Annual Report on Activities of the RSMC Tokyo - Typhoon Center 2003

Japan Meteorological Agency

Table of Contents

Page
Introduction 2
Chapter 1 Operations at the RSMC Tokyo - Typhoon Center in 2003
1.1 Analysis 3
1.2 Forecast 3
1.3 Provision of RSMC Products 4
1.4 RSMC Data Serving System 6
Chapter 2 Major Activities of the RSMC Tokyo - Typhoon Center in 2003
2.1 Dissemination of RSMC Products 6
2.2 Publication 7
2.3 Monitoring of Observational Data Availability 7
Chapter 3 Atmospheric and Oceanographic Conditions in the Tropics and Tropical Cyclones in 2003
3.1 Summary of Atmospheric and Oceanographic Conditions in the Tropics 8
3.2 Tropical Cyclones in 2003 $\underline{9}$
Chapter 4 Verification of Forecasts in 2003
4.1 Operational F orecast 11
4.1.1 Center Position 11
4.1.2 Central Pressure and Maximum Wind Speed 13
4.2 TYM and GSM Predictions 15
4.2.1 TYM Prediction 16
4.2.2 GSM Prediction 19
Tropical Cyclone 2003 $\underline{21}$
Appendices
1 RSMC Tropical Cyclone Best Tracks in 2003 49
2 Position and Intensity Forecast Errors for Each Tropical Cyclone 55
3 Tropical Cyclone Tracks in 2003 59
4 M onthly and Annual Frequency of Tropical Cyclones 68
5 Code Forms of RSMC Products 69
6 List of GPV Products and Data on the RSMC Data Serving System 75
7 User's Guide to the Attached CD-ROM 77

Introduction

The RSMC Tokyo - Typhoon Center (hereinafter referred to as "the Center") is the Regional Specialized Meteorological Centre (RSMC) with activity specialization in analysis, tracking and forecasting of western North Pacific tropical cyclones within the framework of the World Weather Watch (WWW) Programme of the World Meteorological Organization (WMO). The Center was established at the Headquarters of the J apan Meteorological Agency (JMA) in J uly 1989, following the designation by the WMO Executive Council at its 40th session held in Geneva in J une 1988.

The Center conducts the following operations on a routine basis:
(1) Preparation of information on the formation, movement and development of tropical cyclones and associated meteorol ogical phenomena;
(2) Preparation of information on synoptic scale atmospheric situations that affect the behavior of tropical cyclones; and
(3) Dissemination of the above information to National Meteorological Centers (NMCs), in particular to the Members of the ESCAP/WMO Typhoon Committee, in appropriate formats for operational processing.

In addition to the routine services mentioned above, the Center distributes a series of reports entitled "Annual Report on Activities of the RSMC Tokyo - Typhoon Center" to serve as operational references for the NMCs concerned. This report aims at summarizing the activities of the Center and reviewing tropical cyclones of the year.

In this 2003 issue, the outline of routine operations at the Center and its operational products are presented in Chapter 1. Chapter 2 reports the major activities of the Center in 2003. Chapter 3 describes atmospheric and oceanic conditions in the tropics and gives the highlights of tropical cyclone (TC) activities in 2003. In Chapter 4, verification statistics of operational forecasts and predictions of the two numerical weather prediction (NWP) models of the Center are presented. The best track data for the TCs in 2003 are shown in table and chart forms in appendices. Six-hourly intensity estimations of TCs with tropical storm intensity or higher by the Center from satellite images (Dvorak CI-number) are newly added to them after TS Morakot (0309). All the texts, tables, charts and appendices are included in the CD-ROM attached to this report.

The CD-ROM contains 3-hourly cloud images of all the tropical cyclones in 2003 of TS intensity or higher in the area of responsibility of the Center, and software to view them. The software has various functions for analyzing satellite imagery such as animation of images, which facilitates efficient post-analysis of tropical cyclones and their environments. A setup program and a users' manual for the software are also included in the CD-ROM. Appendix 7 shows an outline of the CD-ROM and how to use the software.

Chapter 1

Operations at the RSMC Tokyo - Typhoon Center in 2003

The area of responsibility of the Center covers the western North Pacific and the South China Sea $\left(0^{\circ}-60^{\circ} \mathrm{N}, 100^{\circ} \mathrm{E}-180^{\circ}\right)$ including the marginal seas and adjacent land areas (see Figure 1.1). The Center makes analyses and forecasts of tropical cyclones when they are in or expected to move into the area and provides the National Meteorological Services (MSs) concerned with the RSMC products through the GTS, the AFTN and the J MA radio facsimile broadcast (JMH).

Figure 1.1 Area of responsibility of the RSMC Tokyo -Typhoon Center (yellow)

1.1 Analysis

Surface analyses are performed four times a day, at 00, 06, 12 and 18 UTC. The tropical cyclone analysis begins with the determination of the center position of a tropical cyclone. Cloud images from the Geostationary Meteorological Satellite (GMS)* are the principal source for the determination of the center position, especially of tropical cyclones migrating over the data-sparse ocean area. The direction and speed of the movement of a tropical cyclone are determined primarily from the six-hourly displacement vectors of the center position.

The central pressure of a tropical cyclone is determined mainly from the Cl -number, which is derived from satellite imagery using Dvorak's method. The Cl -number also gives the maximum sustained wind speed in the vicinity of the center. Radii of circles for the gale-force wind and the storm-force wind are determined from surface observations and lowlevel cloud motion winds (LCW) derived from cloud motion vectors of satellite images in the vicinity of the tropical cyclone and so on.
*GOES-9 is carrying out the back-up operation of GMS-5 from May 2003.

1.2 Forecast

Predictions of the two NWP models of J MA, Typhoon Model (TYM) and Global Spectral Model (GSM), are the primary bases for the forecast of tropical cyclone tracks. The

Persistence-Climatology method (PC method) that uses statistical techniques on the basis of linear extrapolation and climatological properties of tropical cyclone movements is also adopted for tropical cyclones particularly in lower latitudes. The central pressure and the maximum sustained wind speed are forecast based on the results of Dvorak's method, the PC method and NWP.

The range into which the center of a tropical cyclone is expected to move with 70\% probability at each validation time is shown as the probability circle. The radius of the circle is statistically determined according to the speed of tropical cyclone movement.

1.3 Provision of RSMC Products

The Center prepares and disseminates the following RSMC bulletins and charts via the GTS, theAFTN or the JMH when:

- a tropical cyclone of tropical storm (TS) intensity or higher exists in the area of responsibility of the Center;
- a tropical cyclone is expected to reach TS intensity or higher in the area within 24 hours; or
- a tropical cyclone of TS intensity or higher is expected to move into the area within 24 hours.

The RSMC products are continually issued as long as the tropical cyclone keeps TS intensity or higher within the area of responsibility. Appendix 5 denotes the code forms of the bulletins transmitted through the GTS.

RSMC Tropical Cyclone Advisory (WTPQ20-25 RJTD: via GTS)
The RSMC Tropical Cyclone Advisory reports the following elements in the analysis, 24-hour, 48 -hour and 72 -hour forecasts of a tropical cyclone, respectively:

Analysis	Center position of a tropical cyclone Accuracy of determination of the center position Direction and speed of the movement Central pressure
	Maximum sustained wind speed (10-minute averaged) Radii of over 50- and 30-knot wind areas
$24-, 48-$ and 72-hour	Center position and radius of the probability circle* Dorecasts
Direction and speed of the movement Central pressure Maximum sustained wind speed (10-minute averaged)	

* A circular range into which the tropical cyclone is expected to move with the probability of 70% at each validation time.

In J une 2003, the forecast period of tropical cyclone intensity was extended from 48 hours to 72 hours based on the improvement of its numerical prediction models.

RSMC Guidance for Forecast (FXPQ20-25 RJTD: via GTS)
The RSMC Guidance for Forecast reports the results of predictions of GSM and TYM: GSM is run twice a day with initial analyses at 00 and 12 UTC and TYM four times a day with initial analyses at $00,06,12$ and 18 UTC. The Guidance presents GSM's sixhourly predictions of a tropical cyclone up to 90 hours for 00 and 12 UTC and TYM's six-hourly predictions up to 84 hours for $00,06,12$ and 18 UTC. It includes:
NWP prediction ($\mathrm{T}=06$ to 84 or 90) \quad Center position of a tropical cyclone

* Predictions of these parameters are given as deviations from those at the initial time.

SAREP (TCNA20/21 RJTD: via GTS)

The SAREP reports a tropical cyclone analysis using satellite imagery including intensity information (CI-number) based on Dvorak's method. It is issued a half to one hour after observations at $00,03,06,09,12,15,18$ and 21 UTC and contains:

GMS imagery analysis
Center position of a tropical cyclone
Accuracy of determination of the center position
Mean diameter of the cloud system CI-number**
Apparent change in intensity in the last 24 hours** Direction and speed of the movement
** These parameters are reported at 00, 06, 12, 18 UTC while not at other times.
RSMC Prognostic Reasoning (WTPQ30-35 RJTD: via GTS)
The RSMC Prognostic Reasoning provides a brief reasoning for a tropical cyclone forecast. It is issued at 00 and 06 UTC following the issuance of the RSMC Tropical Cyclone Advisory. In the bulletin, general comments on the forecasting method, synoptic situation of the subtropical ridge, movement and intensity of the tropical cyclone, and some relevant remarks are given in plain language.

RSMC Tropical Cyclone Best Track (AXPQ20 RJTD: via GTS)
The RSMC Tropical Cyclone Best Track gives post-analyzed data of tropical cyclones. It contains the center position, central pressure and maximum sustained wind. The Best Track for a tropical cyclone is finalized usually one and a half months after the termination of issuance of the above RSMC bulletins for the tropical cyclone.

Tropical Cyclone Advisory for SIGMET (FKPQ30-35 RJTD: via AFTN)
The Center, as one of the Tropical CycloneAdvisory Centres under the framework of the International Civil Aviation Organization (ICAO), provides the Tropical Cyclone Advisory for SIGMET for Meteorological Watch Offices (MWOs) concerned to support the preparation of SIGMET information on a tropical cyclone. It includes the following elements in the analysis, 12 -hour, 24 -hour forecasts of a tropical cyclone:

Analysis	Center position of a tropical cyclone Direction and speed of the movement Central pressure Maximum sustained wind speed (ten-minute averaged)
12- and 24-hour forecasts	Center position of the tropical cyclone (forecast)
Maximum sustained wind speed (ten-minute averaged)	

Prognostic Charts of $850-\mathrm{hPa}$ and $200-\mathrm{hPa}$ Streamline
(FUXT852/202, FUXT854/204: via JMH)
Analysis and 24-and 48 -hour prognostic charts of $850-\mathrm{hPa}$ and $200-\mathrm{hPa}$ streamlines are broadcast via the J MA's HF radio facsimile (MH). These prognoses are produced with GSM at 00 and 12 UTC over the area spanning from $20^{\circ} \mathrm{S}$ to $60^{\circ} \mathrm{N}$ in latitude and from $80^{\circ} \mathrm{E}$ to $160^{\circ} \mathrm{W}$ in longitude.

1.4 RSMC Data Serving System

J MA has been operating the RSMC Data Serving System that allows NMCs concerned to retrieve NWP products such as predicted fields in grid-point-value (GPV) form and observational data through the Internet or the Integrated Service Digital Network (ISDN) since 1995. J MA enhanced the service by adding high-density wave model products and by increasing GSM products for Asia region in July 2003. The products and data provided through the system are listed in Appendix 6.

Tropical Cyclone Web Site:

Tropical cyclone advisories are available on a real time basis through the Internet at: http://www.jma.go.jp// MA_HP/en/typh/typh.all.html

Chapter 2

Major Activities of the RSMC Tokyo - Typhoon Center in 2003

2.1 Dissemination of RSMC Products

In 2003, the Center provided operational products for tropical cyclone forecasting to NMCs via the GTS, theAFTN and the J MA radio facsimile broadcast (J MH). M onthly and
annual total numbers of issuance of the products are listed in Table 2.1.

2.2 Publication

The Center published:

1) "Technical Review (No.6)" that contains a paper entitled "The Development of Guidance for Forecast of Maximum Precipitation Amount" in March 2003; and
2) "Annual Report on Activities of the RSMC Tokyo-Typhoon Center in 2003" in November 2003.

2.3 Monitoring of Observational Data Availability

The Center carried out regular monitoring of the information exchange for enhanced observations of tropical cyclones in accordance with the standard procedures stipulated in Section 6.2, Chapter 6 of "The Typhoon Committee Operational Manual (TOM) Meteorological Component." The monitoring for this season was conducted for the following two periods:

1. from OOUTC 8 September to 18UTC 12 September (for TY Maemi (0314))
2. from OOUTC 13 November to 18UTC 17 November (for TY Nepartak (0320))

The results were distributed to all the Typhoon Committee Members in March 2004, and are available on the Distributed Database of J MA at:
ftp://ddb.kishou.go.jp/pub/monitoring/
Table 2.1 Monthly and annual total number of products issued by the RSMC Tokyo - Typhoon Center in 2003

TCNA20	9	0	0	57	48	37	49	73	73	77	75	6	504
TCNA21	16	0	0	60	46	40	60	84	98	81	93	15	593
WTPQ20-25	33	0	0	126	105	81	119	170	195	166	186		1210
WTPQ30-35	9	0	0	31	24	21	30	43	46	43	49	8	304
FXPQ20-25	23	0	0	92	77	61	89	124	143	122	137	21	889
FKPQ30-35	16	0	0	65	53	41	61	84	96	82	95	15	608
AXPQ20	3	1	0	0	1	1	3	3	3	2	4	2	23
AUXT85/20	62	56	62	60	62	60	62	62	60	62	60	62	730
FUXT852/854	62	56	62	60	62	60	62	62	60	62	60	62	730
FUXT202/204	62	56	62	60	62	60	62	62	60	62	60	62	730
Notes:	- via the GTS or the AFTN -												
	SAREP								TCNA20/21 RJTD				
	RSMC Tropical Cyclone Advisory								WTPQ20-25 RJTD				
	RSMC Prognostic Reasoning								WTPQ30-35 RJTD				
	RSMC Guidance for Forecast								FXPQ20-25 RJTD				
	Tropical Cyclone Advisory for SIGMET								FKPQ30-35 RJTD				
	RSMC Tropical Cyclone Best Track								AXPQ20 RJTD				
	- via the JMH Meteorological Radio Facsimile -												
	Analysis of 850 and 200 hPa Streamline								AUXT85/AUXT20				
	Prognosis of 850 hPa Streamline								FUXT852/FUXT854				
	Prognosis of 200 hPa Streamline								FUXT202/FUXT204				

Chapter 3

Atmospheric and Oceanographic Conditions in the Tropics and Tropical Cyclones in 2003

3.1 Summary of Atmospheric and Oceanographic Conditions in the Tropics

Sea surface temperatures (SSTs) were above normal in the western equatorial Pacific almost throughout the year 2003. In the South China Sea, positive SST anomalies were also widely observed throughout the year. The SST anomalies for a monitoring region (NINO.WEST: $0^{\circ}-14^{\circ} \mathrm{N}, 130^{\circ} \mathrm{E}-150^{\circ} \mathrm{E}$) were above normal all the year round.

Areas of active convention areas in the low latitudes, appeared around the Philippines from May to October, and over the waters east of the Philippines in every month of the year. At 850 hPa , there was large-scal e convergence over the northern South China Sea in May, and east of the Philippines from May to November.

In May, anticyclonic circulation at 200 hPa over the Indochina Peninsula was more apparent than normal. There was also large-scale divergence over east of the Philippines or south of J apan from April to December.

Consequently, most of the tropical cyclones were generated around and over the sea east of the Philippines.

Monthly mean streamlines at 850 hPa and tropical cyclone tracks in August are presented in Figure 3.1 and Appendix 3, respectively.

Charts of monthly mean SST anomalies for the western North Pacific, monthly mean streamlines at 850 hPa and 200 hPa , and outgoing longwave radiation (OLR), which indicates active convection in the low latitudes, for the months from January to December are included in the attached files (Streamline_2003 and SST Anomaly_2003).

3.2 Tropical Cyclones in 2003

In 2003, 21 tropical cyclones of tropical storm (TS) intensity or higher were tracked in the western North Pacific and the South China Sea. The total number is below normal compared to the thirty-year average of 26.7 for 1971-2000. Fourteen cyclones out of them (66% of the total) reached typhoon (TY) intensity. The percentage of 66% is larger than normal (54\%; 24-year average for 1977-2000). Four out of the remainder attained severe tropical storm (STS) intensity and the others TS intensity (see Table 3.1).

The tropical cyclone season of this year began in the middle of J anuary with the devel opment of TS Yanyan (0301). Tropical cyclone formation was not active in the first quarter of the year. No tropical cyclone of TS intensity or higher formed for about three months until the generation of TY Kujira (0302) in middle April.

From May to J une, tropical cyclone formation became active and four tropical cyclones of TS intensity or higher formed in total. Three out of the four tropical cyclones hit or approached J apan. Tropical cyclone formation was inactive in July, and its number of two was below normal compared with the thirty-year average of 4.1 for 1971-2000.

Figure 3.2 Genesis points of 21 TCs in 2003 (dots) and number of accumulated TC geneses per $4^{\circ} \times 4^{\circ}$ grid box for 1951-2001 (contours).

In August, tropical cyclone formation became active again and the monthly formation was normal in August. TY Etau (0310) hit J apan and brought heavy damage from floods and landslides.

Tropical cyclone formation was slightly below normal after September. Among them TY Maemi (0314), which is one of the most intense typhoons in the year 2003, made a landfall on the southern coast of the K orean Peninsula.

The other feature of this tropical cyclone season was that mean formation latitude* and longitude* of $15.0^{\circ} \mathrm{N}, 135.1^{\circ} \mathrm{E}$ was southwestern compared with the 30 -year (1971-2000) average of $16.2^{\circ} \mathrm{N}, 136.9^{\circ} \mathrm{E}$. (see the distribution of their formation points in Figure 3.2.)
*Mean formation latitude (longitude) here is defined as arithmetic average of latitudes (longitudes) of formation points of all the tropical cyclones of TS intensity or higher in the year.

RSMC best track data for the tropical cyclones in 2003 and maps of their tracks are shown in Appendix 1 and Appendix 3, respectively. Appendix 4 indicates the monthly and annual frequency of tropical cyclones that attained TS intensity or higher in the western North Pacific and the South China Sea for 1951-2003.

Table 3.1 List of the tropical cyclones which attained TS intensity or higher in 2003

Tropical Cyclone			Duration				Minimum Pressure \& Max. Wind				
					(UTC)		(UTC)	(N)	(E)	(hPa)	(kt)
TS	YANYAN	(0301)	180600	Jan	- 201200	Jan	180600	14.1	146.5	1000	35
TY	KUJIRA	(0302)	110000	Apr	- 250300	Apr	151800	12.7	138.3	930	90
TY	CHAN-HOM	(0303)	201200	May	270600	May	231800	17.4	151.5	940	85
STS	LINFA	(0304)	260000	May	- 310000	May	291800	24.3	129.1	980	55
STS	NANGKA	(0305)	010000	Jun	- 031200	Jun	011800	19.5	118.7	985	50
TY	SOUDELOR	(0306)	130600	Jun	- 191500	Jun	180600	26.4	124.5	955	80
	IMBUDO	(0307)	170600	Jul	250000	Jul	201200	12.5	130.7	935	90
STS	KONI	(0308)	180600	Jul	- 221800	Jul	201800	18.1	112.1	975	60
TS	MORAKOT	(0309)	020600	Aug	- 041200	Aug	021800	20.1	122.9	992	45
TY	ETAU	(0310)	030600	Aug	- 091800	Aug	070600	27.5	128.5	945	85
TS	VAMCO	(0311)	190600	Aug	- 200000	Aug	190600	22.7	124.8	996	35
TY	KROVANH	(0312)	201200	Aug	- 260600	Aug	220000	17.6	124.6	970	65
TY	DUJUAN	(0313)	291800	Aug	- 030000	Sep	010000	20.8	125.3	950	80
TY	MAEMI	(0314)	060600	Sep	- 132100	Sep	100600	24.0	126.6	910	105
TY	CHOI-WAN	(0315)	180000	Sep	- 230000	Sep	210600	31.0	137.0	955	70
TY	KOPPU	(0316)	261800	Sep	- 300600	Sep	290600	28.3	141.9	960	70
TY	KETSANA	(0317)	190000	Oct	- 260600	Oct	211200	17.0	131.2	940	90
	PARMA	(0318)	210000	Oct	- 311200	Oct	240000	29.2	154.1	930	95
STS	MELOR	(0319)	301200	Oct	- 031800	Nov	311800	16.3	122.9	980	50
TY	NEPARTAK	(0320)	121800	Nov	- 190600	Nov	161800	15.5	111.3	970	65
TY	LUPIT	(0321)	211200	Nov	- 021200	Dec	261800	13.9	135.4	915	100

Chapter 4

Verification of Forecasts in 2003

4.1 Operational Forecast

Operational forecasts of the tropical cyclones of TS intensity or higher in 2003 were verified with best track data. Verified elements are $24-$, 48 - and 72 -hour forecasts of the center position, central pressure and maximum sustained wind. Position and intensity errors of operational forecasts for each tropical cyclone in 2003 are indicated in Appendix 2.

4.1.1 Center Position

Figure 4.1 shows annual mean errors of 24 -hour (1982-2003), 48-hour (1988-2003) and 72 -hour (1997-2003) forecasts of the center position. Annual mean position errors in 2003 were 120 km for 24 -hour forecast, 222 km for 48 -hour forecast and 349 km for 72 -hour forecast. Annual mean position errors for operational 24-, 48- and 72-hour track forecasts for 2003 were all the smallest after each forecast started operationally.

Position errors of 24-, 48and 72 -hour track forecasts for each tropical cyclone in this season are summarized in Table 4.1. The forecast scores of TY Maemi, which moved northward over the East China Sea and made a landfall on the Korean Peninsula, and TY Kujira, which moved northward the East China Sea, contributed to the scores to no small extent. On the other hand, the forecasts of TY Chanhom and TY Parma, which moved northeastward far east of J apan, had rather large distance errors.

Figure 4.1 Annual means of position errors of 24-, 48and 72 -hour operational track forecasts.

Position errors were also compared with those by the persistency (PER) method. The ratios of EO (position errors of operational forecasts) to EP (position errors of PER-method forecasts) in percentage are described in Table 4.1. EO/EP smaller (greater) than 100% means that operational forecasts are better (worse) than PER-method forecasts. Annual mean EO/EPs for the 24-, 48- and 72-hour forecasts in 2003 were 49% (56% in 2002), 37% (43\%) and 34% (42\%), respectively. Operational 24 -, 48 - and 72 -hour forecasts were all better than PER-method forecasts in 2003.

Table 4.1 Mean position errors of 24-, 48- and 72-hour operational forecasts for each tropical cyclone in 2003

Tropical Cyclone			24-hour Forecast				48-hour Forecast				72-hour Forecast			
			Position Error \& Number of Forecast\|				Position Error \& Number of Forecast				Position Error \& Number of Forecast			
			Mean (km)	$\begin{aligned} & \text { S.D. } \\ & (\mathrm{km}) \end{aligned}$	Num.	EO/EP (\%)	Mean (km)	$\begin{aligned} & \text { S.D. } \\ & \text { (km) } \end{aligned}$	Num.	EO/EP (\%)	Mean (km)	$\begin{aligned} & \text { S.D. } \\ & \text { (km) } \end{aligned}$	Num	EO/EP (\%)
TS	YANYAN	(0301)	309	88	5	125	349	-	1	-	-	-	0	-
TY	KUJIRA	(0302)	97	51	53	62	142	54	46	48	215	88	45	47
TY	CHAN-HOM	(0303)	152	52	23	77	299	80	19	63	471	148	15	59
STS	LINFA	(0304)	192	122	16	55	350	163	12	56	656	175	8	49
STS	NANGKA	(0305)	112	82	6	22	347	243	2	-	-	-	0	-
TY	SOUDELOR	(0306)	122	78	22	42	232	131	17	38	362	223	13	38
TY	IMBUDO	(0307)	127	66	27	83	265	117	23	86	431	126	19	79
STS	KONI	(0308)	126	74	14	67	230	80	10	65	204	111	6	41
	MORAKOT	(0309)	166	22	5	115	310	-	1	-	-	-	0	-
	ETAU	(0310)	104	65	22	39	208	83	18	28	292	133	14	22
	VAMCO	(0311)	-	-	0	-	-	-	0	-	-	-	0	-
	KROVANH	(0312)	128	43	19	118	221	67	15	65	229	118	11	32
	DUJUAN	(0313)	109	82	13	44	306	179	9	40	665	288	5	35
	MAEMI	(0314)	73	37	27	26	161	84	23	22	288	177	19	26
TY	CHOI-WAN	(0315)	115	81	16	33	327	168	12	33	781	311	8	43
	KOPPU	(0316)	117	46	10	59	128	147	6	79	308	114	2	-
TY	KETSANA	(0317)	93	46	25	44	188	70	21	51	427	204	16	69
	PARMA	(0318)	126	69	38	27	260	149	34	20	463	314	30	22
STS	MELOR	(0319)	157	103	13	85	401	212	9	81	628	251	5	67
TY	NEPARTAK	(0320)	104	50	22	56	155	81	18	32	195	66	14	22
TY	LUPIT	(0321)	119	58	40	52	169	87	36	30	200	99	32	21
Annual Mean (Total)			120	73	416	49	222	131	332	37	349	237	262	34

Figure 4.2 presents the histograms of 24 -, 48 - and 72 -hour forecast position errors. The ratio of 24 -hour forecast errors smaller than 150 km was 71% (62% in 2002), the ratio of 48 -hour forecast errors smaller than 300 km was 79% (74\%) and the ratio of 72 -hour forecast errors smaller than 450 km was 75% (74\%).

Figure 4.2 Histogram of 24-hour forecast position errors in 2003 (those for 48- and 72 hour forecasts are shown in the attached file).

Table 4.2 presents mean hitting ratios and radii of 70% probability circles of operational forecasts for each tropical cyclone in 2003. The annual mean radius of 70% probability circles issued with 24 -hour position forecasts was 189 km , and their hitting ratio was 85% (in 355 out of 416 cases, a tropical cyclone actually located within the issued probability circle). As for 48 -hour forecasts, those are 342 km and 83% (in 275 out of 332 cases), and for 72 -hour forecasts, 502 km and 79% (in 206 out of 262 cases), respectively. These hitting ratios for 2003 were all better than those for 2002.

Table 4.2 Mean hitting ratios (\%) and radii (km) of 70\% probability circles issued for 24-, 48- and 72-hour operational forecasts for each tropical cyclone in 2003

Tropical Cyclone			24-hour Forecast			48-hour Forecast			72-hour Forecast		
			$\begin{array}{r} \text { Ratio } \\ (\%) \\ \hline \end{array}$	Num.	$\begin{array}{r} \hline \text { Radius } \\ (\mathrm{km}) \\ \hline \end{array}$	$\begin{array}{r} \text { Ratio } \\ (\%) \\ \hline \end{array}$	Num.	$\begin{array}{r} \hline \text { Radius } \\ (\mathrm{km}) \end{array}$	$\begin{array}{r} \hline \text { Ratio } \\ (\%) \\ \hline \end{array}$	Num.	Radius (km)
TS	YANYAN	(0301)	0	5	170	100	1	371		0	
TY	KUJIRA	(0302)	96	53	186	100	46	325	98	45	481
TY	CHAN-HOM	(0303)	87	23	191	74	19	356	60	15	540
STS	LINFA	(0304)	50	16	182	42	12	341	0	8	473
STS	NANGKA	(0305)	83	6	195	50	2	361	-	0	-
TY	SOUDELOR	(0306)	82	22	192	76	17	329	69	13	510
TY	IMBUDO	(0307)	85	27	195	70	23	333	74	19	480
STS	KONI	(0308)	71	14	187	90	10	317	100	6	463
TS	MORAKOT	(0309)	100	5	185	100	1	315	-	0	-
TY	ETAU	(0310)	86	22	196	83	18	354	93	14	543
TS	VAMCO	(0311)	-	0			0		-	0	
TY	KROVANH	(0312)	95	19	198	93	15	327	100	11	463
TY	DUJUAN	(0313)	77	13	191	56	9	327	20	5	463
TY	MAEMI	(0314)	100	27	192	96	23	360	84	19	520
TY	CHOI-WAN	(0315)	81	16	188	58	12	380	38	8	586
TY	KOPPU	(0316)	100	10	193	83	6	346	100	2	463
TY	KETSANA	(0317)	92	25	175	90	21	335	75	16	469
TY	PARMA	(0318)	87	38	192	76	34	365	63	30	538
STS	MELOR	(0319)	46	13	180	44	9	329	20	5	508
TY	NEPARTAK	(0320)	95	22	187	100	18	321	100	14	463
TY	LUPIT	(0321)	88	40	192	94	36	353	100	32	513
Annual Mean (Total)			85	416	189	83	332	342	79	262	502

4.1.2 Central Pressure and Maximum Wind Speed

Table 4.3 gives root mean square errors (RMSEs) of 24-, 48- and 72-hour operational central pressure forecasts for each tropical cyclone in 2003. The RMSEs for maximum wind speed forecasts are included in the attached file. Annual mean RMSEs of the central pressure and the maximum wind speed for 24 -hour forecasts were 11.0 hPa (10.8 hPa in 2002) and $4.9 \mathrm{~m} / \mathrm{s}(5.0 \mathrm{~m} / \mathrm{s}$ in 2002), for 48 -hour forecasts 15.3 hPa (15.3 hPa in 2002) and $6.5 \mathrm{~m} / \mathrm{s}$ ($7.0 \mathrm{~m} / \mathrm{s}$ in 2002), and for 72 -hour forecasts 18.5 hPa and $7.6 \mathrm{~m} / \mathrm{s}$.

Figure 4.3 presents the histogram of maximum wind speed errors for $24-$, 48 - and 72 hour forecasts. The ratio of absolute errors smaller than $3.75 \mathrm{~m} / \mathrm{s}$ for 24 -hour forecasts was 57% (59% in 2002), and 69% (69\%) of total 48 -hour forecasts had errors smaller than $6.25 \mathrm{~m} / \mathrm{s}$. The overall performance of intensity forecasts in 2003 was almost same as that in 2002. However, relatively large errors were seen in a few cases including TY Maemi and TY Parma, which made rapid development. (see Appendix 2 for individual cases).

Table 4.3 Mean intensity errors of 24 -, 48 - and 72 -hour operational central pressure forecasts for each tropical cyclone in 2003.

Tropical Cyclone			24-hour Forecast			48-hour Forecast			72-hour Forecast		
			$\begin{aligned} & \text { Error } \\ & \text { (hPa) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{RMSE} \\ & (\mathrm{hPa}) \end{aligned}$	Num.	$\begin{aligned} & \text { Error } \\ & \text { (hPa) } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathrm{RMSE} \\ (\mathrm{hPa}) \end{gathered}$	Num.	$\begin{aligned} & \hline \text { Error } \\ & (\mathrm{hPa}) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { RMSE } \\ & (\mathrm{hPa}) \\ & \hline \end{aligned}$	Num.
TS	YANYAN	(0301)	-4.0	4.0	5	-8.0	8.0	1	-		-
TY	KUJIRA	(0302)	0.6	10.2	53	0.4	15.4	46	-	-	-
TY	CHAN-HOM	(0303)	0.2	11.6	23	0.5	14.3	19			
STS	LINFA	(0304)	-2.6	5.2	16	-3.8	5.2	12			
STS	NANGKA	(0305)	-4.8	10.9	6	-5.5	6.5	2	-	-	-
TY	SOUDELOR	(0306)	-0.3	8.5	22	0.6	10.8	17	3.5	16.0	13
TY	ImBUDO	(0307)	2.6	11.5	27	3.1	14.1	23	6.5	15.5	19
STS	KONI	(0308)	1.9	6.4	14	4.0	10.5	10	6.2	9.0	6
TS	MORAKOT	(0309)	-4.6	5.6	5	-6.0	6.0	1	-		0
TY	ETAU	(0310)	-4.3	9.9	22	-3.9	10.4	18	-0.7	7.8	14
TS	VAMCO	(0311)	-	-	0	-	-	0	-	-	0
TY	KROVANH	(0312)	-3.2	10.2	19	-4.6	11.6	15	3.6	5.2	11
TY	DUJUAN	(0313)	1.5	9.2	13	3.3	18.0	9	-1.0	17.7	5
TY	MAEMI	(0314)	4.9	15.4	27	11.5	24.6	23	17.6	30.1	19
TY	CHOI-WAN	(0315)	4.4	10.9	16	7.1	8.8	12	10.6	12.6	8
TY	KOPPU	(0316)	0.5	7.2	10	4.2	7.9	6	10.0	11.2	2
TY	KETSANA	(0317)	4.0	9.9	25	6.8	14.1	21	1.2	11.5	16
TY	PARMA	(0318)	5.3	18.4	38	13.5	23.8	34	19.8	28.4	30
STS	MELOR	(0319)	-5.4	9.2	13	-14.1	15.1	9	-20.8	21.4	5
TY	NEPARTAK	(0320)	-4.3	6.4	22	-3.4	7.1	18	-0.6	6.4	14
TY	LUPIT	(0321)	2.4	9.4	40	6.0	12.9	36	9.5	15.0	32
Annual Mean (Total)			0.8	11.0	416	2.9	15.3	332	7.6	18.5	194

Error (m/s)

Error (m/s)

Figure 4.3 Histograms of maximum wind speed errors for 24-, 48- and 72-hour forecasts in 2003 (those of central pressure errors for 24-, 48- and 72-hour forecasts are included in the attached file)

4.2 TYM and GSM Predictions

J MA implemented the following changes to the J MA Global Spectral Model (GSM) and Typhoon Model (TYM) in 2003:

- Assimilation of QuickSCAT winds, direct assimilation of ATOVS radiance data, and revision of cumulus parameterization scheme were implemented in GSM in May 2003, and
- A new physical process package such as a prognostic cloud water scheme, a modified cumulus parameterization and a new radiation process was introduced into TYM in July 2003.

TYM and GSM provide primary information for forecasters for the RSMC Tokyo Typhoon Center to make operational track and intensity forecasts. Track predictions by TYM and GSM up to 84 and 90 hours, respectively, were verified with the best track data and predictions by the persistency (PER) method*. 30-hour, 54 -hour and 78 -hour intensity predictions by TYM and GSM were also verified with these data.

Note: The PER-method assumes that a tropical cyclone holds the same movement throughout the forecast period and forecasts are based upon the linear extrapolation of the latest 6-hour track of a tropical cyclone. Prediction errors by the PER-method are used to evaluate the relative performance of model predictions.

4.2.1 TYM Prediction

1) Center Position

Annual mean position errors of TYM predictions from 1996 are indicated in Figure 4.4. Annual mean position errors for 30-hour*, 54-hour* and 78-hour* predictions in 2003 were 175 km (166 km in 2002), 287km (286km) and 415km (424 km), respectively. The overall performance of the TYM track prediction in 2003 was almost same as the previous year. Mean position errors of 18-, 30-, 42-, 54-, 66 - and 78 -hour predictions for each tropical cyclone are also shown in Table 4.4.

TYM Mean Positional Error 1996-2003

Figure 4.4 TYM annual mean position errors from 1996

Note: 30-, 54- and 78-hour predictions by TYM and GSM are the primary information for forecasters in preparing 24-, 48- and 72-hour operational forecasts, respectively.

Table 4.4 M ean position errors (km) of TYM for each tropical cyclone in 2003.
Number of samples is given in parentheses.

Tropical Cyclone			$\mathrm{T}=18$	$\mathrm{T}=30$	$\mathrm{T}=42$	$\mathrm{T}=54$	T=66	T=78
TS	0301	YANYAN	256.1 (14)	326.8 (12)	365.2 (10)	399.9 (8)	470.4 (6)	621.1 (4)
TY	0302	KUIRA	90.2 (58)	119.5 (56)	148.3 (54)	168.0 (52)	209.0 (50)	259.7 (48)
TY	0303	CHAN-HOM	95.1 (26)	176.5 (24)	296.3 (22)	378.5 (20)	441.3 (18)	495.9 (16)
STS	0304	LINFA	135.0 (18)	202.4 (16)	274.3 (14)	343.7 (12)	419.2 (10)	504.9 (8)
STS	0305	NANGKA	103.2 (12)	117.6 (10)	142.7 (8)	184.4 (6)	302.5 (4)	364.3 (2)
TY	0306	SOUDELOR	153.4 (24)	188.4 (22)	244.0 (20)	334.9 (18)	409.6 (16)	554.5 (14)
TY	0307	IMBUDO	105.6 (30)	173.1 (28)	252.3 (26)	338.9 (24)	438.1 (22)	545.6 (20)
STS	0308	KONI	236.1 (24)	282.1 (21)	324.2 (18)	376.4 (16)	427.9 (14)	472.1 (12)
TS	0309	MORAKOT	107.7 (7)	212.3 (5)	356.4 (3)	(-)	- (-)	$(-)$
TY	0310	ETAU	104.4 (24)	140.3 (22)	210.8 (20)	272.3 (18)	311.4 (16)	345.6 (14)
TS	0311	VAMCO	22.7 (1)	(-)	(-)	- (-)	- (-)	(-)
TY	0312	KROVANH	118.7 (21)	161.7 (19)	189.9 (18)	230.1 (16)	264.6 (14)	278.3 (12)
TY	0313	DUJUAN	89.6 (18)	121.9 (16)	192.9 (14)	308.5 (12)	458.6 (10)	579.7 (8)
TY	0314	MAEM	165.1 (34)	244.4 (32)	307.7 (30)	381.1 (28)	461.6 (26)	515.0 (24)
TY	0315	CHOI-WAN	153.7 (25)	264.1 (23)	370.7 (20)	559.3 (18)	792.0 (16)	1008.7 (14)
TY	0316	KOPPU	96.5 (19)	171.9 (17)	242.3 (15)	212.8 (13)	228.1 (11)	149.2 (9)
TY	0317	KETSANA	88.4 (27)	112.5 (25)	148.8 (23)	206.5 (21)	311.0 (19)	431.1 (17)
TY	0318	PARMA	98.3 (42)	129.5 (40)	170.7 (38)	224.5 (36)	309.8 (34)	385.4 (32)
STS	0319	MELOR	106.5 (17)	183.6 (15)	275.7 (13)	444.6 (11)	556.9 (9)	674.1 (7)
TY	0320	NEPARTAK	104.6 (26)	146.0 (24)	169.9 (22)	199.4 (20)	204.9 (18)	223.8 (16)
TY	0321	LUPIT	142.8 (52)	178.4 (50)	212.2 (48)	244.3 (46)	254.4 (44)	282.1 (42)
Annual Mean			124.5 (519)	174.7 (477)	228.3 (436)	286.7 (395)	351.8 (357)	415.2 (319)

Table 4.5 gives TYM's relative performance compared to the PER-method. In this comparison, life stages of tropical cyclones were classified into three categories, "Before", "During" and "After" recurvature. Each stage is defined with the direction of movement of each tropical cyclone at each prediction time concerned. This table indicates that TYM outperformed the PER-method throughout the whole forecast period beyond 18 hours from the initial time, and improvement rates were roughly 30% for 18 -hour, 45% for 30 -hour, 50% for 42 -hour, 55% for 54 -hour, and 60% for 66 - and 78 -hour predictions. While the rates for 18-hour to 42-hour prediction in 2003 were lower than those in 2002, the rates for 54 -hour to 78 -hour prediction were higher. Looking at the results of respective stages, improvement rates were relatively higher in "After" stage in which position errors of PER-methods were larger compared with other two stages.

Figure 4.5 (in the attached file) presents histograms of position errors of 30-, 54- and 78 -hour predictions of TYM. The ratio of 30 -hour prediction errors smaller than 150 km was 56% (55% in 2002), the ratio of 54 -hour prediction errors smaller than 300 km was 66% (60%) and the ratio of 78 -hour prediction errors smaller than 450 km was 66% (61%).

Table 4.5 Mean position errors (km) of TYM and PER predictions for the tropical cyclones in 2003 in each stage of motion. Number of samples is given in parentheses.

(moving direction)	MODEL rection)	$\begin{gathered} \hline \text { Before } \\ (180-320) \\ \hline \end{gathered}$	$\begin{gathered} \text { During } \\ (320-10) \\ \hline \end{gathered}$		$\begin{gathered} \text { After } \\ (10-180) \\ \hline \end{gathered}$	$\begin{gathered} \text { All } \\ (0-360) \\ \hline \end{gathered}$
$\mathrm{T}=18$	TYM	139.2 (235)	118.0	(95)	109.6 (189)	124.5 (519)
	PER	155.8 (235)	150.5	(95)	214.8 (189)	176.3 (519)
	IMPROV	10.7 \%	21.6 \%		49.0 \%	29.4 \%
T=30	TYM	185.7 (211)	175.5	(85)	161.5 (181)	174.7 (477)
	PER	259.0 (211)	265.6	(85)	407.1 (181)	316.4 (477)
	IMPROV	28.3 \%	33.9 \%		60.3 \%	44.8 \%
T=42	TYM	231.8 (195)	227.5	(74)	224.5 (167)	228.3 (436)
	PER	402.7 (195)	348.9	(74)	622.7 (167)	477.8 (436)
	IMPROV	42.4 \%	34.8 \%		63.9 \%	52.2 \%
$\mathrm{T}=54$	TYM	276.5 (169)	290.8	(71)	295.9 (155)	286.7 (395)
	PER	556.2 (169)	494.4	(71)	847.9 (155)	659.6 (395)
	IMPROV	50.3 \%	41.2 \%		65.1 \%	56.5 \%
T=66	TYM	338.5 (153)	347.0	(59)	367.8 (145)	351.8 (357)
	PER	747.8 (153)	580.9	(59)	1060.2 (145)	847.1 (357)
	IMPROV	54.7 \%	40.3 \%		65.3 \%	58.5 \%
T=78	TYM	385.6 (137)	415.6	(47)	445.1 (135)	415.2 (319)
	PER	927.7 (137)	775.8	(47)	122.1 (135)	1029.9 (319)
	IMPROV	58.4 \%	46.4 \%		63.6 \%	59.7 \%

2) Central Pressure and Maximum Wind Speed

Mean errors of $30-$, 54 - and 78 -hour central pressure predictions by TYM were +3.1 hPa $(+3.9 \mathrm{hPa}$ in 2002$),+3.8 \mathrm{hPa}(+2.1 \mathrm{hPa})$ and $+6.8 \mathrm{hPa}(+0.3 \mathrm{hPa})$, respectively in 2003 . Their root mean square errors (RMSEs) were 13.2 hPa (15.6 hPa in 2002) for 30 -hour predictions, $15.8 \mathrm{hPa}(17.0 \mathrm{hPa})$ for 54 -hour predictions, $18.4 \mathrm{hPa}(17.6 \mathrm{hPa})$ for 78 -hour Prediction. The bias for $30-54$-, and 78 -hour maximum wind speed predictions was $-1.6 \mathrm{~m} / \mathrm{s}(-2.4 \mathrm{~m} / \mathrm{s}$ in 2002) with a RMSE of $6.3 \mathrm{~m} / \mathrm{s}(7.2 \mathrm{~m} / \mathrm{s}),-2.1 \mathrm{~m} / \mathrm{s}(-2.2 \mathrm{~m} / \mathrm{s})$ with a RMSE of $7.3 \mathrm{~m} / \mathrm{s}(7.5 \mathrm{~m} / \mathrm{s})$, and $-3.6 \mathrm{~m} / \mathrm{s}(-2.5 \mathrm{~m} / \mathrm{s})$ with a RSME of $8.3 \mathrm{~m} / \mathrm{s}(7.7 \mathrm{~m} / \mathrm{s})$, respectively.

Figure 4.6 shows histograms of the errors of 30 -hour central pressure and maximum wind speed predictions. About 53% (43% in 2002) of the central pressure predictions had errors with absolute values less than 7.5 hPa , while 43% (37\%) of the maximum wind speed predictions with absolute values less than $3.75 \mathrm{~m} / \mathrm{s}$. As for 54 -hour ones, these ratios were 59% (57%) with absolute values less than 12.5 hPa and 61% (62%) with absolute values less than $6.25 \mathrm{~m} / \mathrm{s}$, respectively. These ratios for 78 -hour ones were 69% (71%) with absolute values less than 17.5 hPa and 72% (78%) with absolute values less than $8.75 \mathrm{~m} / \mathrm{s}$. (Figures are shown in the attached file)

30-hour TYM Predictions for Central Pressure

Figure 4.6 Error distribution of TYM 30-hour intensity predictions (left; for central pressure, right; for maximum wind speed, those for 54 - and 78 -hour predictions are included in the attached file).

4.2.2 GSM Prediction

1) Center Position

GSM annual mean position errors from 1996 are presented in Figure 4.7. In 2003, a total of 255 predictions were made by GSM and the errors for 30 -hour, 54 -hour and 78-hour predictions were 167 km (156 km in 2002), 277 km (242 km) and 418 km (353 km), respectively. The overall performance of GSM was worse than that in 2002. Mean position errors of the $18-, 30-, 42-, 54-$, 66and 78 -hour predictions for each

Figure 4.7 GSM annual mean position errors from 1996. tropical cyclone are given in Table 4.6.

Table 4.6 Mean position errors (km) of GSM for each tropical cyclone in 2003

Tropical Cyclone			$\mathrm{T}=18$	T=30	$\mathrm{T}=42$	$\mathrm{T}=54$	T=66	T=78
TS	0301	YANYAN	288.0 (6)	391.6 (4)	419.9 (3)	413.8 (2)	404.7 (1)	- (-)
TY	0302	KUJIRA	101.2 (28)	127.5 (27)	158.0 (24)	178.8 (23)	211.8 (22)	241.4 (21)
TY	0303	CHAN-HOM	128.2 (13)	170.5 (12)	226.6 (11)	317.6 (10)	372.3 (9)	512.7 (8)
STS	0304	LINFA	112.6 (9)	190.8 (8)	251.6 (7)	321.8 (6)	398.3 (5)	577.9 (4)
STS	0305	NANGKA	94.9 (6)	154.7 (5)	221.9 (4)	312.7 (3)	332.2 (2)	471.2 (1)
TY	0306	SOUDELOR	179.3 (12)	235.2 (11)	280.0 (10)	308.6 (9)	382.6 (8)	460.5 (7)
TY	0307	IMBUDO	85.9 (15)	154.1 (14)	215.7 (12)	285.2 (10)	326.8 (9)	377.8 (8)
STS	0308	KONI	186.2 (12)	234.9 (10)	313.2 (9)	399.7 (8)	456.0 (6)	630.3 (4)
TS	0309	MORAKOT	75.9 (4)	141.6 (2)	- (-)	- (-)	$(-)$	(-)
TY	0310	ETAU	61.2 (12)	76.6 (11)	124.9 (10)	172.0 (9)	220.7 (8)	271.2 (7)
TS	0311	VAMCO	- (-)	- (-)	- (-)	- (-)	- (-)	- (-)
TY	0312	KROVANH	117.3 (10)	151.4 (9)	208.4 (8)	233.9 (7)	264.7 (4)	187.6 (3)
TY	0313	DUJUAN	104.0 (9)	156.6 (8)	193.8 (7)	271.5 (6)	371.9 (5)	505.8 (4)
TY	0314	MAEMI	147.1 (17)	228.2 (16)	298.9 (15)	368.7 (14)	476.8 (13)	576.1 (12)
TY	0315	CHOI-WAN	136.3 (13)	225.2 (12)	352.0 (11)	508.4 (10)	739.7 (9)	1038.1 (8)
TY	0316	KOPPU	98.6 (9)	191.2 (8)	244.1 (7)	185.2 (6)	189.4 (5)	171.2 (4)
TY	0317	KETSANA	71.1 (14)	91.4 (13)	122.3 (12)	160.7 (11)	242.5 (10)	376.1 (9)
TY	0318	PARMA	119.0 (21)	180.6 (20)	260.9 (19)	355.4 (18)	463.2 (17)	567.2 (16)
STS	0319	MELOR	115.8 (7)	219.0 (7)	342.3 (6)	523.3 (5)	686.9 (4)	839.8 (3)
TY	0320	NEPARTAK	92.6 (12)	107.5 (11)	145.3 (11)	170.0 (9)	193.7 (9)	187.4 (8)
TY	0321	LUPIT	112.3 (26)	131.8 (25)	159.5 (24)	171.9 (23)	176.7 (22)	202.4 (21)
Annual Mean			118.1 (255)	166.9 (233)	222.1 (210)	276.5 (189)	339.1 (168)	417.8 (148)

Table 4.7 gives GSM's relative performance compared to the PER-method. I mprovement rates were roughly 35% (35% in 2002) for 18 -hour, 50% (50%) for 30 -hour, and 60% (60\%) for 54 -hour to 78 -hour predictions. These improvement rates in 2003 were almost same as those in 2002. The percentage is relatively high in "Before" stage.

Figure 4.8 (in the attached file) presents histograms of the position errors of 30-, 54 - and 78 -hour predictions of GSM. The ratio of 30 -hour prediction errors smaller than 150 km was 54% (58% in 2002), the ratio of 54 -hour prediction errors smaller than 300 km was 69% (74%) and the ratio of 78 -hour prediction errors smaller than 450 km was 70% (75%).

Table 4.7 M ean position errors (km) of GSM and PER predictions for the tropical cyclones in 2003 in each stage of motion.

	MODEL rection)	$\begin{gathered} \text { Before } \\ (180-320) \\ \hline \end{gathered}$	$\begin{gathered} \text { During } \\ (320-10) \\ \hline \end{gathered}$		$\begin{gathered} \text { After } \\ (10-180) \\ \hline \end{gathered}$		$\begin{gathered} \text { All } \\ (0-360) \\ \hline \end{gathered}$
$\mathrm{T}=18$	GSM	126.6 (121)	114.7	(41)	108.6	(93)	118.1 (255)
	PER	151.2 (121)	166.9	(41)	226.6	(93)	181.2 (255)
	IMPROV	16.2 \%	31.3 \%		52.1 \%		34.8 \%
T=30	GSM	172.4 (108)	174.1	(36)	157.2	(89)	166.9 (233)
	PER	265.1 (108)	296.1	(36)	414.4	(89)	326.9 (233)
	IMPROV	35.0 \%	41.2 \%		62.1 \%		49.0 \%
$\mathrm{T}=42$	GSM	220.0 (95)	239.2	(33)	217.7	(82)	222.1 (210)
	PER	423.3 (95)	370.9	(33)	630.7	(82)	496.1 (210)
	IMPROV	48.0 \%	35.5 \%		65.5 \%		55.2 \%
$\mathrm{T}=54$	GSM	263.8 (83)	289.6	(30)	285.1	(76)	276.5 (189)
	PER	590.8 (83)	570.0	(30)	860.8	(76)	696.1 (189)
	IMPROV	55.4 \%	49.2 \%		66.9 \%		60.3 \%
T=66	GSM	307.9 (72)	314.2	(24)	378.7	(72)	339.1 (168)
	PER	792.4 (72)	612.0	(24)	1106.5	(72)	901.3 (168)
	IMPROV	61.1 \%	48.6 \%		65.8 \%		62.4 \%
T=78	GSM	343.7 (62)	336.7	(21)	514.7	(65)	417.8 (148)
	PER	993.7 (62)	819.7	(21)	1305.0	(65)	1105.8 (148)
	IMPROV	65.4 \%	58.9 \%		60.6 \%		62.2 \%

2) Central Pressure and Maximum Wind Speed

Figure 4.9 shows histograms of central pressure errors and the maximum wind speed errors of 30 -hour predictions of GSM. The histograms show that in almost all cases GSM underestimated the intensity of tropical cyclones in its 30 -hour predictions and has a considerable positive bias in the central pressure prediction.

30-hour GSM Predictions for Central Pressure

30-hour GSM Predictions for Maxim um Sustained W ind

Fig.4.9 Error distribution of 30-hour GSM intensity predictions

TS YANYAN (0301)

Yanyan formed as a tropical depression (TD) west of the Marshall Islands at 06UTC 15 January 2003. Keeping almost the same intensity, it moved west-northwestwards until it made an abrupt turn towards the north-northwest over the waters east of Guam at 00UTC 18 January. It developed into a tropical storm (TS) and reached its peak intensity with maximum sustained wind of 35 kt southeast of Saipan at 06UTC 18 January. With the same intensity, it turned to the east-northeast and kept moving east-northeastwards with a speed of 25 kt . It weakened into a TD east of the Mariana Islands at 12UTC 20 January. It transformed into an extratropical cyclone at 00UTC 21 January and dissipated far east of the Mariana Islands at 06UTC on that day.

Date/Time (UTC)		Center Position		$\begin{aligned} & \text { Central } \\ & \text { pressure } \end{aligned}$ (hPa)	Max Wind (kt)		Grade	Date/Time (UTC)	Center Position		Central pressure (hPa)	Max Wind (kt)		Grade
Jan	15/06	6.9	163.1	1004	-	-	TD	18/12	14.5	146.8	1000	35	-	TS
	15/12	7.6	161.2	1004	-	-	TD	18/18	14.6	147.4	1000	35	-	TS
	15/18	8.2	159.6	1002	-	-	TD	19/00	14.9	147.9	1000	35	-	TS
	16/00	8.6	158.2	1004	-	-	TD	19/06	15.2	148.8	1000	35	-	TS
	16/06	9.4	156.7	1004	-	-	TD	19/12	15.6	150.0	1000	35	-	TS
	16/12	10.2	154.3	1004	-	-	TD	19/18	16.2	151.3	1000	35	-	TS
	16/18	11.1	152.7	1004	-	-	TD	20/00	16.8	152.4	1000	35	-	TS
	17/00	11.6	150.9	1004	-	-	TD	20/06	17.2	153.7	1000	35	-	TS
	17/06	12.5	149.3	1002	-	-	TD	20/12	17.4	154.9	1004	-	-	TD
	17/12	12.9	148.6	1004	-	-	TD	20/18	17.9	156.1	1004	-	-	TD
	17/18	13.2	147.8	1004	-	-	TD	21/00	18.7	156.3	1004	-	-	L

TY KUJ IRA (0302)

Kujira formed as a tropical depression (TD) south-southeast of Pompei Island at 00UTC 9 April 2003. It moved to the north, then to the northwest and became a tropical storm (TS) north of Pompei Island at 00UTC 11 April. It moved to the west and developed into a typhoon (TY) over the waters southeast of Guam at 00UTC 14 April. Then, it changed its direction to the westnorthwest and reached the peak intensity north of Yap Island at 18UTC 15 April. It changed the direction to the west again at 18UTC 16 April, then to the northwest at 12UTC 18 April and moved northwestward east of Luzon Island. After it downgraded to the TS intensity near the Batan Islands at 18UTC 22 April, it changed the direction to the northeast. Keeping the TS intensity, it passed near Iriomotejima at around 10UTC 24 April and advanced to the East China Sea. Kujira downgraded to a TD west of Yakushima at 03UTC 25 April and dissipated west of Kyushu at 12UTC on that day.

Date/Time \qquad (UTC)		Center Position		Central pressure (hPa)	$\begin{gathered} \text { Max } \\ \text { Wind } \\ \text { (kt) } \\ \hline \end{gathered}$	$\underset{\substack{\mathrm{Cl} \\ \text { Number }}}{ }$	Grade	Date/Time (UTC)	Center Position		Central pressure (hPa)	$\begin{gathered} \text { Max } \\ \text { Wind } \\ \text { (kt) } \\ \hline \end{gathered}$	Number	Grade
Apr	r 09/00	4.1	159.9	1008	-	-	TD	17/12	13.7	132.2	945	85	-	TY
	09/06	4.3	160.1	1006	-	-	TD	17/18	13.6	131.4	945	85	-	TY
	09/12	5.6	160.3	1006	-	-	TD	18/00	13.5	130.6	940	85	-	TY
	09/18	6.4	160.1	1004	-	-	TD	18/06	13.5	130.0	940	85	-	TY
	10/00	6.7	160.1	1004	-	-	TD	18/12	13.7	129.6	945	80	-	TY
	10/06	7.7	159.7	1004	-	-	TD	18/18	13.9	129.1	945	80	-	TY
	10/12	8.0	158.9	1004	-	-	TD	19/00	14.1	128.8	945	80	-	TY
	10/18	8.6	158.0	1004	-	-	TD	19/06	14.6	128.3	945	80	-	TY
	11/00	9.0	157.4	1002	35	-	TS	19/12	15.1	127.9	950	80	-	TY
	11/06	9.5	156.4	1000	35	-	TS	19/18	15.7	127.2	950	75	-	TY
	11/12	9.8	155.6	996	35	-	TS	20/00	16.2	126.8	955	75	-	TY
	11/18	9.8	155.2	996	35	-	TS	20/06	16.8	126.0	955	75	-	TY
	12/00	9.9	154.1	992	40	-	TS	20/12	17.2	125.7	950	80	-	TY
	12/06	10.0	153.0	990	45	-	TS	20/18	18.0	125.2	950	80	-	TY
	12/12	10.1	152.3	990	45	-	TS	21/00	18.3	124.6	950	80	-	TY
	12/18	10.1	151.5	985	50	-	STS	21/06	18.8	124.4	955	75	-	TY
	13/00	10.0	150.7	980	55	-	STS	21/12	19.2	124.2	955	70	-	TY
	13/06	10.1	149.8	980	55	-	STS	21/18	19.6	124.1	960	70	-	TY
	13/12	10.0	149.1	980	55	-	STS	22/00	20.2	124.0	975	55	-	STS
	13/18	10.4	148.3	975	60	-	STS	22/06	20.4	123.4	980	55	-	STS
	14/00	10.4	147.3	965	70	-	TY	22/12	20.6	123.1	985	50	-	STS
	14/06	10.6	146.2	960	75	-	TY	22/18	20.7	123.0	990	45	-	TS
	14/12	10.8	145.1	950	80	-	TY	23/00	20.7	122.5	994	45	-	TS
	14/18	11.2	143.8	945	80	-	TY	23/06	20.8	122.4	994	45	-	TS
	15/00	11.5	142.3	945	80	-	TY	23/12	21.0	122.4	994	45	-	TS
	15/06	11.9	140.9	945	80	-	TY	23/18	21.3	122.3	994	45	-	TS
	15/12	12.3	139.5	940	85	-	TY	24/00	22.0	122.7	994	45	-	TS
	15/18	12.7	138.3	930	90	-	TY	24/06	23.2	123.0	994	45	-	TS
	16/00	13.1	137.0	930	90	-	TY	24/12	24.8	123.9	994	45	-	TS
	16/06	13.5	136.0	930	90	-	TY	24/18	26.8	125.3	996	40	-	TS
	16/12	13.7	135.2	935	85	-	TY	25/00	29.3	127.2	998	35	-	TS
	16/18	13.9	134.4	935	85	-	TY	25/03	30.6	128.6	1000	-	-	TD
	17/00	13.9	133.8	940	85	-	TY	25/06	32.1	129.9	1000	-	-	TD
	17/06	13.8	132.9	940	85	-	TY	25/12						Dissip

TY CHAN-HOM (0303)

Chan-hom formed as a tropical depression (TD) near the Truk Islands at 00UTC 19 May 2003. After stamping at the initial place for 18 hours, it began to take a counterclockwise course and developed into a tropical storm (TS) east of Ulul Island at 12UTC 20 May. It changed its direction to the north and developed into a typhoon over the sea east of Saipan at 06UTC 23 May, then it reached its peak intensity with maximum sustained wind of 85 kt over the sea northeast of Saipan at 18TUC 23 May. Keeping the same intensity, it turned its track from north to northeast. After passing over the sea east of Minamitorishima on 25 May, it weakened into TS over the sea far east of Japan at 00UTC 27 May. Then it transformed into an extratropical cyclone at 06UTC 27 May over the same waters and dissipated over the sea south of the Aleutian Islands at 12UTC 28 May.

Date/Time (UTC)		Center Position		Central pressure (hPa)	Max Wind (kt)	$\begin{gathered} \mathrm{Cl} \\ \text { Number } \end{gathered}$	Grade	Date/Time (UTC)	Center Position		Central pressure (hPa)	Max Wind (kt)	Number	Grade
May	19/00	7.1	150.3	1006	-	-	TD	24/00	18.3	151.4	940	85	-	TY
	19/06	7.1	150.3	1004	-	-	TD	24/06	19.3	152.1	940	85	-	TY
	19/12	7.1	150.3	1004	-	-	TD	24/12	20.0	152.6	940	85	-	TY
	19/18	7.2	150.3	1004	-	-	TD	24/18	21.1	153.8	940	85	-	TY
	20/00	7.3	150.9	1004	-	-	TD	25/00	22.3	154.8	945	75	-	TY
	20/06	7.8	151.0	1000	-	-	TD	25/06	23.6	155.8	950	70	-	TY
	20/12	8.3	150.7	998	35	-	TS	25/12	25.1	156.8	955	70	-	TY
	20/18	8.6	150.4	996	40	-	TS	25/18	26.8	157.7	960	70	-	TY
	21/00	8.9	150.4	994	45	-	TS	26/00	28.4	158.8	965	65	-	TY
	21/06	9.4	150.5	990	50	-	STS	26/06	30.1	160.6	975	60	-	STS
	21/12	10.0	150.5	985	55	-	STS	26/12	31.4	162.7	985	50	-	STS
	21/18	10.8	150.6	985	55	-	STS	26/18	32.8	164.9	985	50	-	STS
	22/00	11.4	150.9	980	55	-	STS	27/00	33.8	166.9	990	40	-	TS
	22/06	12.6	151.2	980	55	-	STS	27/06	34.8	169.5	996	-	-	L
	22/12	13.2	151.4	980	55	-	STS	27/12	35.6	171.9	996	-	-	L
	22/18	14.4	151.4	975	60	-	STS	27/18	35.8	174.4	1000	-	-	L
	23/00	15.0	151.1	975	60	-	STS	28/00	35.5	175.7	1008	-	-	L
	23/06	15.6	151.3	965	70	-	TY	28/06	35.5	177.7	1012	-	-	L
	23/12	16.4	151.4	950	80	-	TY	28/12						Dissip
	23/18	17.4	151.5	940	85	-	TY							

STS LINFA (0304)

Linfa formed as a tropical depression (TD) over the sea west of Luzon Island at 06UTC 25 May 2003. It began to take a counterclockwise course and developed into a tropical storm (TS) over the same waters at 00UTC 26 May. It changed its direction to the east and developed into a severe tropical storm (STS) near the western coast of Luzon Island at 00UTC 27 May. Moving to the east, it landed on Luzon Island and weakened into a TS, then turned northeastwards at 12UTC 27 May. After leaving Luzon Island, it held a fairly straight northeastward track. Moving to the northeast, it redeveloped into a STS and reached its peak intensity with maximum sustained wind of 55 kt over the sea south of Okinawa at 18UTC 29 May. I turned north-northeastwards and passed over the sea east of Kyushu. After landing on the western Shikoku, it transformed into an extratropical cyclone at 00UTC 31 May. It held a fairly straight northeastward track and entered the Sea of Okhotsk on 2 June, then dissipated over the same waters at 12UTC 4 June.

Date/Time (UTC)		Center Position		Central pressure (hPa)	Max Wind (kt)	Cl Number	Grade	Date/Time (UTC)		Center Position		Central pressure (hPa)		$\begin{gathered} \mathrm{Cl} \\ \text { Number } \end{gathered}$	Grade
May	25/06	16.5	118.5	1000	-	-	TD		30/09	28.8	131.2	980	50	-	STS
	25/12	16.4	118.3	1000	-	-	TD		30/12	30.0	131.4	980	50	-	STS
	25/18	16.1	118.0	1000	-	-	TD		30/15	31.2	131.8	980	50	-	STS
	26/00	15.8	118.4	994	35	-	TS		30/18	32.3	132.2	980	50	-	STS
	26/06	16.0	118.7	990	45	-	TS		30/21	33.5	132.6	985	45	-	TS
	26/12	16.0	119.2	990	45	-	TS		31/00	33.9	133.2	988	-	-	L
	26/18	16.1	119.2	990	45	-	TS		31/06	35.0	134.4	988	-	-	L
	27/00	16.1	119.9	985	50	-	STS		31/12	36.1	135.1	992	-	-	L
	27/06	16.2	121.3	992	35	-	TS		31/18	37.7	137.7	994	-	-	L
	27/12	16.8	121.9	992	35	-	TS	Jun	01/00	39.6	140.5	994	-	-	L
	27/18	17.5	122.6	992	40	-	TS		01/06	40.9	142.5	992	-	-	L
	28/00	18.7	124.0	992	40	-	TS		01/12	42.8	144.1	992	-	-	L
	28/06	19.8	124.6	992	40	-	TS		01/18	44.2	146.8	988	-	-	L
	28/12	20.3	125.0	992	40	-	TS		02/00	45.1	148.3	988	-	-	L
	28/18	20.9	125.3	992	40	-	TS		02/06	47.3	149.5	986	-	-	L
	29/00	21.9	125.8	992	40	-	TS		02/12	49.0	150.4	984	-	-	L
	29/06	22.3	126.9	990	40	-	TS		02/18	50.0	150.7	982	-	-	L
	29/12	22.8	128.1	985	45	-	TS		03/00	50.9	152.0	982	-	-	L
	29/15	23.9	128.8	985	45	-	TS		03/06	52.8	152.1	984	-	-	L
	29/18	24.3	129.1	980	55	-	STS		03/12	54.1	152.1	986	-	-	L
	29/21	25.0	129.6	980	55	-	STS		03/18	55.0	152.2	986	-	-	L
	30/00	25.7	130.3	980	55	-	STS		04/00	55.1	152.9	988	-	-	L
	30/03	26.5	130.5	980	55	-	STS		04/06	55.9	153.6	990	-	-	L
	30/06	27.6	130.8	980	50	-	STS		04/12						Dissip

STS NANGKA (0305)

Nangka formed as a tropical depression (TD) west of Luzon Island at 00UTC 30 May 2003. It moved to the west and made an abrupt turn to the northeast at 18UTC 31 May. It became a tropical storm (TS) over the same waters at 00UTC 1 June and reached its peak intensity with a maximum sustained wind of 50 kt south-southwest of Taiwan at 18UTC on the same day. Holding a fairly straight northeastward track, it passed the Bashi Channel on 2 June and downgraded into a TD west of Minamidaitojima at 12UTC 3 June, then transformed into a extratropical cyclone south of the Kii Peninsula at 00UTC 4 June. It dissipated far east of Japan at 18UTC 7 June.

Date/Time (UTC)		Center Position		Central pressure (hPa)	$\begin{gathered} \hline \text { Max } \\ \text { Wind } \\ (\mathrm{kt}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Cl} \\ \text { Number } \end{gathered}$	Grade	Date/Time (UTC)	Center Position		Central pressure (hPa)		$\begin{gathered} \mathrm{Cl} \\ \text { Number } \end{gathered}$	Grade
May	30/00	16.8	118.8	1002	-	-	TD	03/12	25.7	130.4	994	-	-	TD
	30/06	16.7	118.5	1000	-	-	TD	03/18	27.6	132.5	994	-	-	TD
	30/12	16.6	118.0	1000	-	-	TD	04/00	29.1	135.5	994	-	-	L
	30/18	16.5	117.6	1000	-	-	TD	04/06	30.3	136.9	996	-	-	L
	31/00	16.7	117.2	1000	-	-	TD	04/12	31.5	139.4	996	-	-	L
	31/06	16.8	117.0	998	-	-	TD	04/18	33.1	141.8	998	-	-	L
	31/12	16.9	116.7	998	-	-	TD	05/00	35.3	144.9	1000	-	-	L
	31/18	17.1	116.5	998	-	-	TD	05/06	36.2	146.2	1000	-	-	L
Jun	01/00	17.4	117.6	996	35	-	TS	05/12	37.8	149.0	1000	-	-	L
	01/06	17.8	117.9	994	40	-	TS	05/18	38.4	151.2	1000	-	-	L
	01/12	18.4	118.2	990	45	-	TS	06/00	39.5	152.9	1006	-	-	L
	01/18	19.5	118.7	985	50	-	STS	06/06	39.9	154.2	1006	-	-	L
	02/00	20.5	119.2	985	50	-	STS	06/12	40.3	155.9	1008	-	-	L
	02/06	20.7	119.8	985	50	-	STS	06/18	40.3	157.0	1008	-	-	L
	02/12	21.3	121.6	990	50	-	STS	07/00	40.2	158.4	1012	-	-	L
	02/18	22.3	123.3	992	45	-	TS	07/06	40.1	159.9	1012	-	-	L
	03/00	22.7	124.9	994	40	-	TS	07/12	40.3	162.6	1012	-	-	L
	03/06	23.7	127.5	994	35	-	TS	07/18						Dissip

TY SOUDELOR (0306)

Soudelor formed as a tropical depression (TD) northeast of the Palau Islands at 00UTC 12 June 2003. It moved to the west-northwest and became a tropical storm (TS) east of the Philippines at 06UTC 13 June. It changed the direction to the west on 13 June, then to the north-northwest east of Samar Island on 14 June. Shortly after it changed the direction to the north, it upgraded into a typhoon south of Iriomotejima at 12UTC 17 June and passed Iriomotejima around half past 20UTC 17 June. Moving north-northeastwards in East China Sea, it reached its peak intensity with a maximum sustained wind of 80kt west of Okinawa at 06UTC 18 June. With gradual weakening, it passed Tsushima at STS intensity around 04UTC 19 June. Moving to the northeast, it transformed into an extratropical cyclone north-northeast of Oki Island at 15UTC 19 June. After it passed the northern part of Japan on 20 June, it dissipated far east of Japan at 06UTC 24 June.

Date/Time \qquad (UTC)		Center Position		Central pressure (hPa)	$\begin{gathered} \text { Max } \\ \text { Wind } \\ (\mathrm{kt}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Cl} \\ \text { Number } \end{gathered}$	Grade	Date/Time (UTC)	Center Position		Central pressure (hPa)	$\begin{gathered} \text { Max } \\ \text { Wind } \\ \text { (kt) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Cl} \\ \text { Number } \end{gathered}$	Grade
Jun	12/00	9.1	136.9	1008	-	-	TD	18/09	27.1	125.1	955	80	-	TY
	12/06	10.1	135.1	1006	-	-	TD	18/12	27.8	125.5	960	75	-	TY
	12/12	10.8	133.7	1006	-	-	TD	18/15	28.9	125.8	960	75	-	TY
	12/18	11.0	133.4	1006	-	-	TD	18/18	29.9	126.0	965	70	-	TY
	13/00	11.2	132.3	1004	-	-	TD	18/21	31.1	126.9	970	65	-	TY
	13/06	11.2	131.5	1000	35	-	TS	19/00	32.5	128.1	975	60	-	STS
	13/12	11.4	129.1	1000	35	-	TS	19/03	33.9	128.9	975	60	-	STS
	13/18	11.4	128.0	996	40	-	TS	19/04	34.2	129.2	975	60	-	STS
	14/00	11.4	127.5	996	40	-	TS	19/06	34.8	129.6	980	55	-	STS
	14/06	11.9	126.9	996	40	-	TS	19/09	36.2	131.2	980	55	-	STS
	14/12	12.4	126.3	996	40	-	TS	19/12	36.9	132.0	985	50	-	STS
	14/18	13.1	125.9	996	40	-	TS	19/15	37.5	133.7	985	-	-	L
	15/00	14.1	125.6	994	45	-	TS	19/18	38.7	134.9	988	-	-	L
	15/06	15.0	125.4	990	50	-	STS	20/00	40.4	138.2	996	-	-	L
	15/12	15.8	124.9	985	50	-	STS	20/06	41.3	140.1	996	-	-	L
	15/18	16.4	124.7	980	55	-	STS	20/12	41.5	143.4	996	-	-	L
	16/00	16.9	124.7	980	55	-	STS	20/18	42.0	145.6	996	-	-	L
	16/06	17.6	124.1	980	55	-	STS	21/00	41.7	147.0	994	-	-	L
	16/12	18.3	123.3	980	55	-	STS	21/06	41.1	148.5	994	-	-	L
	16/18	19.2	123.0	980	55	-	STS	21/12	40.6	149.8	996	-	-	L
	17/00	19.6	122.8	975	60	-	STS	21/18	39.8	151.0	996	-	-	L
	17/06	20.7	123.2	975	60	-	STS	22/00	39.2	151.9	996	-	-	L
	17/09	21.4	123.5	975	60	-	STS	22/06	38.3	153.4	998	-	-	L
	17/12	22.0	123.6	970	65	-	TY	22/12	37.4	154.7	998	-	-	L
	17/15	22.7	123.7	970	65	-	TY	22/18	37.0	155.6	998	-	-	L
	17/18	23.6	123.8	970	65	-	TY	23/00	37.0	157.1	998	-	-	L
	17/20	24.2	123.8	968	65	-	TY	23/06	38.2	159.1	998	-	-	L
	17/21	24.3	123.8	965	70	-	TY	23/12	38.8	161.0	998	-	-	L
	18/00	25.1	123.9	960	75	-	TY	23/18	39.1	161.9	1002	-	-	L
	18/03	25.6	124.1	960	75	-	TY	24/00	39.2	162.5	1004	-	-	L
	18/06	26.4	124.5	955	80	-	TY	24/06						Dissip

TY IMBUDO (0307)

Imbudo formed as a tropical depression (TD) south-southwest of the Truk Islands at 00UTC 15 July 2003. It moved to the north-northwest and changed the direction to the west at TD intensity. After changing the direction to the northwest around 21UTC 16 July, it became a tropical storm (TS) east-southeast of Yap Island at 06UTC 17 July. Imbudo held an almost straight west-northwest track until its dissipation. It upgraded into a severe tropical storm (STS) west-northwest of Yap Island at 18UTC 18 July and developed into a typhoon north-northwest of Palau Islands at 18UTC on the following day. It reached its peak intensity with a maximum sustained wind of 90kt east of Philippines at 12UTC 20 July. With gradual weakening, it made landfall on Luzon Island around 03UTC 22 July. It entered South China Sea around 09UTC 22 July and made a minor development over the same waters on 23 July. With rapid weakening, it made landfall west of Macao around 03UTC 24 July. It downgraded into STS at 06UTC 24 July, then into TS around Nanning at 12UTC on that day. It downgraded into TD around the border between China and Vietnam at 00UTC 25 July and dissipated over the same region at 18UTC on that day.

Date/Time (UTC)		Center Position		Central pressure (hPa)	Max Wind (kt)	Number	Grade	Date/Time (UTC)	Center Position		Central pressure (hPa)	Max Wind (kt)	Number	Grade
Jul	15/00	4.8	150.4	1008	-	-	TD	20/12	12.5	130.7	935	90	-	TY
	15/06	5.9	149.8	1006	-	-	TD	20/18	13.3	129.6	935	90	-	TY
	15/12	6.2	148.3	1006	-	-	TD	21/00	13.5	128.1	945	85	-	TY
	15/18	6.1	146.8	1004	-	-	TD	21/06	14.0	127.1	945	85	-	TY
	16/00	6.0	145.6	1004	-	-	TD	21/12	15.0	125.9	945	85	-	TY
	16/06	5.7	143.8	1004	-	-	TD	21/18	15.8	124.5	950	80	-	TY
	16/12	6.1	142.8	1004	-	-	TD	22/00	16.3	123.0	950	80	-	TY
	16/18	7.3	142.2	1002	-	-	TD	22/06	16.9	121.3	955	75	-	TY
	17/00	7.3	141.7	1002	-	-	TD	22/12	17.8	119.6	960	70	-	TY
	17/06	8.3	140.9	998	35	-	TS	22/18	18.1	118.4	965	70	-	TY
	17/12	8.8	140.1	998	35	-	TS	23/00	18.2	116.7	960	70	-	TY
	17/18	9.2	139.5	998	35	-	TS	23/06	18.7	115.2	955	75	-	TY
	18/00	9.7	138.2	996	40	-	TS	23/12	19.5	114.1	955	75	-	TY
	18/06	10.0	137.3	994	40	-	TS	23/18	20.0	112.8	955	75	-	TY
	18/12	10.3	137.2	990	45	-	TS	24/00	21.1	112.0	965	65	-	TY
	18/18	10.6	136.5	985	50	-	STS	24/06	22.1	110.1	975	50	-	STS
	19/00	10.6	135.5	980	55	-	STS	24/12	22.8	108.5	985	40	-	TS
	19/06	10.5	134.7	975	60	-	STS	24/18	23.5	107.2	992	35	-	TS
	19/12	10.5	134.2	975	60	-	STS	25/00	23.0	106.0	996	-	-	TD
	19/18	10.9	133.3	970	65	-	TY	25/06	23.1	105.0	996	-	-	TD
	20/00	11.6	132.9	960	75	-	TY	25/12	23.5	104.4	998	-	-	TD
	20/06	12.1	131.6	945	85	-	TY	25/18						Dissip

STS KONI (0308)

Koni formed as a tropical depression (TD) north of the Palau Islands at 00UTC 15 July 2003. It moved to the west and changed the direction to the west-northwest around 06UTC 16 July. It reached the southeastern edge of Samar Island around 00UTC 17 July and crossed the middle of Philippines at TD intensity on that day. Shortly after it entered South China Sea, it became a tropical storm (TS) north of Palawan Island at 06UTC 18 July. It changed its direction to the northwest around 18UTC 18 July and upgraded into a severe tropical storm (STS) over the middle of South China Sea at 00UTC 20 July. After it changed the direction to the west-northwest around 12UTC 20 July, it reached its peak intensity with a maximum sustained wind of 60 kt southeast of Hainan Island at 18UTC on that day. With gradual weakening, it reached the southeastern coast of Hainan Island around 12UTC 21 July. It downgraded into TS over Hainan Island at 18UTC 21 July and entered Gulf of Tongking. After it landed on the coast of northern Vietnam around 08UTC 22 July, it downgraded into TD over the northern Laos at 18UTC on that day. It dissipated over the same region at 00UTC 23 July.

TS MORAKOT (0309)

Morakot formed as a tropical depression (TD) east of Luzon Island at 03UTC 1 August 2003. It took a counterclockwise track and began to hold an almost straight northwestward track around 18UTC 1 August. It became a tropical storm (TS) northeast of Luzon Island at 06UTC 2 August. It reached its peak intensity with maximum sustained wind of 45 kt north of Luzon Island at 18UTC 2 August. It crossed Taiwan after 12UTC 3 August and weakened to a TD over Taiwan Strait at 12UTC 4 August. It dissipated over the same waters at 18UTC 4 August.

Date/Time (UTC)		Center Position		Central pressure (hPa)	$\begin{gathered} \text { Max } \\ \text { Wind } \\ \text { (kt) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Cl} \\ \text { Number } \end{gathered}$	Grade	Date/Time (UTC)	Center Position		Central pressure (hPa)	$\begin{gathered} \text { Max } \\ \text { Wind } \\ \text { (kt) } \\ \hline \end{gathered}$
Jul	31/18	15.4	127.5	1004	-	-	TD	03/00	20.7	122.1	992	45
Aug	01/00	16.0	128.0	1004	-	-	TD	03/06	21.4	121.4	992	45
	01/06	16.6	127.9	1002	-	-	TD	03/12	22.1	121.0	994	45
	01/12	16.8	127.8	1002	-	-	TD	03/18	23.2	119.9	994	40
	01/18	17.6	127.3	1002	-	-	TD	04/00	23.7	119.0	996	35
	02/00	18.3	126.2	1000	-	-	TD	04/06	24.1	118.5	996	35
	02/06	18.9	125.1	996	35	2.5	TS	04/12	23.8	118.0	1000	-
	02/12	19.8	124.0	994	40	2.5	TS	04/18				
	02/18	20.1	122.9	992	45	3.0	TS					

TY ETAU (0310)

Etau formed as a tropical depression (TD) northeast of Yap Island at 18UTC 2 August 2003. It moved to the northwest and became a tropical storm (TS) north-northeast of Yap Island at 06UTC 3 August. Moving northwestwards, it developed into a severe tropical storm (STS) at 00UTC 4 August, then developed into a typhoon (TY) far southwest of Okinotorishima at 18UTC on the same day. It changed the direction to the north-northwest on 6 August and passed near Okinawa around half past 00UTC 7 August. It reached the peak intensity with a maximum sustained wind of 85 kt north of Okinawa at 06UTC 7 August and changed the direction to the northeast. It passed near Amamioshima around half past 10UTC 7 August and made landfall around Muroto city, Kochi Prefecture at TY intensity before 13UTC 8 August. Then it passed near Awajishima around 18UTC 8 August and landed around Nishinomiya city, Hyogo Prefecture at STS intensity around 21UTC on that day. After traveling over Honshu with weakening, it entered the waters south of Hokkaido. It made landfall around Erimo Promontory at TS intensity around half past 16UTC 9 August and transformed into an extratropical cyclone over Hokkaido at 18UTC on that day. It entered Sea of Okhotsk and dissipated over the waters west of Kamchatka Peninsula at 00UTC 12 August.

Date/Time (UTC)		Center Position		Central pressure (hPa)	Max Wind (kt)	$\begin{gathered} \mathrm{Cl} \\ \text { Number } \end{gathered}$	Grade	Date/Time (UTC)	Center Position		Central pressure (hPa)	Max Wind (kt)	$\begin{gathered} \mathrm{Cl} \\ \text { Number } \end{gathered}$	Grade
Aug	02/18	12.4	140.2	1004	-	-	TD	07/21	30.0	131.5	950	80	-	TY
	03/00	12.6	140.0	1004	-	-	TD	08/00	30.7	132.0	950	75	5.0	TY
	03/06	13.4	139.6	1000	35	2.0	TS	08/03	31.5	132.7	950	75	-	TY
	03/12	13.9	138.8	996	40	2.5	TS	08/06	32.1	133.1	950	75	5.0	TY
	03/18	14.7	138.0	990	45	3.0	TS	08/09	32.7	133.6	950	75	-	TY
	04/00	15.2	136.6	980	55	3.5	STS	08/12	33.2	134.0	950	75	5.0	TY
	04/06	15.6	135.0	980	55	3.5	STS	08/15	33.7	134.4	955	60	-	STS
	04/12	16.5	134.4	975	60	4.0	STS	08/18	34.2	134.8	965	50	4.0	STS
	04/18	17.8	133.8	965	70	4.5	TY	08/21	34.7	135.4	970	50	-	STS
	05/00	18.3	132.8	960	75	4.5	TY	09/00	35.5	136.1	975	45	4.0	TS
	05/06	18.6	131.5	960	75	4.5	TY	09/03	36.5	137.4	980	45	-	TS
	05/12	19.3	131.0	960	75	5.0	TY	09/06	37.4	138.8	985	40	3.5	TS
	05/18	20.5	130.3	960	75	5.0	TY	09/09	38.4	140.0	985	40	-	TS
	06/00	21.5	129.5	955	75	5.0	TY	09/12	40.0	141.2	985	40	3.0	TS
	06/06	22.7	129.0	955	75	5.0	TY	09/15	41.4	142.4	985	40	-	TS
	06/12	23.9	128.8	955	75	5.0	TY	09/16	41.9	142.8	985	40	-	TS
	06/15	24.7	128.6	955	75	-	TY	09/18	42.8	143.7	984	-	-	L
	06/18	25.3	128.4	950	80	5.0	TY	10/00	44.7	146.9	984	-	-	L
	06/21	26.0	128.3	950	80	-	TY	10/06	48.4	151.1	984	-	-	L
	07/00	26.5	128.2	950	80	5.5	TY	10/12	50.7	152.6	984	-	-	L
	07/03	27.0	128.2	950	80	-	TY	10/18	52.3	152.5	984	-	-	L
	07/06	27.5	128.5	945	85	5.5	TY	11/00	52.8	151.9	984	-	-	L
	07/09	28.0	129.0	945	85	-	TY	11/06	53.2	152.5	988	-	-	L
	07/10	28.1	129.2	945	85	-	TY	11/12	53.0	153.2	990	-	-	L
	07/12	28.4	129.5	950	80	5.5	TY	11/18	52.2	154.0	990	-	-	L
	07/15	28.8	130.1	950	80	-	TY	12/00						Dissip
	07/18	29.4	130.8	950	80	5.5	TY							

TS VAMCO (0311)

Vamco formed as a tropical depression (TD) east-northeast of Luzon Island at 06UTC 18 August 2003. It moved to the north-northwest and became a tropical storm (TS) and reached its peak intensity with a maximum sustained wind of 35 kt over the sea south-southeast of Ishigakijima at 06UTC 19 August. It changed the direction to the northwest and weakened into a TD north of Taiwan Strait at 00UTC 20 August, then dissipated over the same waters at 06UTC on that day.

Date/Time		Center Position		Central pressure (hPa)	Max Wind (kt)	$\underset{\text { Cl }}{\mathrm{Cl}}$	Grade	Date/Time (UTC)	Center Position		Central pressure (hPa)	Max Wind (kt)	Number	Grade
	(UTC)	Lat (N)	Lon (E)						Lat (N)	Lon (E)				
Aug	18/06	18.3	125.3	1004	-		TD	19/12	24.2	123.5	996	35	2.5	TS
	18/12	18.4	125.3	1002	-	-	TD	19/15	24.9	122.9	996	35	-	TS
	18/18	18.6	125.4	1000	-	-	TD	19/18	25.5	122.4	996	35	2.5	TS
	19/00	20.5	125.4	1000	-	-	TD	20/00	27.2	120.9	998	-	-	TD
	19/06	22.7	124.8	996	35	2.5		20/06						Dissip

TY KROVANH (0312)

Krovanh formed as a tropical depression (TD) west of Pompei Island at 18UTC 13 August 2003. It moved west-northwestwards and changed the direction to the northwest over the sea south of Guam around 18UTC 16 August. Keeping TD intensity, it changed the direction to the west-southwest over the sea west-southwest of Okinotorishima at 12UTC 19 August. It became a tropical storm (TS) far south of Minamidaitojima at 12UTC 20 August and developed into a severe tropical storm (STS) northeast of Luzon Island at 06UTC on the following day. It developed into a typhoon and reached its peak intensity with a maximum sustained wind of 65kt east of Luzon Island at 00UTC 22 August, then it crossed the Island on that day. After it temporarily weakened to TS over the western coast of Luzon Island at 18UTC 22, it developed into a STS west of the Island at 00UTC on the following day and gradually changed the direction to the west-northwest. It developed into a typhoon and reached the second peak intensity with a maximum sustained wind of 65 kt over South China Sea at 18UTC 24 August. After it passed Leizhou Bandao around 00UTC 25 August, it landed on the northern coast of Vietnam at STS intensity around 12UTC on that day. It downgraded into a TS at 00 UTC 26 August and further downgraded into a TD over the northern part of Vietnam at 06UTC on that day. It dissipated over the northern part of Vietnam at 18UTC 26 August.

Date/Time		Center Position		Central pressure (hPa)	Max Wind (kt)		Grade	Date/Time (UTC)	Center Position		Central pressure (hPa)	Max Wind (kt)	$\begin{gathered} \mathrm{Cl} \\ \text { Number } \end{gathered}$	Grade
Aug	13/18	7.2	156.0	1008	-	-	TD	20/12	18.9	131.3	998	35	2.5	TS
	14/00	7.6	155.6	1008	-	-	TD	20/18	18.7	130.4	990	45	3.0	TS
	14/06	8.0	155.2	1008	-	-	TD	21/00	18.5	129.4	990	45	3.0	TS
	14/12	8.5	154.0	1008	-	-	TD	21/06	18.2	128.3	985	50	3.0	STS
	14/18	8.7	152.6	1006	-	-	TD	21/12	17.9	127.0	980	55	3.5	STS
	15/00	9.0	151.6	1008	-	-	TD	21/18	17.8	125.9	975	60	4.0	STS
	15/06	9.3	150.6	1006	-	-	TD	22/00	17.6	124.6	970	65	4.0	TY
	15/12	9.8	149.8	1006	-	-	TD	22/06	17.5	123.4	970	65	4.5	TY
	15/18	10.6	149.3	1006	-	-	TD	22/12	17.4	122.2	970	65	4.0	TY
	16/00	11.1	148.6	1008	-	-	TD	22/18	17.3	120.4	985	45	4.0	TS
	16/06	11.5	147.2	1008	-	-	TD	23/00	17.3	119.4	985	50	3.5	STS
	16/12	12.1	146.0	1008	-	-	TD	23/06	17.4	118.0	985	50	3.5	STS
	16/18	12.6	144.4	1008	-	-	TD	23/12	17.7	116.9	980	55	3.5	STS
	17/00	13.2	143.9	1010	-	-	TD	23/18	18.4	115.6	975	55	4.0	STS
	17/06	13.8	143.5	1008	-	-	TD	24/00	19.0	114.7	975	55	4.0	STS
	17/12	14.9	142.6	1008	-	-	TD	24/06	19.3	113.4	975	60	4.0	STS
	17/18	15.5	141.6	1008	-	-	TD	24/12	19.4	112.6	975	60	4.0	STS
	18/00	16.1	141.0	1008	-	-	TD	24/18	20.1	111.2	970	65	4.5	TY
	18/06	16.8	140.3	1008	-	-	TD	25/00	20.7	110.2	970	65	4.5	TY
	18/12	17.4	139.4	1008	-	-	TD	25/06	21.0	109.2	970	65	4.5	TY
	18/18	18.0	138.7	1008	-	-	TD	25/12	21.3	107.9	975	55	4.5	STS
	19/00	18.9	137.3	1008	-	-	TD	25/18	21.6	106.9	985	50	3.5	STS
	19/06	19.4	136.1	1008	-	-	TD	26/00	22.2	105.8	990	40	3.0	TS
	19/12	19.9	134.6	1008	-	-	TD	26/06	22.7	104.9	996	-	-	TD
	19/18	19.7	133.7	1008	-	-	TD	26/12	22.0	103.0	1000	-	-	TD
	20/00	19.4	132.9	1008	-	-	TD	26/18						Dissip
	20/06	19.2	132.0	1004	-	-	TD							

TY DUJ UAN (0313)

Dujuan formed as a tropical depression (TD) southeast of Okinotorishima at 18UTC 27 August 2003. It moved westwards and soon changed the direction to the southwest, and then it changed the direction to the west again south of Okinotorishima at 00UTC 29 August. It became a tropical storm (TS) south-southwest of Okinotorishima at 18UTC 29 August. Shortly after it changed the direction to the west-northwest, it developed into a severe tropical storm (STS) southwest of Okinotorishima at 06UTC 30 August and further developed into a typhoon west-southwest of the Island at 18UTC on that day. It reached the peak intensity with a maximum sustained wind of 80kt south of Miyakojima at 00UTC 1 September. It downgraded into a STS and made landfall around Hong Kong at 12UTC 2 September. Travelling over the southern coast of China, it downgraded into a TS west of Hong Kong at 18UTC 2 September. It downgraded into a TD east of Nanning at 00UTC 3 September and dissipated 6 hours later.

TY MAEMI (0314)

Maemi formed as a tropical depression (TD) north of the Truk Islands at 00UTC 4 September 2003. It moved to the northwest and became a tropical storm (TS) west of the Mariana Islands at 06UTC 6 September. Holding a fairly straight northwestward track, it upgraded into a severe tropical storm (STS) far southwest of Okinotorishima at 18UTC 7 September, then upgraded into a typhoon (TY) south of Minamidaitojima at 18UTC on the following day. Still holding a northwestward track, it reached the peak intensity with a maximum sustained wind of 105kt southeast of Miyakojima at 12UTC 10 September. It passed near Miyakojima at the peak intensity after 19UTC 10 September and changed the direction sharply to the north-northeast. After it traveled over East China Sea, it made landfall on the southern coast of Korean Peninsula at TY intensity around 12UTC 12 September. It downgraded into STS near the eastern coast of Korean Peninsula at 18UTC 12 September and changed the direction to the northeast. It transformed into an extratropical cyclone over Sea of Okhotsk at 21UTC 13 September and dissipated over the adjacent waters of Chishima at 06UTC 16 September.

$\begin{aligned} & \text { Date/Time } \\ & \text { (UTC) } \\ & \hline \end{aligned}$		Center Position		Central pressure (hPa)	$\begin{gathered} \hline \text { Max } \\ \text { Wind } \\ \text { (kt) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Cl} \\ \text { Number } \end{gathered}$	Grade	Date/Time (UTC)	Center Position		Central pressure (hPa)	$\begin{gathered} \text { Max } \\ \text { Wind } \\ (\mathrm{kt}) \end{gathered}$		Grade
Sep	04/00	9.9	153.1	1008	-	-	TD	10/21	25.0	125.3	910	105	-	TY
	04/06	10.4	151.1	1006	-	-	TD	11/00	25.2	125.1	910	105	6.5	TY
	04/12	10.9	149.7	1006	-	-	TD	11/03	25.5	125.2	920	95	-	TY
	04/18	11.7	148.7	1004	-	-	TD	11/06	25.9	125.3	920	95	6.0	TY
	05/00	12.5	147.5	1004	-	-	TD	11/09	26.3	125.4	925	95	-	TY
	05/06	12.9	145.8	1004	-	-	TD	11/12	27.0	125.6	930	95	5.5	TY
	05/12	13.8	145.1	1004	-	-	TD	11/15	27.8	125.7	935	90	-	TY
	05/18	14.0	143.9	1002	-	-	TD	11/18	28.4	125.8	935	90	5.5	TY
	06/00	15.6	142.8	1000	-	-	TD	11/21	29.5	126.1	935	90	-	TY
	06/06	16.5	141.4	994	35	2.5	TS	12/00	30.5	126.5	930	95	6.0	TY
	06/12	16.8	139.9	994	35	2.5	TS	12/06	32.7	127.1	935	90	6.0	TY
	06/18	17.0	138.7	992	40	3.0	TS	12/09	33.9	127.5	945	80	-	TY
	07/00	17.8	138.3	992	40	3.0	TS	12/12	34.9	128.3	955	75	6.0	TY
	07/06	18.8	136.9	992	40	3.0	TS	12/18	37.0	129.8	970	60	6.0	STS
	07/12	19.1	135.9	990	45	3.5	TS	13/00	39.1	131.8	975	55	5.0	STS
	07/18	19.4	135.0	985	50	3.5	STS	13/06	40.5	134.6	980	50	5.0	STS
	08/00	19.7	133.9	980	55	4.0	STS	13/09	41.5	136.9	980	50	4.5	STS
	08/06	20.0	132.8	975	60	4.0	STS	13/12	42.3	138.1	980	50	4.0	STS
	08/12	20.4	132.0	975	60	4.0	STS	13/15	43.2	140.0	980	50	-	STS
	08/18	21.0	131.2	970	65	4.0	TY	13/18	44.7	141.2	980	50	3.5	STS
	09/00	22.0	130.4	960	70	5.0	TY	13/21	46.0	143.5	984	-	-	L
	09/06	22.6	129.4	950	80	5.5	TY	14/00	45.2	145.7	984	-	-	L
	09/12	22.9	128.7	940	85	6.0	TY	14/06	46.1	147.5	988	-	-	L
	09/18	23.3	127.8	930	90	6.5	TY	14/12	47.1	148.9	988	-	-	L
	10/00	23.6	127.2	925	95	6.5	TY	14/18	48.2	150.0	988	-	-	L
	10/03	23.7	126.9	920	95	-	TY	15/00	48.8	150.6	988	-	-	L
	10/06	24.0	126.6	910	100	7.0	TY	15/06	49.0	151.1	992	-	-	L
	10/09	24.2	126.3	910	100	-	TY	15/12	49.2	151.4	996	-	-	L
	10/12	24.3	126.0	910	105	7.0	TY	15/18	48.9	152.5	996	-	-	L
	10/15	24.6	125.7	910	105	-	TY	16/00	48.9	153.4	996	-	-	L
	10/18	24.7	125.4	910	105	7.0	TY	16/06						Dissip

TY CHOI-WAN (0315)

Choi-wan formed as a tropical depression (TD) north-northwest of the Palau Islands at 00UTC 16 September 2003. It moved to the northwest, then changed the direction to the northeast around 00UTC 17 September. After the change of its direction to the northwest again around 12UTC 17 September, it became a tropical storm (TS) far south of Okinawa at 00UTC 18 September. Shortly after changing the direction to the north-northeast, it upgraded into a severe tropical storm (STS) south of Okinawa at 00UTC 19 September and passed the northeastern part of Okinawa around 0830UTC on that day. Then it passed Amamioshima around 2230UTC 19 September and turned east-northeastwards. It upgraded into a typhoon (TY) southeast of Kyushu at 15UTC 20 September. After reaching the peak intensity with a maximum sustained wind of 70kt south of Kii Peninsula at 21UTC 20 September, it turned northeastwards around 00UTC 21 September. Holding a fairly straight northeastward track, it downgraded into STS over the waters east of Honshu at 12UTC 22 September and transformed into an extratropical cyclone east of Hokkaido at 00UTC 23 September. It crossed the International Date Line on that day.

Date/Time (UTC)		Center Position		Central pressure (hPa)	Max Wind (kt)	Number	Grade	Date/Time (UTC)	Center Position		Central pressure (hPa)	$\begin{gathered} \text { Max } \\ \text { Wind } \\ \text { (kt) } \end{gathered}$	Number	Grade
Sep	16/00	13.1	133.0	1004	-	-	TD	20/03	28.6	130.1	975	60	-	STS
	16/06	14.0	130.2	1004	-	-	TD	20/06	28.7	130.5	975	60	3.5	STS
	16/12	14.8	128.4	1002	-	-	TD	20/09	28.8	131.2	975	60	-	STS
	16/18	15.2	128.1	1000	-	-	TD	20/12	28.9	132.0	970	60	3.5	STS
	17/00	15.8	127.1	1000	-	-	TD	20/15	29.2	132.8	970	65	-	TY
	17/06	17.5	128.9	1000	-	-	TD	20/18	29.5	133.7	970	65	4.0	TY
	17/12	18.8	129.5	1000	-	-	TD	20/21	29.8	134.7	965	70	-	TY
	17/18	20.2	129.4	1000	-	-	TD	21/00	29.9	136.0	960	70	5.0	TY
	18/00	21.4	128.5	994	40	2.5	TS	21/03	30.5	136.3	960	70	-	TY
	18/06	21.8	128.3	990	45	3.0	TS	21/06	31.0	137.0	955	70	5.0	TY
	18/12	22.8	127.7	990	45	3.0	TS	21/09	31.6	138.0	955	70	-	TY
	18/15	23.2	127.5	990	45	-	TS	21/12	32.2	139.0	955	70	5.0	TY
	18/18	23.6	127.3	990	45	3.0	TS	21/15	32.7	140.0	955	70	-	TY
	18/21	24.1	127.3	990	45	-	TS	21/18	33.2	140.7	960	70	5.0	TY
	19/00	24.9	127.4	985	50	3.0	STS	21/21	33.8	142.1	960	70	-	TY
	19/03	25.4	127.7	985	50	-	STS	22/00	34.4	142.8	960	70	5.0	TY
	19/06	26.0	127.9	985	50	3.0	STS	22/03	35.1	143.8	965	70	-	TY
	19/08	26.5	128.2	985	50	-	STS	22/06	35.9	145.0	965	65	4.5	TY
	19/09	26.7	128.1	980	60	-	STS	22/12	37.7	147.6	980	55	4.0	STS
	19/12	27.0	128.2	980	60	3.5	STS	22/18	39.5	151.2	985	50	4.0	STS
	19/15	27.4	128.3	980	60	-	STS	23/00	41.0	156.0	994	-	-	L
	19/18	27.7	128.7	975	60	3.5	STS	23/06	43.4	164.3	1000	-	-	L
	19/21	28.0	129.0	975	60	-	STS	23/12	45.3	171.6	1000	-	-	L
	19/22	28.1	129.2	975	60	-	STS	23/18	46.0	178.7	996	-	-	L
	20/00	28.4	129.4	975	60	3.5	STS	24/00	47.0	184.5	994	-	-	Out

TY KOPPU (0316)

Koppu formed as a tropical depression (TD) over the sea west of the Mariana Islands at 00UTC 24 September 2003. After moving toward west for about a day, it began to take an abrupt clockwise turn. Moving toward the northeast, it developed into a tropical storm (TS) over the sea east of Okinotorishima at 18UTC 26 September. While it developed slowly, it made a meandering track for about two days over the sea southwest of Chichijima. Then it reached Typhoon intensity at 00UTC 29 September near Chichijima. Soon, it reached its peak intensity with a maximum sustained wind of 70kt over the same waters at 06TUC on that day. Moving toward the northeast, it weakened a little and transformed into an extratropical cyclone at 06UTC 30 September over the sea east of Japan and it turned north-northeastwards. After reaching the sea south of the Kuril Islands, it moved northeastwards and gradually changed the direction to the east over the sea south of the Aleutian Islands. It crossed the International Date Line at around 06UTC 3 October.

Date/Time (UTC)		Center Position		Central pressure (hPa)	$\begin{gathered} \text { Max } \\ \text { Wind } \\ (\mathrm{kt}) \end{gathered}$	$\underset{\text { Number }}{\mathrm{Cl}}$	Grade	Date/Time (UTC)		Center Position		Central pressure (hPa)	$\begin{gathered} \text { Max } \\ \text { Wind } \\ (\mathrm{kt}) \end{gathered}$	$\underset{\text { Cl }}{\mathrm{Cl}}$	Grade
Sep	24/00	15.8	140.5	1006	-	-	TD		28/21	27.0	141.0	970	60	-	STS
	24/06	16.3	138.8	1004	-	-	TD		29/00	27.3	141.2	965	65	4.0	TY
	24/12	16.3	137.5	1002	-	-	TD		29/03	27.7	141.5	965	65	-	TY
	24/18	16.3	136.8	1002	-	-	TD		29/06	28.3	141.9	960	70	4.5	TY
	25/00	16.0	136.1	1000	-	-	TD		29/12	29.5	142.9	965	65	4.5	TY
	25/06	16.3	136.0	998	-	-	TD		29/18	30.6	144.3	965	65	4.5	TY
	25/12	16.5	136.0	998	-	-	TD		30/00	32.8	147.0	970	60	4.0	STS
	25/18	16.6	136.0	996	-	-	TD		30/06	35.6	150.7	976	-	-	L
	26/00	16.8	136.3	996	-	-	TD		30/12	40.7	153.1	972	-	-	L
	26/06	18.1	136.8	998	-	-	TD		30/18	43.2	153.8	968	-	-	L
	26/12	19.0	137.5	998	-	-	TD	Oct	01/00	44.5	156.4	972	-	-	L
	26/18	20.4	138.6	992	35	2.0	TS		01/06	46.3	158.3	976	-	-	L
	27/00	21.5	139.3	985	40	2.5	TS		01/12	47.1	160.9	976	-	-	L
	27/06	22.5	139.4	980	50	3.0	STS		01/18	47.6	163.8	976	-	-	L
	27/12	23.1	139.5	980	50	3.0	STS		02/00	48.3	166.6	976	-	-	L
	27/18	24.0	139.9	975	55	3.5	STS		02/06	48.5	169.1	976	-	-	L
	28/00	24.7	140.8	975	55	3.5	STS		02/12	49.1	171.4	978	-	-	L
	28/06	25.4	140.6	975	60	3.5	STS		02/18	48.5	173.5	980	-	-	L
	28/09	25.8	140.5	970	60	-	STS		03/00	48.5	176.4	980	-	-	L
	28/12	26.1	140.5	970	60	3.5	STS		03/06	48.2	179.6	980	-	-	L
	28/15	26.4	140.5	970	60	-	STS		03/12	48.5	181.3	984	-	-	Out
	28/18	26.7	140.7	970	60	3.5	STS								

TY KETSANA (0317)

Ketsana formed as a tropical depression (TD) far east of Luzon Island at 06UTC 17 October 2003. It drifted west-northwestwards and became a tropical storm (TS) over the same waters at 00UTC 19 October. Shortly after changing the direction to the east-northeast, it upgraded into a severe tropical storm (STS) over the same waters at 18UTC 19 October and further deepened into a typhoon (TY) at 12UTC on the following day. It changed the direction to the north around 12UTC 20 October and reached the peak intensity with a maximum sustained wind of 90kt far east of Luzon Island at 00UTC 22 October. It turned northeastwards around 12UTC 22 October and traveled over the waters far south of Japan. Holding a fairly straight northeastward track, it downgraded into STS over the waters far southeast of Hachijojima at 18UTC 25 October. It transformed into an extratropical cyclone east of Honshu at 06UTC 26 October and dissipated over the same waters around 00UTC 27 October.

TY PARMA (0318)

Parma formed as a tropical depression (TD) over the adjacent seas of the Mariana Islands at 00UTC 19 October 2003. It took a clockwise track and became a tropical storm (TS) over the same waters at 00UTC 21 October. It drifted northeastwards and upgraded into a severe tropical storm (STS) north of the Mariana Islands at 18UTC 21 October and further deepened into a typhoon (TY) at 06UTC on the following day. It took a clockwise elliptical track ranging about 9 and 21 degrees in latitude and longitude, respectively, from 00UTC 23 October to 12UTC 29 October. During this period, Parma reached its peak intensity twice. One of them is with a maximum sustained wind of 95kt north of Minamitorishima at 00UTC 24 October and the other one is 90 kt west of the Island at 06UTC 29 October. After taking this elliptical track, it took a fairly straight east-northeast track and rapidly weakened into STS northeast of Minamitorishima at 00UTC 31 October. It transformed into an extratropical cyclone far northeast of Minamitorishima at 12UTC 31 October and crossed the International Date Line on 1 November.

Date/Time (UTC)		Center Position				$\begin{gathered} \mathrm{Cl} \\ \text { Number } \end{gathered}$	Grade	Date/Time (UTC)		Center Position		Central pressure (hPa)	Max Wind (kt)	$\underset{\text { Cumber }}{\mathrm{Cl}}$	Grade
Oct	19/00	18.4	145.2	1000	-	-	TD		26/00	25.3	169.7	965	65	4.5	TY
	19/06	18.4	144.8	1000	-	-	TD		26/06	24.0	169.5	970	60	4.5	STS
	19/12	18.3	144.4	1000	-	-	TD		26/12	23.1	168.9	970	60	4.5	STS
	19/18	18.4	144.0	1000	-	-	TD		26/18	22.9	167.6	970	60	4.5	STS
	20/00	18.8	143.8	1000	-	-	TD		27/00	22.7	166.0	975	60	4.0	STS
	20/06	19.7	143.2	998	-	-	TD		27/06	22.5	164.5	975	60	4.0	STS
	20/12	20.8	143.5	998	-	-	TD		27/12	21.8	162.7	975	60	4.0	STS
	20/18	20.9	143.9	996	-	-	TD		27/18	22.0	160.6	975	60	4.0	STS
	21/00	21.0	144.4	994	35		TS		28/00	21.9	158.2	975	60	4.0	STS
	21/06	21.5	144.9	992	40	2.5	TS		28/06	21.8	155.9	975	60	4.0	STS
	21/12	22.1	145.3	990	45				28/12	21.9	154.0	970	65	4.5	TY
	21/18	22.1	146.1	985	50	3.5	STS		28/18	22.7	152.2	960	70	5.0	TY
	22/00	22.2	146.5	980	55	3.5	STS		29/00	23.1	150.4	950	80	5.5	TY
	22/06	23.0	146.9	970	65	4.0			29/06	23.9	149.4	935	90	6.5	TY
	22/12	23.5	147.1	970	65	4.0	TY		29/12	24.8	148.9	935	90	6.5	TY
	22/18	24.1	147.9	965	65	4.0	TY		29/18	25.7	149.3	935	90	6.5	TY
	23/00	24.8	148.8	960	70	5.0	TY		30/00	26.6	150.2	940	85	6.0	TY
	23/06	26.1	149.6	950	80	5.5	TY		30/06	27.8	151.8	945	80	5.5	TY
	23/12	27.1	150.8	940	85				30/12	28.9	154.3	955	75	5.0	TY
	23/18	28.4	152.3	935	90				30/18	29.7	156.6	965	70	4.5	TY
	24/00	29.2	154.1	930	95	6.5			31/00	30.7	159.8	975	60	4.0	STS
	24/06	30.2	156.3	930	95	6.5	TY		31/06	31.3	163.5	980	55	3.5	STS
	24/12	30.7	158.7	930	95	6.5	TY		31/12	32.0	167.0	984	-	-	L
	24/18	30.7	161.4	930	95	6.5	TY		31/18	33.0	170.2	988	-	-	L
	25/00	30.0	163.5	935	90	6.5	TY	Nov	-01/00	33.7	173.1	988	-	-	L
	25/06	29.0	165.4	935	90	6.0	TY		01/06	34.4	175.9	990	-	-	L
	25/12	27.7	167.2	945	85	5.5	TY		01/12	34.7	179.4	992	-	-	L
	25/18	26.4	168.5	955	75	5.0	TY		01/18	35.6	182.6	992	-	-	Out

STS MELOR (0319)

Melor formed as a tropical depression (TD) east of the Philippines at 00UTC 29 October 2003. It moved to the west and became a tropical storm (TS) over the same waters at 12UTC 30 October. It changed the direction to the northwest and upgraded into a severe tropical storm (STS) and also reached the peak intensity with a maximum sustained wind of 50kt east of Luzon Island at 18UTC 31 October. After making landfall on Luzon Island about 6 hours later, it downgraded into TS over the Island and gradually changed the direction to the north. After changing the direction to the northeast over the Bashi Channel at around 12UTC 2 November, it reached the waters southsouthwest of Iriomotejima at 12UTC on the following day and almost stationed there for more than a half day. It downgraded into TD over the same waters at 18UTC 3 November and began to move to the northwest about 12 hours later. It changed the direction to the northeast gradually near Yonagunijima from 12UTC 4 November. It transformed into an extratropical cyclone southwest of Kyushu at 18UTC 5 November and dissipated near Tanegashima around 06UTC on the following day.

Date/Time (UTC)		Center Position		Central pressure (hPa)	Max Wind (kt)	$\begin{gathered} \mathrm{Cl} \\ \text { Number } \end{gathered}$	Grade	Date/Time (UTC)	Center Position		Central pressure (hPa)	Max Wind (kt)	Number	Grade
Oct	29/00	12.7	132.3	1006	-	-	TD	02/12	21.4	120.9	990	40	3.5	TS
	29/06	12.4	131.5	1006	-	-	TD	02/18	22.0	121.3	992	35	3.5	TS
	29/12	12.6	130.7	1006	-	-	TD	03/00	22.8	122.5	996	35	3.5	TS
	29/18	12.7	130.3	1004	-	-	TD	03/06	23.2	122.9	998	35	3.0	TS
	30/00	12.6	129.7	1002	-	-	TD	03/09	23.5	123.3	998	35	-	TS
	30/06	12.9	129.1	1000	-	-	TD	03/12	23.6	123.4	998	35	3.0	TS
	30/12	13.1	128.1	996	35	2.5	TS	03/18	23.5	123.5	1004	-	-	TD
	30/18	13.8	127.3	996	35	2.5	TS	04/00	23.3	123.5	1004	-	-	TD
	31/00	14.5	126.2	990	40	3.0	TS	04/06	23.5	123.2	1006	-	-	TD
	31/06	15.3	124.8	985	45	3.5	TS	04/12	24.3	122.7	1008	-	-	TD
	31/12	15.6	124.0	985	45	3.5	TS	04/18	25.5	123.3	1008	-	-	TD
	31/18	16.3	122.9	980	50	4.0	STS	05/00	26.5	123.5	1010	-	-	TD
Nov	01/00	16.9	122.6	980	50	4.0	STS	05/06	28.5	124.9	1010	-	-	TD
	01/06	17.5	121.8	990	40	3.5	TS	05/12	29.8	127.0	1012	-	-	TD
	01/12	18.4	121.2	996	35	3.0	TS	05/18	30.6	128.7	1012	-	-	L
	01/18	19.5	121.0	992	45	3.5	TS	06/00	30.8	130.8	1012	-	-	L
	02/00	20.1	120.8	990	45	3.5	TS	06/06						Dissip
	02/06	20.6	120.7	990	45	3.5	TS							

TY NEPARTAK (0320)

Nepartak formed as a tropical depression (TD) over the sea northeast of Yap Island at 18UTC 11 November 2003. After moving toward west for about a day, it developed into a tropical storm (TS) over the sea east of the Philippines at 18UTC 12 November. Developing slowly, it moved toward west and made landfall on the Philippines at around 16UTC 13 November. After it crossed over the Philippines, it turned gradually to west-northwest and reached Typhoon intensity and its peak intensity with a maximum sustained wind of 65kt over the sea southeast of Hainan Island at 18UTC 16 November. It turned gradually to the north and went into Gulf of Tongking and weakened into a tropical depression at 06UTC 19 November. The tropical depression dissipated over the Gulf of Tongking at 18UTC 19 November.

Date/Time		Center Position		Central pressure (hPa)	Max Wind (kt)	Number	Grade	Date/Time (UTC)	Center Position		Central pressure (hPa)	Max Wind (kt)		Grade
	(UTC)	Lat (N)	Lon (E)						Lat (N)	Lon (E)				
Nov	11/18	10.8	139.5	1004	-	-	TD	16/00	14.2	113.9	975	60	4.0	STS
	12/00	11.3	138.0	1004	-	-	TD	16/06	14.6	113.2	975	60	4.0	STS
	12/06	11.8	136.5	1002	-	-	TD	16/12	15.0	112.1	975	60	4.0	STS
	12/12	12.0	133.8	1000	-	-	TD	16/18	15.5	111.3	970	65	4.5	TY
	12/18	12.1	131.8	998	35	3.0	TS	17/00	16.1	110.5	975	60	4.5	STS
	13/00	12.3	130.4	992	40	3.0	TS	17/06	16.3	109.9	975	60	4.5	STS
	13/06	12.6	128.2	992	40	3.0	TS	17/12	16.8	109.6	975	60	4.5	STS
	13/12	12.6	126.2	985	50	3.5	STS	17/18	17.4	109.1	980	60	4.5	STS
	13/18	12.2	125.0	990	45	3.5	TS	18/00	18.0	108.6	985	55	4.5	STS
	14/00	11.8	123.7	990	45	3.0	TS	18/06	18.6	108.4	990	55	4.0	STS
	14/06	12.0	121.9	990	45	3.0	TS	18/12	19.3	108.5	996	45	3.5	TS
	14/12	12.2	120.7	990	45	3.5	TS	18/18	19.7	108.6	1000	40	3.0	TS
	14/18	12.3	119.1	985	50	3.5	STS	19/00	20.3	108.8	1000	35	2.5	TS
	15/00	12.6	117.8	980	55	4.0	STS	19/06	21.0	109.0	1004	-	-	TD
	15/06	13.4	116.8	975	60	4.0	STS	19/12	21.3	109.7	1008	-	-	TD
	15/12	13.8	115.8	975	60	4.0	STS	19/18						Dissip
	15/18	14.0	114.7	975	60	4.0	STS							

TY LUPIT (0321)

Lupit formed as a tropical depression (TD) over the sea west of the Marshall Islands at 12UTC 18 November 2003. After moving westward for three days, it developed into a tropical storm (TS) northwest of Pompei Island at 12UTC 21 November. Developing slowly, it moved westward and developed into a typhoon (TY) near the Caroline Islands at around 12UTC 23 November. Then it moved northwestward at around 00UTC 24 November. Moving northwestward, it reached its peak intensity with a maximum sustained wind of 100kt over the sea east of Philippines at 12UTC 26 November. It turned gradually northeastward at around 12UTC 29 November and moved to the sea south of Japan. It transformed an extratropical cyclone at 12UTC 2 December over the sea east of Japan and dissipated over the sea far east of Japan at 12UTC 3 December.

Date/Time (UTC)	Center Position		Central pressure (hPa)	Max Wind (kt)	Number	Grade	Date/Time (UTC)	Center Lat (N)	Position Lon (E)	Central pressure (hPa)	Max Wind (kt)	Number	Grade
Nov 18/12	9.5	164.5	1004	-	-	TD	26/12	13.5	136.0	920	100	7.0	TY
18/18	9.0	163.8	1002	-	-	TD	26/18	13.9	135.4	915	100	7.0	TY
19/00	9.0	163.6	1002	-	-	TD	27/00	14.0	134.9	915	100	7.0	TY
19/06	8.9	163.2	1002	-	-	TD	27/06	14.4	134.5	915	100	7.0	TY
19/12	8.8	162.6	1002	-	-	TD	27/12	14.9	133.9	915	100	7.0	TY
19/18	8.8	162.2	1002	-	-	TD	27/18	15.2	133.4	915	100	7.0	TY
20/00	8.9	162.0	1004	-	-	TD	28/00	15.5	133.0	920	100	6.5	TY
20/06	8.9	160.9	1002	-	-	TD	28/06	16.1	132.6	925	95	6.0	TY
20/12	8.8	160.5	1004	-	-	TD	28/12	16.8	132.0	930	90	5.5	TY
20/18	8.7	160.2	1000	-	-	TD	28/18	17.6	131.5	935	85	5.5	TY
21/00	8.6	159.7	1000	-	-	TD	29/00	18.4	131.1	935	85	5.5	TY
21/06	8.8	158.5	1000	-	-	TD	29/06	19.2	130.9	940	85	5.5	TY
21/12	8.9	156.7	998	35	2.5	TS	29/12	19.9	131.0	940	85	5.5	TY
21/18	8.6	154.9	992	45	3.0	TS	29/18	20.8	131.8	940	85	5.5	TY
22/00	8.5	153.6	985	50	3.5	STS	30/00	21.8	132.6	945	80	5.0	TY
22/06	8.7	152.1	985	50	3.5	STS	30/06	23.2	134.0	945	80	5.5	TY
22/12	8.8	150.6	980	50	4.0	STS	30/12	24.7	135.7	945	80	5.5	TY
22/18	8.4	149.5	980	50	4.0	STS	30/18	26.1	137.6	950	80	5.5	TY
23/00	8.0	148.2	975	55	4.0	STS	Dec 01/00	26.9	139.1	960	70	4.5	TY
23/06	8.1	147.1	970	60	4.0	STS	01/03	28.2	140.0	965	65	-	TY
23/12	8.0	145.7	965	70	5.0	TY	01/06	29.3	140.3	970	60	4.5	STS
23/18	7.7	144.5	960	75	5.0	TY	01/09	30.4	141.0	970	60	-	STS
24/00	7.8	144.1	955	75	5.0	TY	01/12	30.9	141.7	975	60	4.0	STS
24/06	8.5	143.5	955	75	5.0	TY	01/18	32.2	144.1	975	60	4.0	STS
24/12	9.0	142.6	955	75	5.0	TY	02/00	34.3	146.1	980	55	3.5	STS
24/18	9.9	141.7	955	75	5.0	TY	02/06	35.5	147.4	980	55	3.5	STS
25/00	10.4	140.4	955	75	5.0	TY	02/12	36.7	149.7	980	-	-	L
25/06	11.4	138.8	950	80	5.0	TY	02/18	38.0	152.7	980	-	-	L
25/12	11.8	137.7	945	80	5.0	TY	03/00	39.3	156.2	980	-	-	L
25/18	12.2	137.1	940	85	6.0	TY	03/06	40.9	159.8	980	-	-	L
26/00	12.6	136.8	935	90	6.5	TY	03/12						Dissip

Date/Time (UTC)	$\begin{aligned} & \text { Center F } \\ & \text { Lat (N) } \end{aligned}$	Position Lon (E)	$\begin{aligned} & \text { Central } \\ & \text { pressure } \end{aligned}$ (hPa)	$\text { Max Wind } \begin{gathered} \mathrm{Cl} \\ \text { Number } \end{gathered}$ (kt)	Grade	Date/Time (UTC)	$\begin{aligned} & \text { Center } \\ & \text { Lat (N) } \end{aligned}$	Position Lon (E)	$\begin{gathered} \text { Central } \\ \text { pressure } \end{gathered}$ (hPa)	$\begin{aligned} & \hline \text { Max } \mathrm{Cl} \\ & \text { Wind Number } \end{aligned}$ (kt)	Grade	Date/Time (UTC)	$\begin{aligned} & \text { Center } \\ & \text { Lat (N) } \\ & \hline \end{aligned}$	Position Lon (E)	$\begin{gathered} \text { Central } \\ \text { pressure } \\ (\mathrm{hPa}) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Max } \mathrm{Cl} \\ & \text { Wind Number } \end{aligned}$ (kt)	Grade
TY SOUDELOR (0306)						TY IMBUDO (0307)						STS KONI (0308)					
						15 Jul - 25 Jul						15 Jul - 22 Jul					
Jun 12/00	9.1	137	1008	-	TD	Jul 15/00	4.8	150	1008	-	TD	Jul 15/00	9.4	135	1008	-	TD
12/06	10.1	135	1006	-	TD	15/06	5.9	150	1006	-	TD	15/06	9.7	134	1004	-	TD
12/12	10.8	134	1006	-	TD	15/12	6.2	148	1006	-	TD	15/12	10.0	132.0	1006	-	TD
12/18	11.0	133	1006	-	TD	15/18	6.1	147	1004	-	TD	15/18	9.9	131	1004	-	TD
13/00	11.2	132	1004	-	TD	16/00	6.0	146	1004	-	TD	16/00	9.6	130	1002	-	TD
13/06	11.2	132	1000	35	TS	16/06	5.7	144	1004	-	TD	16/06	9.8	129	1002	-	TD
13/12	11.4	129	1000	35	TS	16/12	6.1	143	1004	-	TD	16/12	10.3	128	1002	-	TD
13/18	11.4	128.0	996	40	TS	16/18	7.3	142	1002	-	TD	16/18	10.8	127	1002	-	TD
14/00	11.4	128	996	40	TS	17/00	7.3	142	1002	-	TD	17/00	10.9	126	1000	-	TD
14/06	11.9	127	996	40	TS	17/06	8.3	141	998	35	TS	17/06	11.4	125	1000	-	TD
14/12	12.4	126	996	40	TS	17/12	8.8	140	998	35	TS	17/12	12.2	123	1000	-	TD
14/18	13.1	126	996	40	TS	17/18	9.2	140	998	35	TS	17/18	12.4	122	1000	-	TD
15/00	14.1	126	994	45	TS	18/00	9.7	138	996	40	TS	18/00	12.4	120	1000	-	TD
15/06	15.0	125	990	50	STS	18/06	10.0	137	994	40	TS	18/06	12.3	119	998	35	TS
15/12	15.8	125	985	50	STS	18/12	10.3	137	990	45	TS	18/12	12.5	119	998	40	TS
15/18	16.4	125	980	55	STS	18/18	10.6	137	985	50	STS	18/18	12.8	118	996	40	TS
16/00	16.9	125	980	55	STS	19/00	10.6	136	980	55	STS	19/00	13.5	117	994	40	TS
16/06	17.6	124	980	55	STS	19/06	10.5	135	975	60	STS	19/06	14.5	117	992	45	TS
16/12	18.3	123	980	55	STS	19/12	10.5	134	975	60	STS	19/12	15.0	116	992	45	TS
16/18	19.2	123.0	980	55	STS	19/18	10.9	133	970	65	TY	19/18	15.5	116.0	990	45	TS
17/00	19.6	123	975	60	STS	20/00	11.6	133	960	75	TY	20/00	16.4	115.0	985	50	STS
17/06	20.7	123	975	60	STS	20/06	12.1	132	945	85	TY	20/06	16.9	114	980	55	STS
17/09	21.4	124	975	60	STS	20/12	12.5	131	935	90	TY	20/12	17.8	114	980	55	STS
17/12	22.0	124	970	65	TY	20/18	13.3	130	935	90	TY	20/18	18.1	112	975	60	STS
17/15	22.7	124	970	65	TY	21/00	13.5	128	945	85	TY	21/00	18.2	111	975	60	STS
17/18	23.6	124	970	65	TY	21/06	14.0	127	945	85	TY	21/06	18.5	111	975	55	STS
17/20	24.2	124	968	65	TY	21/12	15.0	126	945	85	TY	21/12	18.5	110	980	50	STS
17/21	24.3	124	965	70	TY	21/18	15.8	125	950	80	TY	21/18	19.2	109	985	45	TS
18/00	25.1	124	960	75	TY	22/00	16.3	123.0	950	80	TY	22/00	19.6	108	985	45	TS
18/03	25.6	124	960	75	TY	22/06	16.9	121	955	75	TY	22/06	20.0	107	985	45	TS
18/06	26.4	125	955	80	TY	22/12	17.8	120	960	70	TY	22/12	20.2	105.0	990	40	TS
18/09	27.1	125	955	80	TY	22/18	18.1	118	965	70	TY	22/18	20.0	103.0	998		TD
18/12	27.8	126	960	75	TY	23/00	18.2	117	960	70	TY	23/00					Dissip
18/15	28.9	126	960	75	TY	23/06	18.7	115	955	75	TY						
18/18	29.9	126.0	965	70	TY	23/12	19.5	114	955	75	TY						
18/21	31.1	127	970	65	TY	23/18	20.0	113	955	75	TY						
19/00	32.5	128	975	60	STS	24/00	21.1	112.0	965	65	TY						
19/03	33.9	129	975	60	STS	24/06	22.1	110	975	50	STS						
19/04	34.2	129	975	60	STS	24/12	22.8	109	985	40	TS						
19/06	34.8	130	980	55	STS	24/18	23.5	107	992	35	TS						
19/09	36.2	131	980	55	STS	25/00	23.0	106.0	996	-	TD						
19/12	36.9	132.0	985	50	STS	25/06	23.1	105.0	996	-	TD						
19/15	37.5	134	985	-	L	25/12	23.5	104	998	-	TD						
19/18	38.7	135	988	-	L	25/18					Dissip						
20/00	40.4	138	996	-	L												
20/06	41.3	140	996	-	L												
20/12	41.5	143	996	-	L	Date/Time	Center	Position	$\begin{aligned} & \text { Central } \\ & \text { pressure } \end{aligned}$	$\begin{aligned} & \hline \mathrm{Max} \mathrm{Cl} \\ & \text { Wind Number } \end{aligned}$	Grade						
20/18	42.0	146	996	-	L	(UTC)	Lat (N)	Lon (E)									
21/00	41.7	147.0	994	-	L		TS	MORA	AKOT (030	0309)							
21/06	41.1	149	994	-	L			31 Jul	- 04 Aug								
21/12	40.6	150	996	-	L												
21/18	39.8	151.0	996	-	L	Jul 31/18	15.4	128	1004	-	TD						
22/00	39.2	152	996	-	L	Aug 01/00	16.0	128.0	1004	-	TD						
22/06	38.3	153	998	-	L	01/06	16.6	128	1002	-	TD						
22/12	37.4	155	998	-	L	01/12	16.8	128	1002	-	TD						
22/18	37.0	156	998	-	L	01/18	17.6	127	1002	-	TD						
23/00	37.0	157	998	-	L	02/00	18.3	126	1000	-	TD						
23/06	38.2	159	998	-	L	02/06	18.9	125	996	$35 \quad 2.5$	TS						
23/12	38.8	161.0	998	-	L	02/12	19.8	124.0	994	402.5	TS						
23/18	39.1	162	1002	-	L	02/18	20.1	123	992	453.0	TS						
24/00	39.2	163	1004	-	L	03/00	20.7	122	992	453.0	TS						
24/06					Dissip	03/06	21.4	121	992	453.0	TS						
						03/12	22.1	121.0	994	453.0	TS						
						03/18	23.2	120	994	403.0	TS						
						04/00	23.7	119.0	996	353.0	TS						
						04/06	24.1	119	996	353.0	TS						
						04/12	23.8	118.0	1000	-	TD						
						04/18					Dissip						

Date/Time (UTC)	Center Lat (N)	Position Lon (E)	Central pressure (hPa)	Max Wind (kt)	Number	Grade	Date/Time (UTC)	$\begin{aligned} & \text { Center } \\ & \text { Lat (N) } \end{aligned}$	Position Lon (E)	Central pressure (hPa)	Max Wind N (kt)	$\begin{gathered} \mathrm{Cl} \\ \text { Number } \end{gathered}$	Grade	Date/Time (UTC)		Position Lon (E)	Central pressure (hPa		$\underset{\text { Cl }}{\mathrm{Cl}}$	Grade
TY ETAU (0310)							TS VAMCO (0311)							TY KROVANH (0312)						
							18 Aug - 20 Aug							13 Aug - 26 Aug						
Aug 02/18	12.4	140	1004	-		TD	Aug 18/06	18.3	125	1004	-		TD	Aug 13/18	7.2	156.0	1008	-		TD
03/00	12.6	140.0	1004	-		TD	18/12	18.4	125	1002	-		TD	14/00	7.6	156	1008	-		TD
03/06	13.4	140	1000	35	2.0	TS	18/18	18.6	125	1000	-		TD	14/06	8.0	155	1008	-		TD
03/12	13.9	139	996	40	2.5	TS	19/00	20.5	125	1000	-		TD	14/12	8.5	154.0	1008			TD
03/18	14.7	138.0	990	45	3.0	TS	19/06	22.7	125	996	35	2.5	TS	14/18	8.7	153	1006	-		TD
04/00	15.2	137	980	55	3.5	STS	19/12	24.2	124	996	35	2.5	TS	15/00	9.0	152	1008	-		TD
04/06	15.6	135.0	980	55	3.5	STS	19/15	24.9	123	996	35		TS	15/06	9.3	151	1006	-		TD
04/12	16.5	134	975	60	4.0	STS	19/18	25.5	122	996	35	2.5	TS	15/12	9.8	150	1006			TD
04/18	17.8	134	965	70	4.5	TY	20/00	27.2	121	998	-		TD	15/18	10.6	149	1006	-		TD
05/00	18.3	133	960	75	4.5	TY	20/06						Dissip	16/00	11.1	149	1008	-		TD
05/06	18.6	132	960	75	4.5	TY								16/06	11.5	147	1008	-		TD
05/12	19.3	131.0	960	75	5.0	TY								16/12	12.1	146.0	1008	-		TD
05/18	20.5	130	960	75	5.0	TY	Date/Time	Center	osition	$\begin{aligned} & \text { Central } \\ & \text { pressure } \end{aligned}$	Max Wind N	$\begin{gathered} \mathrm{Cl} \\ \text { Number } \end{gathered}$	Grade	16/18	12.6	144	1008	-		TD
06/00	21.5	130	955	75	5.0	TY	(UTC)	Lat (N)	Lon (E)	(hPa)	(kt)			17/00	13.2	144	1010	-		TD
06/06	22.7	129.0	955	75	5.0	TY			DUJU	JAN (03	313)			17/06	13.8	144	1008	-		TD
06/12	23.9	129	955	75	5.0	TY			27 Aug	- 03 Sep				17/12	14.9	143	1008	-		TD
06/15	24.7	129	955	75		TY								17/18	15.5	142	1008	-		TD
06/18	25.3	128	950	80	5.0	TY	Aug 27/18	17.6	140	1008	-		TD	18/00	16.1	141.0	1008	-		TD
06/21	26.0	128	950	80		TY	28/00	17.8	138	1008	-		TD	18/06	16.8	140	1008	-		TD
07/00	26.5	128	950	80	5.5	TY	28/06	17.1	137	1008	-		TD	18/12	17.4	139	1008	-		TD
07/03	27.0	128	950	80		TY	28/12	16.2	137	1008	-		TD	18/18	18.0	139	1008	-		TD
07/06	27.5	129	945	85	5.5	TY	28/18	16.0	137	1006	-		TD	19/00	18.9	137	1008	-		TD
07/09	28.0	129.0	945	85		TY	29/00	15.8	136	1006	-		TD	19/06	19.4	136	1008	-		TD
07/10	28.1	129	945	85		TY	29/06	16.0	135	1002			TD	19/12	19.9	135	1008	-		TD
07/12	28.4	130	950	80	5.5	TY	29/12	16.0	135.0	1000	-		TD	19/18	19.7	134	1008	-		TD
07/15	28.8	130	950	80		TY	29/18	16.0	135	998	35	2.5	TS	20/00	19.4	133	1008	-		TD
07/18	29.4	131	950	80	5.5	TY	30/00	16.1	135	990	45	3.0	TS	20/06	19.2	132.0	1004	-		TD
07/21	30.0	132	950	80		TY	30/06	16.5	134	985	50	3.5	STS	20/12	18.9	131	998	35	2.5	TS
08/00	30.7	132.0	950	75	5.0	TY	30/12	17.5	133	980	55	3.5	STS	20/18	18.7	130	990	45	3.0	TS
08/03	31.5	133	950	75		TY	30/18	18.5	132	975	65	4.0	TY	21/00	18.5	129	990	45	3.0	TS
08/06	32.1	133	950	75	5.0	TY	31/00	19.1	131	970	65	4.5	TY	21/06	18.2	128	985	50	3.0	STS
08/09	32.7	134	950	75		TY	31/06	19.8	130	960	70	5.0	TY	21/12	17.9	127.0	980	55	3.5	STS
08/12	33.2	134.0	950	75	5.0	TY	31/12	20.2	128	960	70	5.0	TY	21/18	17.8	126	975	60	4.0	STS
08/15	33.7	134	955	60		STS	31/18	20.4	127	960	70	5.0	TY	22/00	17.6	125	970	65	4.0	TY
08/18	34.2	135	965	50	4.0	STS	Sep 01/00	20.8	125	950	80	5.5	TY	22/06	17.5	123	970	65	4.5	TY
08/21	34.7	135	970	50		STS	01/06	20.9	124	950	80	5.5	TY	22/12	17.4	122	970	65	4.0	TY
09/00	35.5	136	975	45	4.0	TS	01/12	21.3	122	950	80	5.5	TY	22/18	17.3	120	985	45	4.0	TS
09/03	36.5	137	980	45		TS	01/18	21.6	120	950	80	5.5	TY	23/00	17.3	119	985	50	3.5	STS
09/06	37.4	139	985	40	3.5	TS	02/00	22.1	118.0	950	80	5.5	TY	23/06	17.4	118.0	985	50	3.5	STS
09/09	38.4	140.0	985	40		TS	02/06	22.3	117	960	70	5.0	TY	23/12	17.7	117	980	55	3.5	STS
09/12	40.0	141	985	40	3.0	TS	02/12	22.6	115	975	60	4.5	STS	23/18	18.4	116	975	55	4.0	STS
09/15	41.4	142	985	40		TS	02/18	22.6	113	990	45	4.5	TS	24/00	19.0	115	975	55	4.0	STS
09/16	41.9	143	985	40		TS	03/00	22.5	111	996	-		TD	24/06	19.3	113	975	60	4.0	STS
09/18	42.8	144	984	-		L	03/06						Dissip	24/12	19.4	113	975	60	4.0	STS
10/00	44.7	147	984	-		L								24/18	20.1	111	970	65	4.5	TY
10/06	48.4	151	984	-		L								25/00	20.7	110	970	65	4.5	TY
10/12	50.7	153	984	-		L								25/06	21.0	109	970	65	4.5	TY
10/18	52.3	153	984	-		L								25/12	21.3	108	975	55	4.5	STS
11/00	52.8	152	984	-		L								25/18	21.6	107	985	50	3.5	STS
11/06	53.2	153	988	-		L								26/00	22.2	106	990	40	3.0	TS
11/12	53.0	153	990	-		L								26/06	22.7	105	996	-		TD
11/18	52.2	154.0	990	-		L								26/12	22.0	103.0	1000	-		TD
12/00						Dissip								26/18						Dissip

Date/Time (UTC)	$\begin{aligned} & \text { Center } \\ & \text { Lat (N) } \end{aligned}$	Position Lon (E)	$\begin{gathered} \text { Central } \\ \text { pressure } \end{gathered}$ (hPa)	Max Wind (kt)	Number	Grade	Date/Time (UTC)	$\begin{aligned} & \text { Center } \\ & \text { Lat (N) } \\ & \hline \end{aligned}$	Position) $\mathrm{Lon}(\mathrm{E})$	Centra pressure (hPa)	Max Wind (kt)	Number	Grade	Date/Time (UTC)	$\begin{aligned} & \text { Center } \mathrm{F} \\ & \text { Lat (N) } \\ & \hline \end{aligned}$	Position Lon (E)	Central pressure (hPa)		$\begin{array}{cl} \hline \mathrm{Cl} \\ \text { Vumber } \end{array}$	Grade
TY MAEMI (0314)							TY CHOI-WAN (0315)							TY KOPPU (0316)						
04 Sep - 16 Sep							16 Sep - 24 Sep							24 Sep - 03 Oct						
Sep 04/00	9.9	153	1008	-		TD	Sep 16/00	13.1	1133.0	1004	-		TD	Sep 24/00	15.8	141	1006	-		TD
04/06	10.4	151	1006			TD	16/06	14.0	- 130	1004	-		TD	24/06	16.3	139	1004	-		TD
04/12	10.9	150	1006	-		TD	16/12	14.8	- 128	1002	-		TD	24/12	16.3	138	1002	-		TD
04/18	11.7	149	1004			TD	16/18	15.2	2128	1000	-		TD	24/18	16.3	137	1002	-		TD
05/00	12.5	148	1004			TD	17/00	15.8	- 127	1000	-		TD	25/00	16.0	136	1000	-		TD
05/06	12.9	146	1004			TD	17/06	17.5	129	1000	-		TD	25/06	16.3	136.0	998	-		TD
05/12	13.8	145	1004			TD	17/12	18.8	8130	1000	-		TD	25/12	16.5	136.0	998	-		TD
05/18	14.0	144	1002			TD	17/18	20.2	2129	1000	-		TD	25/18	16.6	136.0	996	-		TD
06/00	15.6	143	1000	-		TD	18/00	21.4	4129	994	40	2.5	TS	26/00	16.8	136	996	-		TD
06/06	16.5	141	994	35	2.5	TS	18/06	21.8	128	990	45	3.0	TS	26/06	18.1	137	998	-		TD
06/12	16.8	140	994	35	2.5	TS	18/12	22.8	8128	990	45	3.0	TS	26/12	19.0	138	998	-		TD
06/18	17.0	139	992	40	3.0	TS	18/15	23.2	2128	990	45		TS	26/18	20.4	139	992	35	2.0	TS
07/00	17.8	138	992	40	3.0	TS	18/18	23.6	6 127	990	45	3.0	TS	27/00	21.5	139	985	40	2.5	TS
07/06	18.8	137	992	40	3.0	TS	18/21	24.1	127	990	45		TS	27/06	22.5	139	980	50	3.0	STS
07/12	19.1	136	990	45	3.5	TS	19/00	24.9	127	985	50	3.0	STS	27/12	23.1	140	980	50	3.0	STS
07/18	19.4	135.0	985	50	3.5	STS	19/03	25.4	4128	985	50		STS	27/18	24.0	140	975	55	3.5	STS
08/00	19.7	134	980	55	4.0	STS	19/06	26.0	- 128	985	50	3.0	STS	28/00	24.7	141	975	55	3.5	STS
08/06	20.0	133	975	60	4.0	STS	19/08	26.5	5128	985	50		STS	28/06	25.4	141	975	60	3.5	STS
08/12	20.4	132.0	975	60	4.0	STS	19/09	26.7	7128	980	60		STS	28/09	25.8	141	970	60		STS
08/18	21.0	131	970	65	4.0	TY	19/12	27.0	- 128	980	60	3.5	STS	28/12	26.1	141	970	60	3.5	STS
09/00	22.0	130	960	70	5.0	TY	19/15	27.4	4 128	980	60		STS	28/15	26.4	141	970	60		STS
09/06	22.6	129	950	80	5.5	TY	19/18	27.7	7129	975	60	3.5	STS	28/18	26.7	141	970	60	3.5	STS
09/12	22.9	129	940	85	6.0	TY	19/21	28.0	129.0	975	60		STS	28/21	27.0	141.0	970	60		STS
09/18	23.3	128	930	90	6.5	TY	19/22	28.1	129	975	60		STS	29/00	27.3	141	965	65	4.0	TY
10/00	23.6	127	925	95	6.5	TY	20/00	28.4	4129	975	60	3.5	STS	29/03	27.7	142	965	65		TY
10/03	23.7	127	920	95		TY	20/03	28.6	6130	975	60		STS	29/06	28.3	142	960	70	4.5	TY
10/06	24.0	127	910	100	7.0	TY	20/06	28.7	7131	975	60	3.5	STS	29/12	29.5	143	965	65	4.5	TY
10/09	24.2	126	910	100		TY	20/09	28.8	8131	975	60		STS	29/18	30.6	144	965	65	4.5	TY
10/12	24.3	126.0	910	105	7.0	TY	20/12	28.9	132.0	970	60	3.5	STS	30/00	32.8	147.0	970	60	4.0	STS
10/15	24.6	126	910	105		TY	20/15	29.2	2133	970	65		TY	30/06	35.6	151	976	-		L
10/18	24.7	125	910	105	7.0	TY	20/18	29.5	5134	970	65	4.0	TY	30/12	40.7	153	972	-		L
10/19	24.8	125	910	105		TY	20/21	29.8	8135	965	70		TY	30/18	43.2	154	968	-		L
10/21	25.0	125	910	105		TY	21/00	29.9	136.0	960	70	5.0	TY	Oct 01/00	44.5	156	972	-		L
11/00	25.2	125	910	105	6.5	TY	21/03	30.5	5136	960	70		TY	01/06	46.3	158	976	-		L
11/03	25.5	125	920	95		TY	21/06	31.0	137.0	955	70	5.0	TY	01/12	47.1	161	976	-		L
11/06	25.9	125	920	95	6.0	TY	21/09	31.6	138.0	955	70		TY	01/18	47.6	164	976	-		L
11/09	26.3	125	925	95		TY	21/12	32.2	139.0	955	70	5.0	TY	02/00	48.3	167	976	-		L
11/12	27.0	126	930	95	5.5	TY	21/15	32.7	7140.0	955	70		TY	02/06	48.5	169	976	-		L
11/15	27.8	126	935	90		TY	21/18	33.2	2141	960	70	5.0	TY	02/12	49.1	171	978	-		L
11/18	28.4	126	935	90	5.5	TY	21/21	33.8	8142	960	70		TY	02/18	48.5	174	980	-		L
11/21	29.5	126	935	90		TY	22/00	34.4	4143	960	70	5.0	TY	03/00	48.5	176	980	-		L
12/00	30.5	127	930	95	6.0	TY	22/03	35.1	144	965	70		TY	03/06	48.2	180	980	-		L
12/06	32.7	127	935	90	6.0	TY	22/06	35.9	145.0	965	65	4.5	TY	03/12	48.5	181	984	-		Out
12/09	33.9	128	945	80		TY	22/12	37.7	7148	980	55	4.0	STS							
12/12	34.9	128	955	75	6.0	TY	22/18	39.5	5151	985	50	4.0	STS							
12/18	37.0	130	970	60	6.0	STS	23/00	41.0	156.0	994	-		L							
13/00	39.1	132	975	55	5.0	STS	23/06	43.4	4164	1000	-		L							
13/06	40.5	135	980	50	5.0	STS	23/12	45.3	3172	1000	-		L							
13/09	41.5	137	980	50	4.5	STS	23/18	46.0	- 179	996	-		L							
13/12	42.3	138	980	50	4.0	STS	24/00	47.0	- 185	994	-		Out							
13/15	43.2	140.0	980	50		STS														
13/18	44.7	141	980	50	3.5	STS														
13/21	46.0	144	984	-		L														
14/00	45.2	146	984	-		L														
14/06	46.1	148	988	-		L														
14/12	47.1	149	988	-		L														
14/18	48.2	150.0	988	-		L														
15/00	48.8	151	988	-		L														
15/06	49.0	151	992	-		L														
15/12	49.2	151	996	-		L														
15/18	48.9	153	996	-		L														
16/00	48.9	153	996	-		L														
16/06						Dissip														

Date/Time (UTC)	Center Position Lat (N) Lon (E)		$\begin{gathered} \text { Central } \\ \text { pressure } \end{gathered}$ (hPa)		$\begin{gathered} \hline \mathrm{Cl} \\ \text { lumber } \end{gathered}$	Grade	Date/Time (UTC)	$\begin{aligned} & \text { Center } \\ & \text { Lat (N) } \end{aligned}$	Position Lon (E)	Central pressure (hPa)		$\begin{gathered} \mathrm{Cl} \\ \text { Number } \end{gathered}$	Grade	Date/Time (UTC)		Position Lon (E)	Central pressure (hPa)		$\underset{\text { Cl }}{\mathrm{Cl}}$	Grade
TY KETSANA (0317)							TY PARMA (0318)							STS MELOR (0319)						
17 Oct - 26 Oct							19 Oct - 01 Nov							29 Oct - 06 Nov						
Oct 17/06	15.1	132	1004	-		TD	Oct 19/00	18.4	145	1000	-		TD	Oct 29/00	12.7	132	1006	-		TD
17/12	15.0	132	1004	-		TD	19/06	18.4	145	1000	-		TD	29/06	12.4	132	1006	-		TD
17/18	14.8	132	1002	-		TD	19/12	18.3	144	1000	-		TD	29/12	12.6	131	1006			TD
18/00	14.7	132	1002	-		TD	19/18	18.4	144.0	1000	-		TD	29/18	12.7	130	1004			TD
18/06	14.8	132	1000	-		TD	20/00	18.8	144	1000	-		TD	30/00	12.6	130	1002	-		TD
18/12	15.1	132	1000	-		TD	20/06	19.7	143	998	-		TD	30/06	12.9	129	1000	-		TD
18/18	15.4	131	1000	-		TD	20/12	20.8	144	998	-		TD	30/12	13.1	128	996	35	2.5	TS
19/00	15.6	130	996	35		TS	20/18	20.9	144	996	-		TD	30/18	13.8	127	996	35	2.5	TS
19/06	15.5	130.0	992	35	2.5	TS	21/00	21.0	144	994	35	2.5	TS	31/00	14.5	126	990	40	3.0	TS
19/12	15.4	130	990	45	2.5	TS	21/06	21.5	145	992	40	2.5	TS	31/06	15.3	125	985	45	3.5	TS
19/18	15.5	131	985	50	3.0	STS	21/12	22.1	145	990	45	3.0	TS	31/12	15.6	124.0	985	45	3.5	TS
20/00	15.6	131	980	55	3.5	STS	21/18	22.1	146	985	50	3.5	STS	31/18	16.3	123	980	50	4.0	STS
20/06	15.7	131	975	60	4.0	STS	22/00	22.2	147	980	55	3.5	STS	Nov 01/00	16.9	123	980	50	4.0	STS
20/12	15.9	131	970	65	4.0	TY	22/06	23.0	147	970	65	4.0	TY	01/06	17.5	122	990	40	3.5	TS
20/18	16.2	131.0	965	70	4.5	TY	22/12	23.5	147	970	65	4.0	TY	01/12	18.4	121	996	35	3.0	TS
21/00	16.4	131	950	80	5.5	TY	22/18	24.1	148	965	65	4.0	TY	01/18	19.5	121.0	992	45	3.5	TS
21/06	16.7	131	945	85	6.0	TY	23/00	24.8	149	960	70	5.0	TY	02/00	20.1	121	990	45	3.5	TS
21/12	17.0	131	940	85	6.0	TY	23/06	26.1	150	950	80	5.5	TY	02/06	20.6	121	990	45	3.5	TS
21/18	17.2	131	940	85	6.0	TY	23/12	27.1	151	940	85	6.0	TY	02/12	21.4	121	990	40	3.5	TS
22/00	17.4	131	940	90	6.0	TY	23/18	28.4	152	935	90	6.5	TY	02/18	22.0	121	992	35	3.5	TS
22/06	17.8	131	940	90	6.0	TY	24/00	29.2	154	930	95	6.5	TY	03/00	22.8	123	996	35	3.5	TS
22/12	18.1	131	940	85	6.0	TY	24/06	30.2	156	930	95	6.5	TY	03/06	23.2	123	998	35	3.0	TS
22/18	18.5	132	940	85	6.0	TY	24/12	30.7	159	930	95	6.5	TY	03/09	23.5	123	998	35		TS
23/00	18.7	132.0	940	85	6.0	TY	24/18	30.7	161	930	95	6.5	TY	03/12	23.6	123	998	35	3.0	TS
23/06	19.2	132	940	85	6.0	TY	25/00	30.0	164	935	90	6.5	TY	03/18	23.5	124	1004	-		TD
23/12	19.6	133	940	85	6.0	TY	25/06	29.0	165	935	90	6.0	TY	04/00	23.3	124	1004	-		TD
23/18	20.0	134	940	85	6.0	TY	25/12	27.7	167	945	85	5.5	TY	04/06	23.5	123	1006	-		TD
24/00	20.4	134	945	80	5.5	TY	25/18	26.4	169	955	75	5.0	TY	04/12	24.3	123	1008	-		TD
24/06	21.0	134	945	80	5.5	TY	26/00	25.3	170	965	65	4.5	TY	04/18	25.5	123	1008	-		TD
24/12	21.8	134	945	80	5.5	TY	26/06	24.0	170	970	60	4.5	STS	05/00	26.5	124	1010	-		TD
24/18	22.9	135	945	80	5.5	TY	26/12	23.1	169	970	60	4.5	STS	05/06	28.5	125	1010	-		TD
25/00	24.6	136	950	80	5.5	TY	26/18	22.9	168	970	60	4.5	STS	05/12	29.8	127.0	1012	-		TD
25/06	25.9	137	955	75	5.0	TY	27/00	22.7	166.0	975	60	4.0	STS	05/18	30.6	129	1012	-		L
25/12	27.7	139	965	70	4.5	TY	27/06	22.5	165	975	60	4.0	STS	06/00	30.8	131	1012	-		L
25/18	29.8	142	975	60	4.0	STS	27/12	21.8	163	975	60	4.0	STS	06/06						Dissip
26/00	32.1	145	980	55	3.5	STS	27/18	22.0	161	975	60	4.0	STS							
26/06	34.4	148	986	-		L	28/00	21.9	158	975	60	4.0	STS							
26/12	36.1	150	990			L	28/06	21.8	156	975	60	4.0	STS							
26/18	38.2	155	996	-		L	28/12	21.9	154.0	970	65	4.5	TY							
27/00						Dissip	28/18	22.7	152	960	70	5.0	TY							
							29/00	23.1	150	950	80	5.5	TY							
Date/Time		Position	$\begin{aligned} & \text { Central } \\ & \text { pressure } \end{aligned}$	Wind	$\stackrel{\mathrm{Cl}}{\text { lumber }}$	Grade	29/06	23.9	149	935	90	6.5	TY							
(UTC)	Lat (N)	Lon (E)	(hPa)	t)			29/12	24.8	149	935	90	6.5	TY							
		NEPA	ARTAK	20)			29/18	25.7	149	935	90	6.5	TY							
		11 N	ov-19 Nov				30/00	26.6	150	940	85	6.0	TY							
							30/06	27.8	152	945	80	5.5	TY							
Nov 11/18	10.8	140	1004	-		TD	30/12	28.9	154	955	75	5.0	TY							
12/00	11.3	138.0	1004	-		TD	30/18	29.7	157	965	70	4.5	TY							
12/06	11.8	137	1002	-		TD	31/00	30.7	160	975	60	4.0	STS							
12/12	12.0	134	1000	-		TD	31/06	31.3	164	980	55	3.5	STS							
12/18	12.1	132	998	35	3.0	TS	31/12	32.0	167.0	984	-		L							
13/00	12.3	130	992	40	3.0	TS	31/18	33.0	170	988	-		L							
13/06	12.6	128	992	40	3.0	TS	Nov 01/00	33.7	173	988	-		L							
13/12	12.6	126	985	50	3.5	STS	01/06	34.4	176	990	-		L							
13/18	12.2	125.0	990	45	3.5	TS	01/12	34.7	179	992	-		L							
14/00	11.8	124	990	45	3.0	TS	01/18	35.6	183	992	-		Out							
14/06	12.0	122	990	45	3.0	TS														
14/12	12.2	121	990	45	3.5	TS														
14/18	12.3	119	985	50	3.5	STS														
15/00	12.6	118	980	55	4.0	STS														
15/06	13.4	117	975	60	4.0	STS														
15/12	13.8	116	975	60	4.0	STS														
15/18	14.0	115	975	60	4.0	STS														
16/00	14.2	114	975	60	4.0	STS														
16/06	14.6	113	975	60	4.0	STS														
16/12	15.0	112	975	60	4.0	STS														
16/18	15.5	111	970	65	4.5	TY														
17/00	16.1	111	975	60	4.5	STS														
17/06	16.3	110	975	60	4.5	STS														
17/12	16.8	110	975	60	4.5	STS														
17/18	17.4	109	980	60	4.5	STS														
18/00	18.0	109	985	55	4.5	STS														
18/06	18.6	108	990	55	4.0	STS														
18/12	19.3	109	996	45	3.5	TS														
18/18	19.7	109	1000	40	3.0	TS														
19/00	20.3	109	1000	35	2.5	TS														
19/06	21.0	109.0	1004	-		TD														
19/12	21.3	110	1008	-		TD														
19/18						Dissip														

TY LUPIT (0321)
18 Nov-03 Dec

Nov 18/12	9.5	165	1004	-		TD
18/18	9.0	164	1002	-		TD
19/00	9.0	164	1002	-		TD
19/06	8.9	163	1002	-		TD
19/12	8.8	163	1002	-		TD
19/18	8.8	162	1002	-		TD
20/00	8.9	162.0	1004	-		TD
20/06	8.9	161	1002			TD
20/12	8.8	161	1004	-		TD
20/18	8.7	160	1000	-		TD
21/00	8.6	160	1000			TD
21/06	8.8	159	1000	-		TD
21/12	8.9	157	998	35	2.5	TS
21/18	8.6	155	992	45	3.0	TS
22/00	8.5	154	985	50	3.5	STS
22/06	8.7	152	985	50	3.5	STS
22/12	8.8	151	980	50	4.0	STS
22/18	8.4	150	980	50	4.0	STS
23/00	8.0	148	975	55	4.0	STS
23/06	8.1	147	970	60	4.0	STS
23/12	8.0	146	965	70	5.0	TY
23/18	7.7	145	960	75	5.0	TY
24/00	7.8	144	955	75	5.0	TY
24/06	8.5	144	955	75	5.0	TY
24/12	9.0	143	955	75	5.0	TY
24/18	9.9	142	955	75	5.0	TY
25/00	10.4	140	955	75	5.0	TY
25/06	11.4	139	950	80	5.0	TY
25/12	11.8	138	945	80	5.0	TY
25/18	12.2	137	940	85	6.0	TY
26/00	12.6	137	935	90	6.5	TY
26/06	13.1	137	925	95	7.0	TY
26/12	13.5	136.0	920	100	7.0	TY
26/18	13.9	135	915	100	7.0	TY
27/00	14.0	135	915	100	7.0	TY
27/06	14.4	135	915	100	7.0	TY
27/12	14.9	134	915	100	7.0	TY
27/18	15.2	133	915	100	7.0	TY
28/00	15.5	133.0	920	100	6.5	TY
28/06	16.1	133	925	95	6.0	TY
28/12	16.8	132.0	930	90	5.5	TY
28/18	17.6	132	935	85	5.5	TY
29/00	18.4	131	935	85	5.5	TY
29/06	19.2	131	940	85	5.5	TY
29/12	19.9	131.0	940	85	5.5	TY
29/18	20.8	132	940	85	5.5	TY
30/00	21.8	133	945	80	5.0	TY
30/06	23.2	134.0	945	80	5.5	TY
30/12	24.7	136	945	80	5.5	TY
30/18	26.1	138	950	80	5.5	TY
Dec 01/00	26.9	139	960	70	4.5	TY
01/03	28.2	140.0	965	65		TY
01/06	29.3	140	970	60	4.5	STS
01/09	30.4	141.0	970	60		STS
01/12	30.9	142	975	60	4.0	STS
01/18	32.2	144	975	60	4.0	STS
02/00	34.3	146	980	55	3.5	STS
02/06	35.5	147	980	55	3.5	STS
02/12	36.7	150	980	-		L
02/18	38.0	153	980	-		L
03/00	39.3	156	980	-		L
03/06	40.9	160	980	-		L
03/12						Dissip

Position and Intensity Forecast Errors for Each Tropical Cyclone in 2003

Date/Time (UTC)	Center Position$T=00(\mathrm{~km}) \mathrm{T}=24(\mathrm{~km}) \mathrm{T}=48 \mathrm{~km}) \mathrm{T}=72(\mathrm{~km})$				Central Pressure			Max. Wind $(\mathrm{kt}) \mathrm{T}=48(\mathrm{kt}) \mathrm{T}=72(\mathrm{kt})$			Date/Time (UTC)	Center Position$T=00(\mathrm{~km})$$\mathrm{T}=24(\mathrm{~km}) \mathrm{T}=48(\mathrm{~km}) \mathrm{T}=72(\mathrm{~km})$				Central Pressure ($24(\mathrm{hPa}) \mathrm{T}=88(\mathrm{HPa}) \mathrm{T}=72(\mathrm{HPa})$			$\begin{aligned} & \text { Max. Winc } \\ & \text { 2(kt) } T=48(k t) T \end{aligned}$		
TY PARMA (0318)											STS MELOR (0319)										
Oct 21/00	56	142	188	45	10	25	55	-10	-20	-45	Oct 30/12	0	116	74	176	5	-21	-30	0	25	35
21/06	52	147	60	44	15	30	50	-15	-25	-40	30/18	11	15	285	676	10	-12	-22	-5	10	30
21/12	10	112	49	119	15	40	50	-15	-30	-40	31/00	0	46	376	946	5	-5	-16	0	5	20
21/18	0	52	82	208	15	45	50	-10	-35	-40	31/06	0	11	175	619	-10	-10	-18	15	10	20
22/00	11	44	93	227	10	40	45	-5	-30	-35	31/12	0	25	257	721	-16	-10	-18	20	15	20
22/06	0	67	127	380	10	30	45	-5	-20	-35	31/18	11	207	519		-12	-12		10	20	
22/12	0	173	270	548	20	30	40	-10	-20	-35	Nov 01/00	0	185	516		-5	-16		0	20	
22/18	10	162	270	615	25	35	35	-15	-25	-30	01/06	0	252	690		-5	-23		5	25	
23/00	0	131	362	874	25	40	25	-20	-30	-20	01/12	15	231	721		-5	-18		10	20	
23/06	0	40	361	872	15	30	20	-15	-20	-15	01/18	0	212			-7			15		
23/12	0	142	438	772	15	20	22	-10	-15	-20	02/00	0	310			-11			15		
23/18	0	97	523	700	30	20	22	-20	-15	-20	02/06	0	295			-13			15		
24/00	0	141	626	759	20	15	21	-15	-10	-30	02/12	0	143			-6			0		
24/06	15	173	489	377	25	10	15	-15	-5	-15	02/18	0									
24/12	0	230	449	376	15	10	15	-10	-5	-15	03/00	0									
24/18	0	149	204	201	5	0	-5	0	5	5	03/06	0									
25/00	0	269	177	216	-5	-5	-5	10	5	5	03/12	20									
25/06	53	213	205	309	-15	-15	-15	20	15	15											
25/12	0	158	192	332	-10	-5	0	15	5	0											
25/18	0	47	174	239	-5	-5	10	10	5	-5	Date/Time		enter P	sition		Centr	Press		M	Wind	
26/00	0	0	102	242	-10	-10	20	10	5	-15	(UTC)	$\mathrm{T}=00(\mathrm{~km}) \mathrm{T}$	$24(\mathrm{~km}) \mathrm{T}$	$48(\mathrm{~km}) \mathrm{T}$	72(km)	24(hPa)	(hPa) T	2(1Pa)		48(kt) T	
26/06	22	103	235	313	-10	-15	25	10	15	-15					LUP	(0321)					
26/12	0	94	164	314	-10	-10	20	10	10	-10											
26/18	0	70	84	83	-10	0	25	10	5	-15	Nov 21/12	46	104	104	86	12	20	20	-5	-20	-15
27/00	0	106	156	296	-5	15	20	5	-10	-10	21/18	90	184	183	326	5	15	15	0	-15	-10
27/06	0	47	108	603	-5	30	20	5	-20	-10	22/00	11	101	144	101	-5	10	5	10	-5	0
27/12	0	78	272	869	0	30	10	0	-20	-5	22/06	11	124	199	50	0	10	10	5	-5	-5
27/18	0	70	262	782	5	25	-5	-5	-20	0	22/12	33	268	450	239	5	10	15	-5	-5	-5
28/00	0	80	251	768	20	25	-15	-15	-15	15	22/18	80	264	371	195	10	10	20	-10	-5	-10
28/06	0	122	490	1394	35	20	-20	-25	-10	20	23/00	0	215	153	88	10	0	15	-10	0	-10
28/12	0	118	246		35	10		-25	-5		23/06	11	142	50	98	10	5	25	-10	-5	-15
28/18	0	89	264		25	0		-15	0		23/12	0	153	95	108	0	5	30	0	0	-20
29/00	11	126	482		10	-20		-5	15		23/18	22	165	25	79	-10	0	25	5	0	-15
29/06	0	70	392		-5	-30		5	25		24/00	33	55	131	173	-10	5	25	5	-5	-15
29/12	0	162			-20			10			24/06	0	94	98	216	-5	15	25	0	-10	-15
29/18	0	179			-30			15			24/12	0	133	122	226	0	20	25	0	-15	-15
30/00	0	323			-35			25			24/18	25	218	231	290	5	25	25	-5	-15	-15
30/06	0	271			-25			20			25/00	0	31	131	196	10	25	20	-10	-15	-15
30/12	0										25/06	0	99	127	156	20	25	15	-15	-15	-10
30/18	78										25/12	0	56	119	281	20	25	10	-15	-15	-5
$31 / 00$	0										25/18	0	66	227	413	25	25	5	-15	-15	0
31/06	0										26/00	0	87	170	323	20	20	5	-10	-15	0
											26/06	0	82	180	327	10	5	0	0	-5	0
											26/12	0	100	251	320	10	0	0	-5	0	0
Date/Time (UTC)	Center Position				Central Pressure			Max. Wind			26/18	0	156	262	193	10	-5	0	-5	5	0
	$\mathrm{T}=00(\mathrm{~km})$	$\mathrm{T}=24(\mathrm{~km}) \mathrm{T}$	$=48(\mathrm{~km}) \mathrm{T}$	$T=72(\mathrm{~km}) \mathrm{T}$	$\mathrm{T}=24 \mathrm{4} \mathrm{Pa}$) T	48(P Pa) T	2(hPa) ${ }^{\text {a }}$	24 (kt)	48(kt) T		27/00	0	93	154	98	0	-5	-5	-5	5	5
	TY NEPARTAK (0320)										27/06		79	170	93		-10	-5	0	5	5
Nov 12/18											27/12	0	63	114	256	-10	-10	-5	5	$5 \quad 5$	
	$47 \quad 180 \quad 292$			271	$\begin{array}{lll}6 & 9 & 17\end{array}$			-5			27/18	0	40	146	405	-10	-5	-5	5	0	0
13/00	0	135	243	243	-5	5	-5	5	-5	5	28/00	0	53	99	74	-5	-5	-5	5	5	5
13/06	65	131	189	87	-5	0	-5	5	0	5	28/06	0	77	157	121	-5	5	0	5	0	5
13/12	0	132	93	64	-5	0	-5	5	0	5	28/12	0	77	112	158	0	10	0	0	-5	0
13/18	0	172	300	261	0	0	0	0	0	0	28/18	0	133	41	200	0	5	0	0	-5	0
14/00	69	213	263	294	5	0	0	-5	0	0	29/00	0	94	178	284	-5	-5	-5	0	5	5
14/06	86	107	87	172	0	0	5	0	0	-5	29/06	0	88	254	223	0	-10	0	0	15	5
14/12	11	89	97	168	0	-5	5	0	5	-5	29/12	0	145	299		5	-10		0	10	
14/18	0	24	75	235	-10	0	0	10	0	-5	29/18	0	157	258		5	-5		-5	5	
15/00	0	60	55	223	-10	-5	0	10	5	-5	30/00	0	206	86		0	-5		5	5	
15/06	0	123	79	156	-10	-5	0	10	5	-10	30/06	0	146	190		-5	-5		10	5	
15/12	0	86	164	206	-5	0	-6	5	0	0	30/12	0	144			-10			10		
15/18	0	109	163	217	0	-5	-10	0	0	5	30/18	0	115			-5			5		
16/00	0	123	158	130	0	-5	-4	0	0	0	Dec 01/00	0	89			-5			5		
16/06	39	151	169		-5	-10		5	0		01/06	0	48			0			0		
16/12	0	78	62		-5	-16		5	10		01/12	0									
16/18	0	44	67		-5	-15		0	10		01/18	0									
17/00	0	21	237		-5	-10		0	10		02/00	11									
17/06	0	79			-5			-5			02/06	22									
17/12	22	119			-11			5													
17/18	34	33			-10			5													
18/00	34	74			-10			10													
18/06	0																				
18/12	31																				
18/18	0																				
19/00	10																				

Tropical Cyclone Tracks in 2003

Monthly and Annual Frequency of Tropical Cyclones

Monthly and annual frequency of tropical cyclones that attained TS intensity or higher in the western North Pacific and the South China Sea for 1951-2003

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
1951		1	1	2	1	1	3	3	2	4	1	2	21
1952						3	3	5	3	6	3	4	27
1953		1			1	2	1	6	3	5	3	1	23
1954			1		1		1	5	5	4	3	1	21
1955	1	1	1	1		2	7	6	4	3	1	1	28
1956			1	2		1	2	5	6	1	4	1	23
1957	2			1	1	1	1	4	5	4	3		22
1958	1			1	1	4	7	5	5	3	2	2	31
1959		1	1	1			2	5	5	4	2	2	23
1960				1	1	3	3	10	3	4	1	1	27
1961	1		1		2	3	4	6	6	4	1	1	29
1962		1		1	2		5	8	4	5	3	1	30
1963				1		4	4	3	5	4		3	24
1964					2	2	7	5	6	5	6	1	34
1965	2	1	1	1	2	3	5	6	7	2	2		32
1966				1	2	1	4	10	9	5	2	1	35
1967		1	2	1	1	1	7	9	9	4	3	1	39
1968				1	1	1	3	8	3	5	5		27
1969	1		1	1			3	4	3	3	2	1	19
1970		1				2	3	6	5	5	4		26
1971	1		1	3	4	2	8	5	6	4	2		36
1972	1				1	3	7	5	4	5	3	2	31
1973							7	5	2	4	3		21
1974	1		1	1	1	4	4	5	5	4	4	2	32
1975	1						2	4	5	5	3	1	21
1976	1	1		2	2	2	4	4	5	1	1	2	25
1977			1			1	3	3	5	5	1	2	21
1978	1			1		3	4	8	5	4	4		30
1979	1		1	1	2		4	2	6	3	2	2	24
1980				1	4	1	4	2	6	4	1	1	24
1981			1	2		3	4	8	4	2	3	2	29
1982			3		1	3	3	5	5	3	1	1	25
1983						1	3	5	2	5	5	2	23
1984						2	5	5	4	7	3	1	27
1985	2				1	3	1	8	5	4	1	2	27
1986		1		1	2	2	4	4	3	5	4	3	29
1987	1			1		2	4	4	6	2	2	1	23
1988	1				1	3	2	8	8	5	2	1	31
1989	1			1	2	2	7	5	6	4	3	1	32
1990	1			1	1	3	4	6	4	4	4	1	29
1991			2	1	1	1	4	5	6	3	6		29
1992	1	1				2	4	8	5	7	3		31
1993			1			1	4	7	5	5	2	3	28
1994				1	1	2	7	9	8	6		2	36
1995				1		1	2	6	5	6	1	1	23
1996		1		1	2		6	5	6	2	2	1	26
1997				2	3	3	4	6	4	3	2	1	28
1998							1	3	5	2	3	2	16
1999				2		1	4	6	6	2	1		22
2000					2		5	6	5	2	2	1	23
2001						2	5	6	5	3	1	3	26
2002	1	1			1	3	5	6	4	2	2	1	26
2003	1			1	2	2	2	5	3	3	2		21
$\begin{aligned} & \text { ormal } \\ & \text { L-2000 } \end{aligned}$	0.5	0.1	0.4	0.8	1.0	1.7	4.2	5.4	5.0	3.9	2.5	1.3	26.7

Code Forms of RSMC Products

```
(a) RSMC Tropical Cyclone Advisory (WTPQ20-25 RJTD)
WTPQ i i RJTD YYGGgg
RSMC TROPICAL CYCLONE ADVISORY
NAME class ty-No. name (common-No.)
ANALYSIS
PSTN YYGGgg UTC LaLa.La N LoLoLo.LoE (or W) confidence
MOVE direction SpSpSpKT
PRES PPPP HPA
MXWD VmVmVmKT
50KT RdRdRd NM (or 50KT RdRdRd NM octant RdRdRd NM octant)
30KT RdRdRd NM (or 30KT RdRdRd NM octant RdRdRd NM octant)
FORECAST
24HF YYGGggf UTC LaLa.Laf N LoLoLo.Lof E (or w) FrFrFr NM 70%
MOVE direction SpSpSpKT
PRES PPPP HPA
MXWD VmVmVmKT
Ft1Ft1HF YYGGggF UTC LaLa.LaF N LoLoLo.Lof E (or w) FrFrFr NM 70%
MOVE direction SpSpSpKT
PRES PPPP HPA
MXWD VmVmVmKT
Ft2Ft2HF YYGGggF UTC LaLa.LaF N LoLoLo.Lof E (or W) FrFrFrNM 70%
MOVE direction SpSpSpKT
PRES PPPP HPA
MXWD VmVmVmKT =
```


Notes:

a. Underlined is fixed.
b. Abbreviations

PSTN	$:$	Position
MOVE	$:$	Movement
PRES	$:$	Pressure
MXWD	$:$	Maximum wind
HF	$:$	Hour forecast

c. Symbolic letters
i i : '20', '21', '22', '23', '24' or '25'.
YYGGgg : Time of observation submitting the data for analysis. Date(YY), hour(GG) and minute(gg) are given in UTC.
dass : Intensity classification of the tropical cyclone. 'TY', 'STS', TS' or 'TD'.
ty-No. : Domestic identification number of the tropical cyclone adopted in J apan. Given in four digits and same as the international identification number.
name : Name assigned to the tropical cycl one from the name list prepared by the Typhoon Committee.
common-No. : International identification number of the tropical cyclones given in four digits.
LaLa.La : Latitude of the center position in "ANALYSIS" part.
LoLoLo.Lo : Longitude of the center position in "ANALYSIS" part.
confidence : Confidence of the center position. 'GOOD', 'FAIR' or 'POOR'.
direction : Direction of movement given in 16 azimuthal direction as ' N ', 'NNE', 'NE', 'ENE' etc.
SpSpSp : Speed of movement.
PPPP : Central pressure.
VmVmVm : Maximum sustained wind.
RdRdRd : Radii of 30knots and 50knots wind.

```
octant : Eccentric distribution of wind given in 8 azimuthal direction as 'NORTH', 'NORTHEAST',
    'EAST' etc.
    Ft1Ft1 : 48(00, 06, 12 and 18 UTC) or 45 (03, 09, 15 and 21 UTC)
    Ft2Ft2 : 72 (00,06,12 and 18 UTC) or 69 (03,09, 15 and 21 UTC)
    YYGGggF : Time in UTC on which the forecast is valid.
    LaLa.Laf : Latitude of the center of 70% probability cirde in "FORECAST" part.
    LoLoLo.LoF: Longitude of the center of 70% probability circle in "FORECAST" part.
    FrFrFr : Radius of 70% probability circle.
```

d. MOVE is optionally described as 'ALMOST STATIONARY' or '(direction) SLOWLY' depending on the speed of movement.

Example:

WTPQ20 RJTD 150000
RSMC TROPICAL CYCLONE ADVISORY
NAME STS 0320 NEPARTAK (0320)
ANALYSIS
PSTN 150000UTC 12.6N 117.8E FAIR
MOVE WNW 13KT
PRES 980HPA
MXWD 055KT
50KT 40NM
30KT 240NM NORTHEAST 160NM SOUTHWEST
FORECAST
24HF 160000UTC 14.7N 113.7E 110NM 70\%
MOVE WNW 11KT
PRES 965HPA
MXWD 070KT
48HF 170000UTC 16.0N 111.0E 170NM 70\%
MOVE WNW 07KT
PRES 970HPA
MXWD 065KT
72 HF 180000UTC 19.5N 110.0E 250NM 70\%
MOVE NNW 09KT
PRES 985HPA
MXWD 050KT =
(b) RSMC Guidance for Forecast (FXPQ20-25 RJ TD)

FXPQ i i RJTD YYGGgg
RSMC GUIDANCE FOR FORECAST
NAME dass ty-No. name (common-No.)
PSTN YYGGgg UTC LaLa.La N LoLoLo.LoE (or w)
PRES PPPP HPA
MXWD WWW KT
FORECAST BY TYPHOON (or GLOBAL) MODEL

TIME	PSTN	PRES	MXWD
			F FROM T $=0$)

T=06 LaLa.La N LoLoLo.Lo E (or w) appp HPA awww KT
T=12 LaLa.La N LoLoLo.LoE (or w) appp HPA awww KT
T=18 LaLa.La N LoLoLo.LoE (or w) appp HPA awww KT
$:$
$:$
T=78 (or 84) LaLa.La N LoLoLo.LoE (or w) appp HPA awww KT=

Notes:

a. Underlined is fixed.
b. Symbolic letters
i i : '20', '21', '22', '23', '24' or '25'.
YYGGgg : I Initial time of the model in UTC
PPPP : Central pressure in hPa.
WWW : Maximum wind speed in knots.
a : Sign of ppp and www (+ , - or blank).
ppp : Absolute value of change in central pressure from $\mathrm{T}=0$, in hectopascals. www : Absolute value of change in maximum wind speed from $\mathrm{T}=0$, in knots.
c. The prediction terminates in $\mathrm{T}=78$ for Typhoon Model and in $\mathrm{T}=84$ for Global Model.

Example:
FXPQ20 RJTD 180600
RSMC GUIDANCE FOR FORECAST
NAME T 0001DAMREY (0001)
PSTN 180000UTC 15.2N 126.3E
PRES 905HPA
MXWD 105KT
FORECAST BY GLOBAL MODEL
TIME PSTN PRES MXWD
$\mathrm{T}=0615.4 \mathrm{~N} 125.8 \mathrm{E}+018 \mathrm{HPA}-008 \mathrm{KT}$
$\mathrm{T}=1215.5 \mathrm{~N} 125.6 \mathrm{E}+011 \mathrm{HPA}-011 \mathrm{KT}$
$\mathrm{T}=1815.8 \mathrm{~N} 125.7 \mathrm{E}+027 \mathrm{HPA}-028 \mathrm{KT}$
$\mathrm{T}=7820.7 \mathrm{~N} 128.8 \mathrm{E}+021 \mathrm{HPA}-022 \mathrm{KT}=$
(c) SAREP (TCNA20/21 RJ TD)

TCNA i i RJTD YYGGgg
CCAA YYGGg 47644 name (common-No.) nt nt LaLaLa Qc LoLoLoLo 1 At Wt at tm 2St St // (9ds ds fs fs) 三

Notes:

a. Underlined is fixed.
b. Symbolic letters

Example:

TCNA21 RJTD 180000
CCAA 1800047644
DAMREY(0001) 2914911272
11334 275// 92811=
(d) RSMC Prognostic Reasoning (WTPQ30-35 RJ TD)

Example:
WTPQ30 RJTD 180000
RSMC TROPICAL CYCLONE PROGNOSTIC REASONING
REASONING NO. 9 FOR TY 0001 DAMREY (0001)
1.GENERAL COMMENTS

REASONING OF PROGNOSIS THIS TIME IS SIMILAR TO PREVIOUS ONE.
POSITION FORECAST IS MAINLY BASED ON NWP AND PERSISTENCY.
2.SYNOPTIC SITUATION

SUBTROPICAL RIDGE WILL NOT CHANGE ITS LOCATION AND STRENGTH FOR THE NEXT 24 HOURS.
3.MOTION FORECAST

POSITION ACCURACY AT 180000 UTC IS GOOD.
TY WILL DECELERATE FOR THE NEXT 12 HOURS
TY WILL RECURVE WITHIN 60 HOURS FROM 180000 UTC.
TY WILL MOVE WEST FOR THE NEXT 12 HOURS THEN MOVE GRADUALLY TO WEST-NORTHWEST. 4.INTENSITY FORECAST

TY WILL KEEP PRESENT INTENSITY FOR NEXT 24 HOURS.
FI-NUMBER WILL BE 7.0 AFTER 24 HOURS.=
(e) Tropical Cyclone Advisory for SIGMET (F KPQ30-35 RJ TD)

FKPQ i i RJTD YYGGgg
TC ADVISORY

DTG:	yyyymmdd/time \underline{Z}
TCAC:	TOKYO
TC:	class ty-No. name (common-No.)
NR:	number
PSN:	N LaLa.LaLa E LoLoLo.LoLo
MOV:	direction SpSpSp KT
C:	PPPP HPA
MAX WIND:	WWW KT
FCST PSN +12HR:	YYGGgg NLaLa.LaLa ELoLoLo.LoLo
FCST MAX WIND +12HR:	WWW KT
FCST PSN +18HR:	NIL
FCST MAX WIND +18HR:	NIL
FCST PSN +24HR:	YYGGgg N LaLa.LaLa E LoLoLo.LoLo
FCST MAX WIND +24HR:	WWW KT
NXT MSG:	yyyymmdd/time $\underline{Z}=$

Notes:
a. Underlined is fixed.
b. Abbreviations

DTG : Date and time
TCAC : Tropical Cydone Advisory Centre
TC : Tropical Cyclone
NR : Number
PSN : Position
MOV : Movement
C : Center pressure

MAX WIND	$:$	Maximum wind
FCST	$:$	Forecast
NXT MSG	$:$	Next message
C.		
Symbolic letters		
i i	$:$	'30', '31', '32', '33', '34' or '35'.
YYGGgg	$:$	Date(YY), hour(GG) and minute(gg) are given in UTC.
yyyymmdd/time	$:$	Year(yyyy),month(mm), data(dd), hour and minute (time) are given in UTC. (Using "Z"')
class	$:$	Intensity classification of the tropical cyclone. 'TY', 'STS', 'TS' or 'TD'
ty-No.	$:$	Domestic identification number of the tropical cyclone adopted in J apan. Given in four digits
		and same as the international identification number.
name	$:$	Name assigned to the tropical cyclone by J TWC (J oint Typhoon Warning Center, Guam).
common-No.	$:$	But for assignment, this is indicated as 'NAMELESS'.
Number	$:$	Advisory number. (starting with "01" for each cyclone)
LaLa.LaLa	$:$	Latitude of the center position.
LoLoLo.LoLo	$:$	Longitude of the center position.
direction	$:$	Direction of movement given in 16 azimuthal direction as 'N', 'NNE', 'NE', 'ENE' etc.
SpSpSp	$:$	Speed of movement.
PPPP	$:$	Central pressure.
WWW	$:$	Maximum sustained wind.

Example:

FKPQ30 RJTD 160600
TC ADVISORY

DTG:	$20040416 / 0600 Z$		
TCAC:	TOKYO		
TC:	STS 0401	SUDAL (0401)	
NR:	47		
PSN:	N2830 E15855		
MOV:	ENE 25KT		
C:	$985 H P A$		
MAX WIND:	$50 K T$		
FCST PSN +12HR:	161800 N3150	E15855	
FCST MAX WIND 12HR:	$50 K T$		
FCST PSN +18HR:	NIL		
FCST MAX WIND 18HR:	NIL		
FCST PSN +24HR:	$170600 \quad$ N3500	E16700	
FCST MAX WIND 24HR:	$45 K T$		
NXTMSG:	$20040416 / 12007$	$=$	

20040416/0600Z
TOKYO
STS 0401 SUDAL (0401)

N2830 E15855
ENE 25KT
985HPA
161800 N3150 E15855
50KT
NIL
170600 N3500 E16700
20040416/1200Z =
(f) RSMC Tropical Cyclone Best Track (AXPQ20 RJ TD)

AXPQ20 RJTD YYGGgg
RSMC TROPICAL CYCLONE BEST TRACK
NAME ty-No. name (common-No.)
PERIOD FROM MMMDDTTUTC TO MMMDDTTUTC
DDTT LaLa.LaN LoLoLo.LoE PPPHPA WWWKT DDTT LaLa.LaN LoLoLo.LoE PPPHPA WWWKT
DDTT LaLa.LaN LoLoLo.LoE PPPHPA WWWKT DDTT LaLa.LaN LoLoLo.LoE PPPHPA WWWKT
:
DDTT LaLa.LaN LoLoLo.LoE PPPHPA WWWKT DDTT LaLa.LaN LoLoLo.LoE PPPHPA WWWKT REMARKS ${ }^{1)}$
TD FORMATION AT MMMDDTTUTC
FROM TDTOTS AT MMMDDTTUTC
:
:
DISSIPATION AT MMMDDTTUTC=

Notes:

a. Underlined is fixed.
b. 1) REMARKS is given optionally.
c. Symbol ic letters

MMM : Month in UTC. Given as 'J AN', 'FEB', etc.
DD : Date in UTC.
TT : Hour in UTC.
PPP : Central pressure.
WWW : Maximum wind speed.
Example:
AXPQ20 RJTD 020600
RSMC TROPICAL CYCLONE BEST TRACK
NAME 0001 DAMREY (0001)
PERIOD FROM OCT1300UTC TO OCT2618UTC
$130010.8 \mathrm{~N} 155.5 \mathrm{E} 1008 \mathrm{HPA} / / \mathrm{KT} 130610.9 \mathrm{~N} 153.6 \mathrm{E} 1006 \mathrm{HPA} / \mathrm{KT}$
131211.1 N 151.5 E 1004HPA //KT 131811.5 N 149.8 E 1002HPA //KT

1400 11.9N 148.5E 1000HPA //KT 1406 12.0N 146.8E 998HPA 35KT

1712 14.6N 129.5E 905HPA 105KT 1718 14.7N 128.3E 905HPA 105KT
2612 32.6N 154.0E 1000HPA //KT 2618 33.8N 157.4E 1010HPA //KT
REMARKS
TD FORMATION AT OCT1300UTC
FROM TD TO TS AT OCT1406UTC
FROM TS TO STS AT OCT1512UTC
FROM STS TO TY AT OCT1600UTC
FROM TY TO STS AT OCT2100UTC
FROM STS TO TS AT OCT2112UTC
FROM TS TOL AT OCT2506UTC
DISSIPATION AT OCT2700UTC=

List of GPV products and data on the RSMC Data Serving System

Area	20S-60N, 80E-160W	20S-60N, 60E-160W
Resolution	2.5×2.5 degrees	1.25×1.25 degrees
Levels and elements	$\begin{aligned} & \text { Surface (P,U,V,T,TTd,R) } \\ & \text { 850hPa (Z,U,V,T,TTd, }) \\ & 700 \mathrm{hPa}(Z, U, V, T, T T d, \omega) \\ & 500 \mathrm{hPa}(Z, U, V, T, T T d, \zeta) \\ & \text { 300hPa (Z,U,V,T) } \\ & \text { 250hPa (Z,U,V,T) } \\ & \text { 200hPa (Z,U,V,T) } \\ & 150 \mathrm{hPa}(Z, U, V, T) \\ & 100 \mathrm{hPa}(Z, U, V, T) \end{aligned}$	```Surface (\(\mathrm{P}, \mathrm{U}, \mathrm{V}, \mathrm{T}, \mathrm{TT}\) d,R)** 1000hPa (Z,U,V,T,TTd) \(925 \mathrm{hPa}(Z, U, V, T, T T d, \omega)\) 850hPa (\(\left.Z^{*}, \mathrm{U}^{*}, \mathrm{~V}^{*}, \mathrm{~T}^{*}, \mathrm{TTd}^{*}, \omega, \Psi, \mathrm{x}\right)\) \(700 \mathrm{hPa}\left(\mathrm{Z}^{*}, \mathrm{U}^{*}, \mathrm{~V}^{*}, \mathrm{~T}^{*}, \mathrm{TTd}^{*}, \omega\right)\) \(500 \mathrm{hPa}\left(\mathrm{Z}^{*}, \mathrm{U}^{*}, \mathrm{~V}^{*}, \mathrm{~T}^{*}, \mathrm{TTd}^{*}, \zeta\right)\) 400hPa (Z,U,V,T,TTd) \(300 \mathrm{hPa}(\mathrm{Z}, \mathrm{U}, \mathrm{V}, \mathrm{T}, \mathrm{TT}\)) \(250 \mathrm{hPa}(Z, U, V, T)\) \(200 \mathrm{hPa}\left(\mathrm{Z}^{*}, \mathrm{U}^{*}, \mathrm{~V}^{*}, \mathrm{~T}^{*}, \Psi, \mathrm{X}\right)\) \(150 \mathrm{hPa}(\mathrm{Z}, \mathrm{U}, \mathrm{V}, \mathrm{T})\) \(100 \mathrm{hPa}(Z, U, V, T)\) \(70 \mathrm{hPa}(\mathrm{Z}, \mathrm{U}, \mathrm{V}, \mathrm{T})\) \(50 \mathrm{hPa}(\mathrm{Z}, \mathrm{U}, \mathrm{V}, \mathrm{T})\) \(30 \mathrm{hPa}(\mathrm{Z}, \mathrm{U}, \mathrm{V}, \mathrm{T})\) \(20 \mathrm{hPa}(\mathrm{Z}, \mathrm{U}, \mathrm{V}, \mathrm{T})\) \(10 \mathrm{hPa}(\mathrm{Z}, \mathrm{U}, \mathrm{V}, \mathrm{T})\)```
Forecast hours	(00 and 12 UTC) $0,6,12,18,24,30,36,48,60$ and 72 hours	(00 and 12 UTC) $0-84$ every 6 hours In addition (12 UTC), * 96, 120, 144, 168 and 192 hours ** $90-192$ every 6 hours
Frequency (initial times)	Twice a day (00 and 12 UTC)	Twice a day (00 and 12 UTC)

Area	Whole globe		Whole globe
Resolution	2.5×2.5 degrees		1.25x1.25 degrees
Levels and elements	```Surface(P,R,U,V,T) 1000hPa(Z) 850hPa(Z,U,V,T,TTd) 700hPa(Z,U,V,T,TTd) 500hPa(Z,U,V,T) 300hPa(Z,U,V,T) 250hPa(Z,U,V,T)* 200hPa(Z,U,V,T) 100hPa(Z,U,V,T)* 70hPa(Z,U,V,T)* 50hPa(Z,U,V,T)* 30hPa(Z,U,V,T)*```		Surface (P,U,V,T,RH,R,CI) 1000hPa (Z,U,V,T,RH, ω) 925hPa (Z,U,V,T,RH, ω) 850hPa (Z,U,V,T,RH, ω, Ψ, x) $700 \mathrm{hPa}(\mathrm{Z}, \mathrm{U}, \mathrm{V}, \mathrm{T}, \mathrm{RH}, \omega)$ $600 \mathrm{hPa}(Z, U, V, T, R H, \omega)$ 500hPa (Z,U,V,T, RH, $\omega, \zeta)$ 400hPa (Z,U,V,T, RH, w) 300hPa (Z,U,V,T, RH, ω) $250 \mathrm{hPa}(\mathrm{Z}, \mathrm{U}, \mathrm{V}, \mathrm{T})$ 200hPa (Z,U,V,T, $\Psi, X)$ $150 \mathrm{hPa}(Z, U, V, T)$ $100 \mathrm{hPa}(\mathrm{Z}, \mathrm{U}, \mathrm{V}, \mathrm{T})$ $70 \mathrm{hPa}(\mathrm{Z}, \mathrm{U}, \mathrm{V}, \mathrm{T})$ 50hPa (Z,U,V,T) $30 \mathrm{hPa}(\mathrm{Z}, \mathrm{U}, \mathrm{V}, \mathrm{T})$ $20 \mathrm{hPa}(\mathrm{Z}, \mathrm{U}, \mathrm{V}, \mathrm{T})$ $10 \mathrm{hPa}(\mathrm{Z}, \mathrm{U}, \mathrm{V}, \mathrm{T})$
Forecast hours	(00 and 12 UTC) 24, 48 and 72 hours In addition (12 UTC), 96 - 192 every 24 hours * 96 and 120 only	(00 and 12 UTC) 0 hours * 00UTC only	(00 and 12 UTC) $0-84$ every 6 hours In addition (12 UTC), 96-192 every 12 hours
Frequency (initial times)	twice a day (00 and 12 UTC)		twice a day (00 and 12 UTC)

Area	Whole globe
Resolution	2.5×2.5 degrees
Levels and elements	Surface (P) $1000 \mathrm{hPa}(\mathrm{Z})$ $850 \mathrm{hPa}(\mathrm{T}, \mathrm{U}, \mathrm{V})$ $500 \mathrm{hPa}(\mathrm{Z})$ $250 \mathrm{hPa}(\mathrm{U}, \mathrm{V})$
*Above GPVs are ensemble mean and standard deviation of ensemble forecast memers.	
Forecast hours	Every 12 hours from 0 192 hours
Frequency (initial times)	Once a day (12 UTC)

Notes:	Cl	: cloud cover (total)	P	pressure reduced to MSL	R	total precipitation
	RH	:relative humidity	T	temperature	TTd	: dew point depression
	U	: u-component of wind	V	v -component of wind	Z	: geopotential height
	ζ	: relative vorticity	X	velocity potential	Ψ	stream function
	ω	: vertical velocity				

Products/	GOES data	Typhoon Information	Global Wave Model (GRIB)	Observational data
Contents	(a) Digital data (GRIB) - Cloud amount - Convective cloud amount - Equivalent blackbody temperature (b) Satellite-derived high density cloud motion vectors (BUFR)	Tropical cyclone related information (BUFR) - Position, etc.	- Significant wave height - Prevailing wave period - Prevailing wave direction Forecast hours: $0,6,12,18,24,30,36,42,48$, 54, 60, 7278,84 (00 and 12 UTC); 96, 108, 120, 132, 144, 156, 168,180 and 192 hours (12 UTC)	(a) Surface data (SYNOP, SHIP) (b) Upper-air data (TEMP, parts A-D) (PILOT, parts A-D)
Frequency (initial times)	(a) 4 times a day (00, 06, 12 and 18 UTC) (b) Once a day (04 UTC)	$\begin{aligned} & 4 \text { times a day (} 00,06,12 \\ & \text { and } 18 \text { UTC) } \end{aligned}$	Twice a day (00 and 12 UTC)	(a) Mainly 4 times a day (b) Mainly 2 times a day

User's Guide to the attached CD-ROM

Copyright (c) 2004 by the J apan Meteorol ogical Agency (J MA) All Rights Reserved.

1) This CD-ROM should not be reproduced and not be provided to any third party.
2) The source should be properly acknowledged in any work obtained with this CD-ROM.

J MA does not accept liability for any direct and/or indirect loss or damage to the user caused by the use of the software, data or documents in this CD-ROM.

Preface

This CD-ROM contains all the texts, tables, charts of this report and GMS-5 (GOES-9 from 22 May 2003) satellite images of the tropical cyclones that attained TS intensity or higher in the western North Pacific and the South China Sea in 2003. This document is a brief user's guide for the CD-ROM. The CD-ROM was mastered in ISO-9660 format.

Directory and File layout

| ------ar405eng.exe (Acrobat Reader Installer)
| ------Readme.txt (belief explanation about the CD-ROM)
| ------TopM enu.exe (Start menu setup program)
| ------Users_Manual.htm (user's manual of a satellite image viewer)
| ------Annual_Report
| ---Text (text of Annual Report 2003 in PDF)
| ---Figure (figures for MS PowerPoint)
| ---Table (tables for MS Excel)
| ---Appendix (appendixes for MS Excel, PowerPoint)
| ------Programs
| ---Gmslpd
| --Gmslpd.exe (Viewer; tropical cyclone version in English)
| --Gsetup.exe, etc. (Setup program, etc.)
| ------Satellite_Image_Data
| ---2003_1 (3-hourly GMS image data)
| ---2003_2 (3-hourly GMS image data)
| ---2003_21 (3-hourly GOES image data)
| ------Users_Manual
| --Gmanual.doc (User's Manual for MS Word)
| ------Andata
| --Best2003.txt (Best track data for the year 2003)

How to use this CD-ROM

When you set the CD-ROM, start menu will be presented automatically with a panel which has "Annual Report 2003", "Satellite Images", "About CD-ROM" and "Close" buttons and a file list box for some introductory documents. Choose and click a button or file which you want to see and follow instructions on your display.

Required hardware/OS for the CD-ROM are:
Hardware : DOS-V, NEC PC-9800 Series or their compatible
OS : Microsoft Windows Ver. 3.1 or later

< Annual Report 2003 >

Annual Report 2003 is prepared in the following two formats: "PDF files" and "MS Word/Excel/PowerPoint files".

- PDF files:

Click the "Annual Report 2003" button to open the annual report 2003 in PDF. If you can not open the PDF file, install 'AdobeAcrobat Reader’ with its installer (ar405eng.exe) in the file list box on a start menu window, and try again. 'Adobe Acrobat Reader' (or 'Adobe Acrobat') is required to view PDF files.

- Word/Excel/PowerPoint files:

Original figures and tables prepared with Microsoft Word, Excel or PowerPoint are stored in Annual_Report folder of the CD-ROM.

< Satellite Images >

- Installation of a program for displaying satellite images:

Click the "Satellite Image" button to run a setup program (Gsetup.exe) of a satellite image viewer. If you follow some instructions, the viewer 'Gmslpd.exe', which is a program for displaying satellite images, will be installed into the harddisk of your computer and a list of the tropical cyclones in 2003 is displayed in the 'Selection window' of satellite images for tropical cyclones.

- Displaying satellite images:

Choose a tropical cyclone from the list and click the name, and 3-hourly satellite images for the tropical cyclone will be displayed. You can display the track of the tropical cyclone superimposed on the satellite image and measure the intensity of the tropical cyclone using Dvorak's technique.

- User's manual for the viewer:

Besides the above functions, the viewer has many useful ones. See the User's Manual (Users_Manual.htm or /Users_Manual/Gmanual.doc) about further detailed operations.

- Explanation of satellite image data

Period : From Generating Stage to Weakening Stage of each tropical cyclone.
Images : Infrared images (00, 03, 06, 09, 12, 15, 18, 21UTC) Visible images (00, 03, 06, 09, 21UTC)
Range : 40 degrees in both latitude and longitude. (The image window moves following a tropical cyclone's track so that the center of a tropical cyclone is fixed at the center of the image window.)
Time interval : 3-hourly
Resolution : 0.08 degrees in both latitude and longitude.
Compression of file : Compressed using 'compress.exe' command of Microsoft Windows.

< About CD-ROM >

Click the "About CD-ROM" button to open ReadmeE .txt file.

< Close >

Click the "Close" button to close start menu window.

< File list box >

You can open document files from a file list box on the start menu window. Choose a file and click the "Open" button or double click the file name.

Microsoft Windows is the registered trademark of Microsoft Corporation in the United States and other countries. Adobe and Acrobat Reader are the trade mark of Adobe Systems Incorporated.

PC-9800 Series is the trademark of NEC Corporation.

For further information, please contact the following address:
RSMC Tokyo-Typhoon Center, Forecast Division,
F orecast Department, J APAN METEOROLOGICAL AGENCY 1-3-4 Otemachi, Chiyoda-ku, Tokyo, 100-8122 J apan FAX: +81-03-3211-8303
e-mail: rsmc-tokyo@met.kishou.go.jp

