+ Uτ (Ⅲ-7) 

          = Qτ/τ-1 –δτcτ Qτ/τ-1 +  Uτ (Ⅲ-8) 
 
Eqs. (Ⅲ-4) and (Ⅲ-7) are derived from (Ⅲ-2)-(Ⅲ-3). 

Finally, the forecast value is calculated with the updated coefficients and 
predictors at τ+1; 
 
      yτ+1/τ= cτ+1Xτ+1/τ (Ⅲ-9) 

 
For some forecast parameters, temperature for example, the predictand 

y is the difference between the NWP output and the observation, while for 
the others, precipitation amount for example, y is the observation itself.  
In the case of wind, u and v components are treated simultaneously with 
the predictand y as a complex number. 

In the forecast guidance system with KF, Dτ and Uτ in eqs.(Ⅲ-6) and 
(Ⅲ-8), respectively, are treated as empirical parameters of controlling the 
adaptation speed.  
 
(b)   Frequency bias correction 

 
With KF, the most likely estimation of the predictand which minimizes 

the expected root-mean-square error is obtained. However, the output has a 
tendency of lower frequency of forecasting rare events, such as strong wind 
or heavy rain, than the actual.  To compensate this unfavorable feature, a 
frequency bias correction scheme is applied to the KF output of some 
parameters. 

The basic idea is to multiply the estimation of KF, y, by a correction 
factor F(y) to get the final output yb : 

   
yb   = y･F(y) 

 
To determine F(y), a number of thresholds t i are fixed so that the forecast 
frequency over them should be approximating to that of observation. The 
objective of the scheme, then, is to find f i corresponding to each t i that 
determines the correction factor as follows: 
 

F( f i ) = t i / f i 
   F(y)  for  f i < y < f i +1 is linearly interpolated between F(f i) and F(f i 
+1). 
 
Since KF is an adaptive method,  f i is also updated each time the 
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observation yτ corresponding to the estimates of KF yτ/τ-1 is available.  
The update procedure is as follows: 
 
              f iτ(1 +α)     if  yτ< t i  and  yτ/τ-1> f i      

f iτ+1  =  f iτ(1 -α)      if  yτ> t i  and  yτ/τ-1< f i        
       f iτ                   otherwise                  
 
where α is an empirical parameter to determine the adaptation speed. 
This frequency bias correction is applied to the guidance for wind and 
precipitation amount. 
 
 
(c)  An example of the guidance by Kalman Filter ( 3-hour precipitation 
amount ) 
 

In this guidance, the predictand is the observed 3-hour accumulated 
precipitation amount averaged within a 20km x 20km square, and the 
following nine parameters derived from RSM output are used as predictors. 
 

(i)  NW85 : NW-SE component of wind speed at 850hPa  
(ii)  NE85 : NE-SW component of wind speed at 850hPa 
(iii) SSI : Showalter’s stability index 
(iv)  OGES : Orographic precipitation index 
(v)  PCWV : Precipitable water contents× wind speed at 850hPa × 

ascending speed at 850hPa  
(vi)   QWX : Σ  ( Specific humidity ×  ascending speed × 

relative humidity ) between 1000 and 300hPa 
(vii)  EHQ :Σ  ( Depth of wet layer ×  specific humidity ) 

between 1000 and 300hPa 
(viii) DXQV : Precipitation index on winter synoptic pattern 
(ix) FRR : Precipitation by the model (RSM) 

 
Fig. Ⅲ-1 is an example of precipitation forecasts. The observation (A) 

shows that there was no precipitation in the area M, where the model (C) 
predicted precipitation whose maximum was over 5 mm/3h.  On the other 
hand, the guidance (B) predicted much less precipitation than the model, 
showing better results.  Examination of the coefficient values at point P 
revealed that the coefficient of EHQ was the largest and four times as large 
as that of FRR.  
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        (A)                    (B)                    (C) 
 
Fig.Ⅲ-1  Mean precipitation amount over 3 hours. (mm/3hour) 
(A) Observation.  (B) Forecast by the guidance.  (C) Forecast by the model (RSM). 
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