Quality control of weather radar data by using dual-polarization

7 February 2018
Hiroshi Yamauchi
Observation Department
Japan Meteorological Agency
Contents

• Principle of dual-polarization radar
• Quality control using dual-pol data
• Calibration of dual-pol data
Principle of dual-polarization weather radar

7 February 2018
Hiroshi Yamauchi
Observation Department
Japan Meteorological Agency
Content

- Basic scheme of polarimetric radar
 - Quality control
 - Rain rate estimation
 - Hydrometer classification
- Dual-pol data
 - Z_{dr}, ρ_{hv}, Φ_{dp} (K_{dp})
 - Textures ($S(\Phi_{dp})$)
Basic scheme of dual-pol radar

Merits:
• Quality control
• Rain rate estimation,
• Hydrometeor classification

Transmitting and receiving both horizontally (H) and vertically (V) polarized wave

Ice crystal / Snow
Graupel
Hail
Heavy Rain
Large rain drop
Rain drop

Merits:
• Quality control
• Rain rate estimation,
• Hydrometeor classification

Transmitting and receiving both horizontally (H) and vertically (V) polarized wave
Basic scheme of dual-pol radar

- Two receivers for H & V
- Two transmitters or single transmitter which output wave is divided to H & V
- Isolation between H & V is crucially important
Two observation mode

Simultaneous Transmitting and Receiving mode (STAR or Hybrid mode)

Alternate H/V mode (ALT mode)
Dual-pol data

Conventional Doppler weather radar

<table>
<thead>
<tr>
<th>Observed parameter</th>
<th>Derived texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflectivity Z</td>
<td>$S(Z)$</td>
</tr>
<tr>
<td>Doppler velocity V</td>
<td>$S(V)$</td>
</tr>
<tr>
<td>Velocity width W</td>
<td>$S(W)$</td>
</tr>
</tbody>
</table>

Dual-polarization weather radar

<table>
<thead>
<tr>
<th>Observed parameter</th>
<th>Derived texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential reflectivity Z_{dr}</td>
<td>$S(Z_{dr})$</td>
</tr>
<tr>
<td>Correlation coefficient ρ_{hv}</td>
<td>$S(\rho_{hv})$</td>
</tr>
<tr>
<td>Differential phase Φ_{dp}</td>
<td>$S(\Phi_{dp})$</td>
</tr>
</tbody>
</table>

Spatial derivative

Specific differential phase K_{dp}
Dual-pol data

- Transmit
- Vertical wave
- Horizontal wave

- Receive

Precipitation particle (scattering target)

Amplitude ratio \rightarrow Zdr
Phase difference \rightarrow Φ_{dp}, K_{dp}

Fluctuation in phase and amplitude \rightarrow ρ_{hv}
Zdr: Differential reflectivity

- **Z_{DR}**: Shape of particle
 - Ratio between horizontal and vertical reflectivity factor.
 - Reflects aspect ratio of scattering targets.
 - Possible range of values: generally -4 to 10 (dB)
 - Useful for Rain rate estimation and hydrometeor classification

$$Z_{dr} = 10 \log_{10} \left(\frac{Z_{hh}}{Z_{vv}} \right)$$

- **Negative** ($Z_{hh} < Z_{vv}$)
- **Close to zero** ($Z_{hh} = Z_{vv}$)
- **Positive** ($Z_{hh} > Z_{vv}$)

- **Large Hail**
- **Light rain**
- **Drizzle**
- **Graupel**
- **Hail**
- **Rain drop**
- **Biological target**

Courtesy of Mr. Umehara
Zdr: Differential reflectivity

MRI-C 2014 06/24 14:37:18JST RHI AZ=229.6 deg
Reflectivity (dBZ)

MRI-C 2014 06/24 14:37:18JST RHI AZ=229.6 deg
Differential Reflectivity (dB)

Distribution of Hydrometeors

Graupel
Big rain drops
Hail

Rain
\(\rho_{hv} \): Correlation coefficient

- \(\rho_{hv} \): Diversity in shape
 - Correlation coefficient between horizontal and vertical signal.
 - Reflects diversity of scattering targets within a bin.
 - Possible range of values: 0 to 1 (none units)
 - Useful for hydrometeor classification and QC
\(\rho_{hv} \): Correlation coefficient

Reflectivity \(Z \) (dBZ)

Correlation coefficient \(\rho_{hv} \)

Distance from radar (km)

Height (km)
Φ_{dp}: Differential phase

- **Φ_{DP}**: Rain rate / Water content
 - Phase difference between horizontal and vertical signals.
 - Reflects aspect ratios of precipitation particles on the beam path.
 - Possible range of values: folded in -180 to 180 deg (0 – 360 deg)
 - In weather echo, monotonically increasing with range (continuous)
 - Not affected by rain attenuation

![Diagram illustrating the concept of Φ_{dp}](image_url)

Path accumulated value

Φ_{dp} (deg)

- moderate
- light
- heavy

Courtesy of Mr. Umehara
Φdp: Differential phase

Z (dBZ) Φdp (deg)
Kdp: Specific differential phase

- **K_{DP}:** Rain rate / Water content
 - Change of Φ_{DP} in a unit distance
 - Reflects aspect ratios of precipitation particles on the beam path.
 - Possible range of values: generally -2 to 10 (deg/km)
 - Not affected by rain attenuation
 - Useful for rainfall rate estimation (especially for heavy rain)
 - Noisy against light rain
 - Not sensitive to ice particles

Kdp (deg/km) vs. Φ_{DP} (deg/km)

Range:
- **Moderate**
- **Light**
- **Heavy**

Courtesy of Mr. Umehara
Kdp: Specific differential phase
Textures of dual-pol data

Texture: Spatial Fluctuation

- Generally defined as standard deviation parameters
- Reflects the roughness of the value distribution
- Reflects the characteristics of targets (depends on parameter)
- Useful for QC and hydrometeor classification

\[
Texture(X_{a,b}) = \sqrt{\frac{\sum_{i=-(m-1)/2}^{(m-1)/2} \sum_{j=-(n-1)/2}^{(n-1)/2} (X_{a,b}-X_{a+i,b+j})^2}{mn}}
\]
$S(\Phi_{DP}) :$ textures of Φ_{DP}

- $S(\Phi_{DP}) :$ Standard deviation of Φ_{DP}
 - Reflects sparseness or non-uniformity of scattering targets within sampling volume
 - Possible range of values : larger than 0
 - Can clearly indicates precipitation echo
 - Useful for hydrometeor classification and QC

Probability density distribution of $S(\Phi_{DP})$

Sugier and Tabary (2006)
Merits of using dual-pol data

- Quality control
- Rain rate estimation
- Hydrometer classification
Dual-pol data

Conventional Doppler weather radar

Observed parameter
- Reflectivity Z
- Doppler velocity V
- Velocity width W

Derived texture
- $S(Z)$
- $S(V)$
- $S(W)$

Dual-polarization weather radar

Observed parameter
- Differential reflectivity Z_{dr}
- Correlation coefficient ρ_{hv}
- Differential phase Φ_{dp}

Derived texture
- $S(Z_{dr})$
- $S(\rho_{hv})$
- $S(\Phi_{dp})$

Spatial derivative
Specific differential phase K_{dp}